Sparse and low rank approximations for action recognition
Abstract
Action recognition is crucial area of research in computer vision with wide range of
applications in surveillance, patient-monitoring systems, video indexing, Human-
Computer Interaction and many more. These applications require automated
action recognition. Robust classification methods are sought-after despite influential
research in this field over past decade. The data resources have grown
tremendously owing to the advances in the digital revolution which cannot be
compared to the meagre resources in the past. The main limitation on a system
when dealing with video data is the computational burden due to large dimensions
and data redundancy. Sparse and low rank approximation methods have evolved
recently which aim at concise and meaningful representation of data. This thesis
explores the application of sparse and low rank approximation methods in the
context of video data classification with the following contributions.
1. An approach for solving the problem of action and gesture classification is
proposed within the sparse representation domain, effectively dealing with
large feature dimensions,
2. Low rank matrix completion approach is proposed to jointly classify more
than one action
3. Deep features are proposed for robust classification of multiple actions
within matrix completion framework which can handle data deficiencies.
This thesis starts with the applicability of sparse representations based classifi-
cation methods to the problem of action and gesture recognition. Random projection
is used to reduce the dimensionality of the features. These are referred
to as compressed features in this thesis. The dictionary formed with compressed
features has proved to be efficient for the classification task achieving comparable
results to the state of the art.
Next, this thesis addresses the more promising problem of simultaneous classifi-
cation of multiple actions. This is treated as matrix completion problem under
transduction setting. Matrix completion methods are considered as the generic
extension to the sparse representation methods from compressed sensing point
of view. The features and corresponding labels of the training and test data are
concatenated and placed as columns of a matrix. The unknown test labels would
be the missing entries in that matrix. This is solved using rank minimization
techniques based on the assumption that the underlying complete matrix would
be a low rank one. This approach has achieved results better than the state of the art on datasets with varying complexities.
This thesis then extends the matrix completion framework for joint classification
of actions to handle the missing features besides missing test labels. In
this context, deep features from a convolutional neural network are proposed.
A convolutional neural network is trained on the training data and features are
extracted from train and test data from the trained network. The performance
of the deep features has proved to be promising when compared to the state of
the art hand-crafted features.