An incremental clustering and associative learning architecture for intelligent robotics
Abstract
The ability to learn from the environment and memorise the acquired knowledge is
essential for robots to become autonomous and versatile artificial companions. This
thesis proposes a novel learning and memory architecture for robots, which performs
associative learning and recall of sensory and actuator patterns. The approach
avoids the inclusion of task-specific expert knowledge and can deal with any kind of
multi-dimensional real-valued data, apart from being tolerant to noise and supporting
incremental learning. The proposed architecture integrates two machine learning
methods: a topology learning algorithm that performs incremental clustering, and
an associative memory model that learns relationship information based on the
co-occurrence of inputs.
The evaluations of both the topology learning algorithm and the associative
memory model involved the memorisation of high-dimensional visual data as well as
the association of symbolic data, presented simultaneously and sequentially. Moreover,
the document analyses the results of two experiments in which the entire architecture
was evaluated regarding its associative and incremental learning capabilities. One
experiment comprised an incremental learning task with visual patterns and text
labels, which was performed both in a simulated scenario and with a real robot. In a
second experiment a robot learned to recognise visual patterns in the form of road
signs and associated them with di erent con gurations of its arm joints.
The thesis also discusses several learning-related aspects of the architecture
and highlights strengths and weaknesses of the proposed approach. The developed
architecture and corresponding ndings contribute to the domains of machine learning
and intelligent robotics.