ROS Theses Repository

View Item 
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large-scale optimization : combining co-operative coevolution and fitness inheritance

View/Open
HameedAHA_0219_macs.pdf (2.443Mb)
Date
2019-02
Author
Hameed, Aboubakar Hameed Ali
Metadata
Show full item record
Abstract
Large-scale optimization, here referring mainly to problems with many design parameters remains a serious challenge for optimization algorithms. When the problem at hand does not succumb to analytical treatment (an overwhelmingly common place situation), the engineering and adaptation of stochastic black box optimization methods tends to be a favoured approach, particularly the use of Evolutionary Algorithms (EAs). In this context, many approaches are currently under investigation for accelerating performance on large-scale problems, and we focus on two of those in this research. The first is co-operative co-evolution (CC), where the strategy is to successively optimize only subsets of the design parameters at a time, keeping the remainder fixed, with an organized approach to managing and reconciling these subspace optimization. The second is fitness inheritance (FI), which is essentially a very simple surrogate model strategy, in which, with some probability, the fitness of a solution is simply guessed to be a simple function of the finesses of that solution’s parents. Both CC and FI have been found successful on nontrivial and multiple test cases, and they use fundamentally distinct strategies. In this thesis, we explored the extent to which both of these strategies can be used to provide additional benefits. In addition to combining CC and FI, this thesis also introduces a new FI scheme which further improves the performance of CC-FI. We show that the new algorithm CC-FI is highly effective for solving problems, especially when the new FI scheme is used. In the thesis, we also explored two basic adaptive parameter setting strategies for the FI component. We found that engineering FI (and CC, where it was otherwise not present) into these algorithms led to good performance and results.
URI
http://hdl.handle.net/10399/4025
Collections
  • Doctoral Theses (Mathematical & Computer Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback