ROS Theses Repository

View Item 
  •   ROS Home
  • Energy, Geoscience, Infrastructure and Society
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)
  • View Item
  •   ROS Home
  • Energy, Geoscience, Infrastructure and Society
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)
  • View Item
  •   ROS Home
  • Energy, Geoscience, Infrastructure and Society
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applicability of magnetic susceptibility techniques and novel templates for improved hydrocarbon reservoir characterization

View/Open
AbdalahSAS_1014_ipe.pdf (5.560Mb)
Date
2014-10
Author
Abdalah, Salem
Metadata
Show full item record
Abstract
The work presented in this thesis is an effort to help petrophysicists and reservoir engineers in improving reservoir characterization. Magnetic susceptibility techniques were used for prediction of important reservoir parameters in hydrocarbon sedimentary sequences. For the first time ever I have shown that the grain lining hematite cement surrounding quartz grains has significant control on permeability in hydrocarbon bearing reservoir rock samples. This work also shows that it is not only the dispersed hematite and clay minerals in a reservoir rock matrix that control permeability, but also that the grain lining hematite has additional and dominant control on permeability. In addition, for the first time ever, magnetic susceptibility techniques have been applied on core samples from relatively tight gas sandstone reservoirs. Such techniques were previously known to have been used in only conventional clastic reservoirs. Magnetic hysteresis measurements were used to show that the permeability is dependent on hematite content and independent of hematite particle size. Identifying and Evaluating faults and fluid contact in hydrocarbon bearing reservoir rocks are challenging tasks. The work presented in this thesis has shown for the first time that raw magnetic susceptibility measurements performed on drill cuttings can be used to detect faults and fluid contacts in sedimentary sequences. Such measurements can be performed at well site, thereby enabling companies to make important field development decisions quickly.Additionally, a series of novel crossplots have been developed between magnetic susceptibility and various wireline log data for determination of mineralogy, mixture porosity and mineral quantification. These crossplots are similar in format to standard industry charts, which provide a further tool for improved petrophysical characterization using rapid, non-destructive magnetic susceptibility measurements.
URI
http://hdl.handle.net/10399/3064
Collections
  • Doctoral Theses (Energy, Geoscience, Infrastructure and Society)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback