ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Imaging and uncertainty quantification in radio astronomy via convex optimization : when precision meets scalability

View/Open
AbdulazizA_1020_epsSS.pdf (38.13Mb)
Date
2020-10
Author
Abdulaziz, Abdullah
Metadata
Show full item record
Abstract
Upcoming radio telescopes such as the Square Kilometre Array (SKA) will provide sheer amounts of data, allowing large images of the sky to be reconstructed at an unprecedented resolution and sensitivity over thousands of frequency channels. In this regard, wideband radio-interferometric imaging consists in recovering a 3D image of the sky from incomplete and noisy Fourier data, that is a highly ill-posed inverse problem. To regularize the inverse problem, advanced prior image models need to be tailored. Moreover, the underlying algorithms should be highly parallelized to scale with the vast data volumes provided and the Petabyte image cubes to be reconstructed for SKA. The research developed in this thesis leverages convex optimization techniques to achieve precise and scalable imaging for wideband radio interferometry and further assess the degree of confidence in particular 3D structures present in the reconstructed cube. In the context of image reconstruction, we propose a new approach that decomposes the image cube into regular spatio-spectral facets, each is associated with a sophisticated hybrid prior image model. The approach is formulated as an optimization problem with a multitude of facet-based regularization terms and block-specific data-fidelity terms. The underpinning algorithmic structure benefits from well-established convergence guarantees and exhibits interesting functionalities such as preconditioning to accelerate the convergence speed. Furthermore, it allows for parallel processing of all data blocks and image facets over a multiplicity of CPU cores, allowing the bottleneck induced by the size of the image and data cubes to be efficiently addressed via parallelization. The precision and scalability potential of the proposed approach are confirmed through the reconstruction of a 15 GB image cube of the Cyg A radio galaxy. In addition, we propose a new method that enables analyzing the degree of confidence in particular 3D structures appearing in the reconstructed cube. This analysis is crucial due to the high ill-posedness of the inverse problem. Besides, it can help in making scientific decisions on the structures under scrutiny (e.g., confirming the existence of a second black hole in the Cyg A galaxy). The proposed method is posed as an optimization problem and solved efficiently with a modern convex optimization algorithm with preconditioning and splitting functionalities. The simulation results showcase the potential of the proposed method to scale to big data regimes.
URI
http://hdl.handle.net/10399/4402
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback