ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular dynamics simulations of conjugated semiconducting molecules

View/Open
WildmanJ_0817_eps.pdf (17.13Mb)
Date
2017-08
Author
Wildman, Jack
Metadata
Show full item record
Abstract
In this thesis, we present a study of conformational disorder in conjugated molecules focussed primarily on molecular dynamics (MD) simulation methods. Along with quantum chemical approaches, we develop and utilise MD simulation methods to study the conformational dynamics of polyfluorenes and polythiophenes and the role of conformational disorder on the optical absorption behaviour observed in these molecules. We first report a classical force-field parameterisation scheme for conjugated molecules which defines a density functional theory method of accuracy comparable to high-order ab-initio calculations. In doing so, we illustrate the role of increasing conjugated backbone and alkyl side-chain length on inter-monomer dihedral angle potentials and atomic partial charge distributions. The scheme we develop forms a minimal route to conjugated force-field parameterisation without substantial loss of accuracy. We then present a validation of our force-field parameterisation scheme based on self-consistent measures, such as dihedral angle distributions, and experimental measures, such as persistence lengths, obtained from MD simulations. We have subsequently utilised MD simulations to investigate the interplay of solvent and increasing side-chain lengths, the emergence of conjugation breaks, and the wormlike chain nature of conjugated oligomers. By utilising MD simulation geometries as input for quantum chemical calculations, we have investigated the role of conformational disorder on absorption spectral broadening and the formation of localised excitations. We conclude that conformational broadening is effectively independent of backbone length due to a reduction in the effect of individual dihedral angles with increasing length and also show that excitation localisation occurs as a result of large dihedral angles and molecular asymmetry.
URI
http://hdl.handle.net/10399/3261
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback