ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Three dimensional optofluidic devices for manipulation of particles and cells

View/Open
KelothA_0117_eps.pdf (4.672Mb)
Date
2017-01
Author
Keloth, Anusha
Metadata
Show full item record
Abstract
Optical forces offer a powerful tool for manipulating single cells noninvasively. Integration of optical functions within microfluidic devices provides a new freedom for manipulating and studying biological samples at the micro scale. In the pursuit to realise such microfluidic devices with integrated optical components, Ultrafast Laser Inscription (ULI) fabrication technology shows great potential. The uniqueness and versatility of the technique in rapid prototyping of 3D complex microfluidic and optical elements as well as the ability to perform one step integration of these elements provides exciting opportunities in fabricating novel devices for biophotonics applications. The work described in this thesis details the development of three dimensional optofluidic devices that can be used for biophotonics applications, in particular for performing cell manipulation and particle separation. Firstly, the potential of optical forces to manipulate cells and particles in ULI microfluidic channels is investigated. The ability to controllably displace particles within a ULI microchannel using a waveguide positioned orthogonal to it is explored in detail. We then prototype a more complex 3D device with multiple functionalities in which a 3D optofluidic device containing a complex microchannel network and waveguides was used for further investigations into optical manipulation and particle separation. The microfluidic channel network and the waveguides within the device possess the capability to manipulate the injected sample fluid through hydrodynamic focusing and optically manipulate the individual particles, respectively. This geometry provided a more efficient way of investigating optical manipulation within the device. Finally, work towards developing a fully optimised 3D cell separator device is presented. Initial functional validation was performed by investigating the capability of the device to route particles through different outlet channels using optical forces. A proof of concept study demonstrates the potential of the device to use for cell separation based on the size of the cells. It was shown that both passive and active cell separation is possible using this device.
URI
http://hdl.handle.net/10399/3268
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback