dc.description.abstract | The research work presented in this thesis is concerned with the development of a more
economical and efficient method of designing near zero energy, thermally comfortable,
resilient buildings for the future by reducing the number of onerous inputs necessary for
building thermal analysis. Existing building design methods either do not evaluate thermal
comfort of the designed building or are too complex to be widely applicable, in the case of
simulation approaches. It is proposed that a surrogate model, using multidimensional
interpolation analysis, of a dynamic simulation engine is the most appropriate model to
develop. Thermal comfort evaluation methods, the means of passive thermal storage to increase
resilience of the designed building, currently employed building design tools and
multidimensional interpolation analysis are investigated. It is determined that Kriging is the
most appropriate surrogate model to examine. Ordinary Kriging is then selected for testing
using dynamic simulation results as known points. The output of the surrogate model is
compared against the results of IES VE and EnergyPlus simulations to determine its validity.
It is found that the surrogate model matches the simulation results closely in 50% of test cases
but performs poorly when limited known results are in close proximity to the unknown point
or more than 4 alterations from the baseline model are made. Utilising interpolation allows
designers to understand the impact of each input and, therefore, highlights which parameters
need to be closely monitored during the construction phase to ensure actual performance is in
line with simulated. As we aim to design resilient buildings in response to extreme weather
events due to climate change, the use of the KTool (a simplified input surrogate model based
on Ordinary Kriging) can contribute to the global effort to improve energy efficiency in
buildings and meet the building needs of future generations in a thermally comfortable, low
energy and low carbon manner. | en |