ROS Theses Repository

View Item 
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  •   ROS Home
  • Engineering & Physical Sciences
  • Doctoral Theses (Engineering & Physical Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive optics for laser processing

View/Open
BeckRJ_1011_eps.pdf (9.850Mb)
Date
2011-10
Author
Beck, Rainer Johannes
Metadata
Show full item record
Abstract
The overall aim of the work presented in this thesis is to develop an adaptive optics (AO) technique for application to laser-based manufacturing processes. The Gaussian beam shape typically coming from a laser is not always ideal for laser machining. Wavefront modulators, such as deformable mirrors (DM) and liquid crystal spatial light modulators (SLM), enable the generation of a variety of beam shapes and furthermore offer the ability to alter the beam shape during the actual process. The benefits of modifying the Gaussian beam shape by means of a deformable mirror towards a square flat top profile for nanosecond laser marking and towards a ring shape intensity distribution for millisecond laser drilling are presented. Limitations of the beam shaping capabilities of DM are discussed. The application of a spatial light modulator to nanosecond laser micromachining is demonstrated for the first time. Heat sinking is introduced to increase the power handling capabilities. Controllable complex beam shapes can be generated with sufficient intensity for direct laser marking. Conventional SLM devices suffer from flickering and hence a process synchronisation is introduced to compensate for its impact on the laser machining result. For alternative SLM devices this novel technique can be beneficial when fast changes of the beam shape during the laser machining are required. The dynamic nature of SLMs is utilised to improve the marking quality by reducing the inherent speckle distribution of the generated beam shape. In addition, adaptive feedback on the intensity distribution can further improve the quality of the laser machining. In general, beam shaping by means of AO devices enables an increased flexibility and an improved process control, and thus has a significant potential to be used in laser materials processing.
URI
http://hdl.handle.net/10399/2462
Collections
  • Doctoral Theses (Engineering & Physical Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback