ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Group and extended target tracking with the probability hypothesis density filter

View/Open
SwainA_1113_eps.pdf (3.016Mb)
Date
2013-12
Author
Swain, Anthony Jack
Metadata
Show full item record
Abstract
Multiple target tracking concerns the estimation of an unknown and time-varying number of objects (targets) as they dynamically evolve over time from a sequence of measurements obtained from sensors at discrete time intervals. In the Bayesian ltering framework the estimation problem incorporates natural phenomena such as false measurements and target birth/death. Though theoretically optimal, the generally intractable Bayesian lter requires suitable approximations. This thesis is particularly motivated by a rst-order moment approximation known as the Probability Hypothesis Density (PHD) lter. The emphasis in this thesis is on the further development of the PHD lter for handling more advanced target tracking problems, principally involving multiple group and extended targets. A group target is regarded as a collection of targets that share a common motion or characteristic, while an extended target is regarded as a target that potentially generates multiple measurements. The main contributions are the derivations of the PHD lter for multiple group and extended target tracking problems and their subsequent closed-form solutions. The proposed algorithms are applied in simulated scenarios and their estimate results demonstrate that accurate tracking performance is attainable for certain group/extended target tracking problems. The performance is further analysed with the use of suitable metrics.
URI
http://hdl.handle.net/10399/3059
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback