ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectroscopy and accurate spatial positioning of quantum emitters hosted by two-dimensional semiconductors

View/Open
BrannyA_0318_eps.pdf (8.395Mb)
Date
2018-03
Author
Branny, Artur
Metadata
Show full item record
Abstract
Atomically-thin semiconductors offer intriguing technological advantages for quantum photonic applications. Advantages include a lack of dangling bonds, atomically-precise interfaces, the potential to design novel heterostructures with an absence of nuclear spins, and the ease of integration with photonic integrated chip platforms. These benefits offer a new opportunity to construct a scalable quantum architecture with a coherent lightmatter interface, an exciting prospect for future quantum technologies. This thesis takes the first steps in this direction. Atomically-thin flakes of transition metal dichalcogenides (WSe2 or MoSe2) are transferred to substrates with smooth and nanopatterned regions. Using cryogenic microphotoluminesce spectroscopy, a correlation between isolated quantum emitters and localised strain ‘pockets’ is observed. This observation is exploited to fabricate WSe2 arrays of highly pure single photon (g(2)(0) <0.5%) emitters at deterministic spatial positions (120±30 nm accuracy) with nearly 100% efficiency. The quantum emitters intrinsic optical properties are characterised via magnetic field and temperature dependent spectroscopy. The nanoscale strain engineering approach provides a universal scheme to create spatially and spectrally isolated quantum emitters in other two-dimensional materials. The thesis concludes with a discussion on the origin and dynamics of strain-tuned localized excitons in 2D semiconductors, presenting local disorder and exciton funnelling as important ingredients.
URI
http://hdl.handle.net/10399/3535
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback