ROS Theses Repository

View Item 
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatial description-based approach towards integration of biomedical atlases

View/Open
ZaiziNJBM_0315_macs.pdf (33.41Mb)
Date
2015-07
Author
Zaizi, Nurzi Juana Binti Mohd
Metadata
Show full item record
Abstract
Biomedical imaging has become ubiquitous in both basic research and the clinical sciences. As technology advances the resulting multitude of imaging modalities has led to a sharp rise in the quantity and quality of such images. Whether for epi- demiological studies, educational uses, clinical monitoring, or translational science purposes, the ability to integrate and compare such image-based data has become in- creasingly critical in the life sciences and eHealth domain. Ontology-based solutions often lack spatial precision. Image processing-based solutions may have di culties when the underlying morphologies are too di erent. This thesis proposes a compro- mise solution which captures location in biomedical images via spatial descriptions. Three approaches of spatial descriptions have been explored. These include: (1) spatial descriptions based on spatial relationships between segmented regions; (2) spatial descriptions based on ducial points and a set of spatial relations; and (3) spatial descriptions based on ducial points and a set of spatial relations, integrated with spatial relations between segmented regions. Evaluation, particularly in the context of mouse gene expression data, a good representative of spatio-temporal bi- ological data, suggests that the spatial description-based solution can provide good spatial precision. This dissertation discusses the need for biomedical image data in- tegration, the shortcomings of existing solutions and proposes new algorithms based on spatial descriptions of anatomical details in the image. Evaluation studies, par- ticularly in the context of gene expression data analysis, were carried out to study the performance of the new algorithms.
URI
http://hdl.handle.net/10399/3026
Collections
  • Doctoral Theses (Mathematical & Computer Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback