New techniques for Arabic document classification
Abstract
Text classification (TC) concerns automatically assigning a class (category) label to
a text document, and has increasingly many applications, particularly in the domain
of organizing, for browsing in large document collections. It is typically achieved
via machine learning, where a model is built on the basis of a typically large collection
of document features. Feature selection is critical in this process, since there
are typically several thousand potential features (distinct words or terms). In text
classification, feature selection aims to improve the computational e ciency and
classification accuracy by removing irrelevant and redundant terms (features), while
retaining features (words) that contain su cient information that help with the
classification task.
This thesis proposes binary particle swarm optimization (BPSO) hybridized with
either K Nearest Neighbour (KNN) or Support Vector Machines (SVM) for feature
selection in Arabic text classi cation tasks. Comparison between feature selection
approaches is done on the basis of using the selected features in conjunction with
SVM, Decision Trees (C4.5), and Naive Bayes (NB), to classify a hold out test
set. Using publically available Arabic datasets, results show that BPSO/KNN and
BPSO/SVM techniques are promising in this domain. The sets of selected features
(words) are also analyzed to consider the di erences between the types of features
that BPSO/KNN and BPSO/SVM tend to choose. This leads to speculation concerning
the appropriate feature selection strategy, based on the relationship between
the classes in the document categorization task at hand.
The thesis also investigates the use of statistically extracted phrases of length
two as terms in Arabic text classi cation. In comparison with Bag of Words text
representation, results show that using phrases alone as terms in Arabic TC task
decreases the classification accuracy of Arabic TC classifiers significantly while combining
bag of words and phrase based representations may increase the classification
accuracy of the SVM classifier slightly.