Semi-nonparametric varying coefficient regression : methodology, theory and application in urban economics
Abstract
This thesis presents three classes of semi-nonparametric varying coefficient regression for modelling spatial heterogeneity with cross-sectional
data, panel data, and functional data, respectively, in the urban context.
Chapter 2 presents a selective review of the nonparametric and semi-parametric methodologies. We first examine the estimation of a nonparametric regression using the kernel and the series methods, high lighting the cost of using the nonparametric methods. Next, we review
the estimation of a varying coefficient regression and stress its relationship with the popular geographical weighted regression. Finally, we
discuss the estimation of a functional linear regression, where the independent variable itself is a function. The functional principal component and Tikhonov regularisation are introduced subsequently to
estimate the model.
Chapter 3 considers a spatially varying coefficient regression model
over irregularly shaped areas. We develop a novel methodology that
combines local polynomials and a non-Euclidean metric, called geodesic
distance, to achieve both coefficient smoothing and spatial prediction
over complex regions. We implement a series of Monte Carlo simulation studies to test the proposed methodology. The results suggest
that our method performs better in the estimated coefficients as well as
the prediction than alternative methods. Finally, we apply the method
to the housing market in Aveiro, Portugal, a coastal area separated by
lagoons and rivers. The results highlight the importance of modelling
spatial heterogeneity and dependence in a hedonic regression.
Chapter 4 presents a spatiotemporally varying coefficient regression
model which extends the spatially varying coefficient regression model
into the temporal dimension. A three-dimensional local polynomial
method is applied to estimate the coefficient. The Monte-Carlo simu lations show that the proposed methodology outperforms the existing geographical and temporal weighted regression. Empirically, we apply
the methodology to study the relationship between human activities
and consumption amenities in Beijing. To measure the human activi ties and the distribution of the consumption amenities, we collect two
unique datasets, a high-resolution mobile phone positioning dataset
from Wechat, a mobile social-networking application, and a point-of-interest(POI) dataset from Meituan-Dianping, a crowd-sourcing review website. The results show that the spatial configurations for
the consumption amenities play a significant role in attracting human
activities, after controlling for a wide range of location-specific characteristics. However, the effects vary substantially over space and a
24-hour time span. The results provide insights into the geographic
contextual uncertainties of local amenities in shaping the rise and fall
in the city liveliness.
Chapter 5 proposes a novel methodology called sieve continuum generalised method of moments to estimate a functional linear regression
model. The methodology uses the sieve method to achieve dimension
reduction and the continuum generalised method of moments to exploit all the moment conditions. It provides a general framework for
estimating a functional linear regression with exogenous regressors as
well as a functional instrumental variable regression. The proposed
estimator has a closed-form which makes it easy to implement and intuitively appealing. Finally, we derive the optimal rate of convergence
for the estimator.
Chapter 6 concludes with the summaries, the limitations of the thesis,
as well as the directions for future researches.