Spectral-energy efficiency trade-off of relay-aided cellular networks
Abstract
Wireless communication networks are traditionally designed to operate at high spectral
e ciency with less emphasis on power consumption as it is assumed that endless
power supply is available through the power grid where the cells are connected to. As
new generations of mobile networks exhibit decreasing gains in spectral e ciency, the
mobile industry is forced to consider energy reform policies in order to sustain the
economic growth of itself and other industries relying on it. Consequently, the energy
e ciency of conventional direct transmission cellular networks is being examined
while alternative green network architectures are also explored. The relay-aided cellular
network is being considered as one of the potential network architecture for energy
e cient transmission. However, relaying transmission incurs multiplexing loss due to
its multi-hop protocol. This, in turn, reduces network spectral e ciency. Furthermore,
interference is also expected to increase with the deployment of Relay Stations
(RSs) in the network. This thesis examines the power consumption of the conventional
direct transmission cellular network and contributes to the development of the
relay-aided cellular network.
Firstly, the power consumption of the direct transmission cellular network is investigated.
While most work considered transmitter side strategies, the impact of the
receiver on the Base Station (BS) total power consumption is investigated here. Both
the zero-forcing and minimum mean square error weight optimisation approaches are
considered for both the conventional linear and successive interference cancellation
receivers. The power consumption model which includes both the radio frequency
transmit power and circuit power is described. The in
uence of the receiver interference
cancellation techniques, the number of transceiver antennas, circuit power
consumption and inter-cell interference on the BS total power consumption is investigated.
Secondly, the spectral-energy e ciency trade-o in the relay-aided cellular network is
investigated. The signal forwarding and interference forwarding relaying paradigms
are considered with the direct transmission cellular network taken as the baseline.
This investigation serves to understand the dynamics in the performance trade-o .
To select a suitable balance point in the trade-o , the economic e ciency metric is
proposed whereby the spectral-energy e ciency pair which maximises the economic
pro tability is found. Thus, the economic e ciency metric can be utilised as an alternative
means to optimise the relay-aided cellular network while taking into account
the inherent spectral-energy e ciency trade-o .
Finally, the method of mitigating interference in the relay-aided cellular network is
demonstrated by means of the proposed relay cooperation scheme. In the proposed
scheme, both joint RS decoding and independent RS decoding approaches are considered
during the broadcast phase while joint relay transmission is employed in the
relay phase. Two user selection schemes requiring global Channel State Information
(CSI) are considered. The partial semi-orthogonal user selection method with reduced
CSI requirement is then proposed. As the cooperative cost limits the practicality of
cooperative schemes, the cost incurred at the cooperative links between the RSs is
investigated for varying degrees of RS cooperation. The performance of the relay
cooperation scheme with di erent relay frequency reuse patterns is considered as well.
In a nutshell, the research presented in this thesis reveals the impact of the receiver on
the BS total power consumption in direct transmission cellular networks. The relayaided
cellular network is then presented as an alternative architecture for energy
e cient transmission. The economic e ciency metric is proposed to maximise the
economic pro tability of the relay network while taking into account the existing
spectral-energy e ciency trade-o . To mitigate the interference from the RSs, the
relay cooperation scheme for advanced relay-aided cellular networks is proposed.