ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Practical unconditionally secure signature schemes and related protocols

View/Open
AmiriRP_0218_eps.pdf (2.297Mb)
Date
2018-02
Author
Amiri, Ryan Philip
Metadata
Show full item record
Abstract
The security guarantees provided by digital signatures are vital to many modern applications such as online banking, software distribution, emails and many more. Their ubiquity across digital communications arguably makes digital signatures one of the most important inventions in cryptography. Worryingly, all commonly used schemes – RSA, DSA and ECDSA – provide only computational security, and are rendered completely insecure by quantum computers. Motivated by this threat, this thesis focuses on unconditionally secure signature (USS) schemes – an information theoretically secure analogue of digital signatures. We present and analyse two new USS schemes. The first is a quantum USS scheme that is both information-theoretically secure and realisable with current technology. The scheme represents an improvement over all previous quantum USS schemes, which were always either realisable or had a full security proof, but not both. The second is an entirely classical USS scheme that uses minimal resources and is vastly more efficient than all previous schemes, to such an extent that it could potentially find real-world application. With the discovery of such an efficient classical USS scheme using only minimal resources, it is difficult to see what advantage quantum USS schemes may provide. Lastly, we remain in the information-theoretic security setting and consider two quantum protocols closely related to USS schemes – oblivious transfer and quantum money. For oblivious transfer, we prove new lower bounds on the minimum achievable cheating probabilities in any 1-out-of-2 protocol. For quantum money, we present a scheme that is more efficient and error tolerant than all previous schemes. Additionally, we show that it can be implemented using a coherent source and lossy detectors, thereby allowing for the first experimental demonstration of quantum coin creation and verification.
URI
http://hdl.handle.net/10399/4019
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback