Show simple item record

dc.contributor.advisorBuller, Professor Gerald
dc.contributor.advisorPetillot, Professor Yvan
dc.contributor.authorMaccarone, Aurora
dc.date.accessioned2018-03-28T10:22:47Z
dc.date.available2018-03-28T10:22:47Z
dc.date.issued2016-12
dc.identifier.urihttp://hdl.handle.net/10399/3287
dc.description.abstractThis Thesis investigates the potential of a single-photon depth profiling system for imaging in highly scattering underwater environments. This scanning system measured depth using the time-of-flight and the time-correlated single-photon counting (TCSPC) technique. The system comprised a pulsed laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Spectral transmittance measurements were performed on a number of different water samples in order to characterize the water types used in the experiments. This identified an optimum operational wavelength for each environment selected, which was in the wavelength region of 525 - 690 nm. Then, depth profiles measurements were performed in different scattering conditions, demonstrating high-resolution image re-construction for targets placed at stand-off distances up to nine attenuation lengths, using average optical power in the sub-milliwatt range. Depth and spatial resolution were investigated in several environments, demonstrating a depth resolution in the range of 500 μm to a few millimetres depending on the attenuation level of the medium. The angular resolution of the system was approximately 60 μrad in water with different levels of attenuation, illustrating that the narrow field of view helped preserve spatial resolution in the presence of high levels of forward scattering. Bespoke algorithms were developed for image reconstruction in order to recover depth, intensity and reflectivity information, and to investigate shorter acquisition times, illustrating the practicality of the approach for rapid frame rates. In addition, advanced signal processing approaches were used to investigate the potential of multispectral single-photon depth imaging in target discrimination and recognition, in free-space and underwater environments. Finally, a LiDAR model was developed and validated using experimental data. The model was used to estimate the performance of the system under a variety of scattering conditions and system parameters.en_US
dc.language.isoenen_US
dc.publisherHeriot-Watt Universityen_US
dc.publisherEngineering and Physical Sciencesen_US
dc.rightsAll items in ROS are protected by the Creative Commons copyright license (http://creativecommons.org/licenses/by-nc-nd/2.5/scotland/), with some rights reserved.
dc.titleSingle-photon detection techniques for underwater imagingen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record