Coded aperture imaging
Abstract
This thesis studies the coded aperture camera, a device consisting of a conventional
camera with a modified aperture mask, that enables the recovery
of both depth map and all-in-focus image from a single 2D input image.
Key contributions of this work are the modeling of the statistics of natural
images and the design of efficient blur identification methods in a Bayesian
framework. Two cases are distinguished: 1) when the aperture can be decomposed
in a small set of identical holes, and 2) when the aperture has a
more general configuration. In the first case, the formulation of the problem
incorporates priors about the statistical variation of the texture to avoid
ambiguities in the solution. This allows to bypass the recovery of the sharp
image and concentrate only on estimating depth. In the second case, the
depth reconstruction is addressed via convolutions with a bank of linear
filters. Key advantages over competing methods are the higher numerical
stability and the ability to deal with large blur. The all-in-focus image can
then be recovered by using a deconvolution step with the estimated depth
map. Furthermore, for the purpose of depth estimation alone, the proposed
algorithm does not require information about the mask in use. The
comparison with existing algorithms in the literature shows that the proposed
methods achieve state-of-the-art performance. This solution is also
extended for the first time to images affected by both defocus and motion
blur and, finally, to video sequences with moving and deformable objects.