ROS Theses Repository

View Item 
  •   ROS Home
  • Energy, Geoscience, Infrastructure and Society
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)
  • View Item
  •   ROS Home
  • Energy, Geoscience, Infrastructure and Society
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)
  • View Item
  •   ROS Home
  • Energy, Geoscience, Infrastructure and Society
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unlocking the inner cell : linking cell biochemistry to the physiology and ecology of coccolithophores

View/Open
VilliotN_0422_egisSS.pdf (14.62Mb)
Date
2022-04
Author
Villiot, Naomi
Metadata
Show full item record
Abstract
Coccolithophores — marine calcifying unicellular algae — make a key contribution to phytoplankton community diversity and productivity and have important roles in regulating ocean biogeochemistry. Despite their ecological success, the current understanding of the clade relies on the knowledge of the model species, Emiliana huxleyi, whereas very little is known of their diverse physiological ecology. This thesis presents a detailed analysis of the physiology of a diverse range of coccolithophores, including a meta-analysis of their cell size as well as biochemical data of cellular elemental (i.e., carbon, C; nitrogen, N; phosphorus, P) and macromolecular (i.e., protein, lipid, and carbohydrate) content in nutrient-replete cultures. Coccolithophore differ from other key phytoplankton in that their cell size spectrum is restricted with most extant species smaller than 10 μm in diameter, likely giving them advantages in low nutrient and light environments when competing with other phytoplankton. In addition, coccolithophores are less C-rich than other phytoplankton, providing a coccolithophore-specific relationship between cell organic C content and biovolume. The examination of coccolithophore elemental composition shows that organic C to N ratios are similar to other phytoplankton, implying little additional N cost for calcification and efficient retention and recycling of cell N. On the other hand, C to P ratios imply a greater P demand in coccolithophores, which hints at efficient metabolic strategies for the use of this nutrient by the cells. The macromolecular composition of coccolithophores of this study shows higher lipid and lower protein content than reported previously for haptophytes. Coccolithophore C to N ratios and high lipid relative to proteins have implications for N cycling, as well as C fixation, and export relative to blooms of non-biomineralized phytoplankton. Finally, outputs of a distinct DNA-barcoding field-study of small eukaryote plankton communities (< 200 !m) revealed differences in the species composition between the contrasting depth layers of the water column in the sub-tropical oligotrophic gyre. Nutrient enrichment studies demonstrated the role of P, largely understudied in comparison with N, in constraining eukaryotic marine biodiversity, which has implications for ocean productivity.
URI
http://hdl.handle.net/10399/4744
Collections
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback