ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Target detection in clutter for sonar imagery

View/Open
ValeyrieN_0214_eps.pdf (6.043Mb)
Date
2014-02
Author
Valeyrie, Nicolas Erwan
Metadata
Show full item record
Abstract
This thesis is concerned with the analysis of side-looking sonar images, and specif- ically with the identification of the types of seabed that are present in such images, and with the detection of man-made objects in such images. Side-looking sonar images are, broadly speaking, the result of the physical interaction between acous- tic waves and the bottom of the sea. Because of this interaction, the types of seabed appear as textured areas in side-looking sonar images. The texture descrip- tors commonly used in the field of sonar imagery fail at accurately identifying the types of seabed because the types of seabed, hence the textures, are extremely variable. In this thesis, we did not use the traditional texture descriptors to identify the types of seabed. We rather used scattering operators which recently appeared in the field of signal and image processing. We assessed how well the types of seabed are identified through two inference algorithms, one based on affine spaces, and the other based on the concept of similarity by composition. This thesis is also concerned with the detection of man-made objects in side-looking sonar im- ages. An object detector may be described as a method which, when applied to a certain number of sonar images, produces a set of detections. Some of these are true positives, and correspond to real objects. Others are false positives, and do not correspond to real objects. The present object detectors suffer from a high false positive rate in complex environments, that is to say, complex types of seabed. The hypothesis we will follow is that it is possible to reduce the number of false positives through a characterisation of the similarity between the detections and the seabed, the false positives being by nature part of the seabed. We will use scattering operators to represent the detections and the same two inference algorithms to quantify how similar the detections are to the seabed.
URI
http://hdl.handle.net/10399/2950
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback