ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sonar attentive underwater navigation in structured environment

View/Open
AbdellaHK_0718_eps.pdf (7.950Mb)
Date
2018-07
Author
Abdella, Hashim Kemal
Metadata
Show full item record
Abstract
One of the fundamental requirements of a persistently Autonomous Underwater Vehicle (AUV) is a robust navigation system. The success of most complex robotic tasks depends on the accuracy of a vehicle’s navigation system. In a basic form, an AUV estimates its position using an on-board navigation sensors through Dead-Reckoning (DR). However DR navigation systems tends to drift in the long run due to accumulated measurement errors. One way of mitigating this problem require the use of Simultaneous Localization and Mapping (SLAM) by concurrently mapping external environment features. The performance of a SLAM navigation system depends on the availability of enough good features in the environment. On the contrary, a typical underwater structured environment (harbour, pier or oilfield) has a limited amount of sonar features in a limited locations, hence exploitation of good features is a key for effective underwater SLAM. This thesis develops a novel attentive sonar line feature based SLAM framework that improves the performance of a SLAM navigation by steering a multibeam sonar sensor,which is mounted on a pan and tilt unit, towards feature-rich regions of the environment. A sonar salience map is generated at each vehicle pose to identify highly informative and stable regions of the environment. Results from a simulated test and real AUV experiment show an attentive SLAM performs better than a passive counterpart by repeatedly visiting good sonar landmarks.
URI
http://hdl.handle.net/10399/3481
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback