ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

InAs avalanche photodiodes

View/Open
ButeraS_0515eps.pdf (42.34Mb)
Date
2015-05
Author
Butera, Silvia
Metadata
Show full item record
Abstract
The ability to efficiently detect low-level light in the infrared above wavelengths of 1.7 μm is becoming increasingly important for many applications such as gas sensing, defence/geoscience ranging and clinical thermography. The III-V narrow gap semiconductor InAs, with a bandgap of 0.36 eV, is well known for its use as a conventional photodiode. The aim of this thesis was to design, build and test InAs devices for use as reverse biased avalanche photodiodes. In order to fabricate a lownoise detector, a passivation study was conducted. For the first time we report the achievement of high quality single crystal II-VI passivation layers on InAs mesa structures. Pre-growth surface oxide removal processes were developed to improve surface morphology of II-VI layers grown on InAs samples. ZnSe and ZnTe successfully terminate the InAs mesa devices preventing atmospheric oxidation. Low surface leakage currents are observed at low reverse bias and at room temperature for both materials. LIDAR at wavelengths greater than 2 μm was studied using these InAs mesa photodiodes, showing potential to take advantage of the low solar background at these wavelengths. For the first time, laboratory based LIDAR experiments, with ranges of around 0.5 metre stand-off distance, were performed with InAs n-i-p edge illuminated mesa photodiodes, used in linear multiplication mode. Time-of-flight measurements were demonstrated at wavelengths from 1.3 μm to 2.365 μm. A 6 mm ranging error was observed in these short range measurements.
URI
http://hdl.handle.net/10399/3063
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback