Unlocking the inner cell : linking cell biochemistry to the physiology and ecology of coccolithophores
Abstract
Coccolithophores — marine calcifying unicellular algae — make a key contribution to
phytoplankton community diversity and productivity and have important roles in
regulating ocean biogeochemistry. Despite their ecological success, the current
understanding of the clade relies on the knowledge of the model species, Emiliana
huxleyi, whereas very little is known of their diverse physiological ecology. This thesis
presents a detailed analysis of the physiology of a diverse range of coccolithophores,
including a meta-analysis of their cell size as well as biochemical data of cellular
elemental (i.e., carbon, C; nitrogen, N; phosphorus, P) and macromolecular (i.e., protein,
lipid, and carbohydrate) content in nutrient-replete cultures.
Coccolithophore differ from other key phytoplankton in that their cell size spectrum is
restricted with most extant species smaller than 10 μm in diameter, likely giving them
advantages in low nutrient and light environments when competing with other
phytoplankton. In addition, coccolithophores are less C-rich than other phytoplankton,
providing a coccolithophore-specific relationship between cell organic C content and
biovolume.
The examination of coccolithophore elemental composition shows that organic C to N
ratios are similar to other phytoplankton, implying little additional N cost for calcification
and efficient retention and recycling of cell N. On the other hand, C to P ratios imply a
greater P demand in coccolithophores, which hints at efficient metabolic strategies for the
use of this nutrient by the cells. The macromolecular composition of coccolithophores of
this study shows higher lipid and lower protein content than reported previously for
haptophytes. Coccolithophore C to N ratios and high lipid relative to proteins have
implications for N cycling, as well as C fixation, and export relative to blooms of non-biomineralized phytoplankton.
Finally, outputs of a distinct DNA-barcoding field-study of small eukaryote plankton
communities (< 200 !m) revealed differences in the species composition between the
contrasting depth layers of the water column in the sub-tropical oligotrophic gyre.
Nutrient enrichment studies demonstrated the role of P, largely understudied in
comparison with N, in constraining eukaryotic marine biodiversity, which has
implications for ocean productivity.