ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-object filtering with second-order moment statistics

View/Open
SchlangenI_0917_eps.pdf (2.433Mb)
Date
2017-09
Author
Schlangen, Isabel Christiane
Metadata
Show full item record
Abstract
The focus of this work lies on multi-object estimation techniques, in particular the Probability Hypothesis Density (PHD) filter and its variations. The PHD filter is a recursive, closed-form estimation technique which tracks a population of objects as a group, hence avoiding the combinatorics of data association and therefore yielding a powerful alternative to methods like Multi-Hypothesis Tracking (MHT). Its relatively low computational complexity stems from strong modelling assumptions which have been relaxed in the Cardinalized PHD (CPHD) filter to gain more flexibility, but at a much higher computational cost. We are concerned with the development of two suitable alternatives which give a compromise between the simplicity and elegance of the PHD filter and the versatility of the CPHD filter. The first alternative generalises the clutter model of the PHD filter, leading to more accurate estimation results in the presence of highly variable numbers of false alarms; the second alternative provides a closed-form recursion of a second-order PHD filter that propagates variance information along with the target intensity, thus providing more information than the PHD filter while keeping a much lower computational complexity than the CPHD filter. The discussed filters are applied on simulated data, furthermore their practicality is demonstrated on live-cell super-resolution microscopy images to provide powerful techniques for molecule and cell tracking, stage drift estimation and estimation of background noise.
URI
http://hdl.handle.net/10399/3337
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback