Sonar image interpretation for sub-sea operations
Abstract
Mine Counter-Measure (MCM) missions are conducted to neutralise underwater
explosives. Automatic Target Recognition (ATR) assists operators by
increasing the speed and accuracy of data review. ATR embedded on vehicles
enables adaptive missions which increase the speed of data acquisition. This
thesis addresses three challenges; the speed of data processing, robustness of
ATR to environmental conditions and the large quantities of data required to
train an algorithm.
The main contribution of this thesis is a novel ATR algorithm. The algorithm
uses features derived from the projection of 3D boxes to produce a set of 2D
templates. The template responses are independent of grazing angle, range
and target orientation. Integer skewed integral images, are derived to accelerate
the calculation of the template responses. The algorithm is compared
to the Haar cascade algorithm. For a single model of sonar and cylindrical
targets the algorithm reduces the Probability of False Alarm (PFA) by 80%
at a Probability of Detection (PD) of 85%. The algorithm is trained on target
data from another model of sonar. The PD is only 6% lower even though no
representative target data was used for training.
The second major contribution is an adaptive ATR algorithm that uses local
sea-floor characteristics to address the problem of ATR robustness with
respect to the local environment. A dual-tree wavelet decomposition of the
sea-floor and an Markov Random Field (MRF) based graph-cut algorithm is
used to segment the terrain. A Neural Network (NN) is then trained to filter
ATR results based on the local sea-floor context. It is shown, for the Haar
Cascade algorithm, that the PFA can be reduced by 70% at a PD of 85%.
Speed of data processing is addressed using novel pre-processing techniques.
The standard three class MRF, for sonar image segmentation, is formulated
using graph-cuts. Consequently, a 1.2 million pixel image is segmented in
1.2 seconds. Additionally, local estimation of class models is introduced to
remove range dependent segmentation quality. Finally, an A* graph search
is developed to remove the surface return, a line of saturated pixels often
detected as false alarms by ATR. The A* search identifies the surface return
in 199 of 220 images tested with a runtime of 2.1 seconds. The algorithm is
robust to the presence of ripples and rocks.