ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental simulation of solid-state phenomena using photonic lattices

View/Open
MukherjeeS_0916_eps.pdf (90.14Mb)
Date
2016-09
Author
Mukherjee, Sebabrata
Metadata
Show full item record
Abstract
The propagation of light waves across a periodic array of evanescently coupled optical waveguides can be described by a Schr¨odinger-like equation for a particle in a periodic potential. This mapping allows us to investigate the dynamics of electrons in a crystalline solid using an artificial crystal of optical waveguides, known as a photonic lattice. The unique capabilities of ultrafast laser inscription enable us to design, fabricate and precisely control various properties of a photonic lattice. Here, we focus on the experimental construction of the Hamiltonians associated with various complex quantum systems using engineered photonic lattices, and then measure the time evolution of a given input state. In this photonic platform, we experimentally observe various single particle effects known from solid-state physics, such as the localised states associated with flat-band lattice geometries, localised Wannier-Stark states, photon-assisted tunnelling and the anomalous topological edge modes in slowly-driven lattices. Specific phenomena associated with particle interactions, such as the dynamics of two interacting particles in a one-dimensional lattice with static and sinusoidally driven Hubbard Hamiltonian, is also investigated. The experimental results presented here will be of interest to a large community, including physicists working on photonics, quantum optics, cold atomic gases, and condensed-matter physics.
URI
http://hdl.handle.net/10399/3182
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback