ROS Theses Repository

View Item 
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inference and experimental design for percolation and random graph models.

View/Open
BejanA_0610_macs.pdf (4.101Mb)
Date
2010-06
Author
Bejan, Andrei Iu
Metadata
Show full item record
Abstract
The problem of optimal arrangement of nodes of a random weighted graph is studied in this thesis. The nodes of graphs under study are fixed, but their edges are random and established according to the so called edge-probability function. This function is assumed to depend on the weights attributed to the pairs of graph nodes (or distances between them) and a statistical parameter. It is the purpose of experimentation to make inference on the statistical parameter and thus to extract as much information about it as possible. We also distinguish between two different experimentation scenarios: progressive and instructive designs. We adopt a utility-based Bayesian framework to tackle the optimal design problem for random graphs of this kind. Simulation based optimisation methods, mainly Monte Carlo and Markov Chain Monte Carlo, are used to obtain the solution. We study optimal design problem for the inference based on partial observations of random graphs by employing data augmentation technique. We prove that the infinitely growing or diminishing node configurations asymptotically represent the worst node arrangements. We also obtain the exact solution to the optimal design problem for proximity graphs (geometric graphs) and numerical solution for graphs with threshold edge-probability functions. We consider inference and optimal design problems for finite clusters from bond percolation on the integer lattice Zd and derive a range of both numerical and analytical results for these graphs. We introduce inner-outer plots by deleting some of the lattice nodes and show that the ‘mostly populated’ designs are not necessarily optimal in the case of incomplete observations under both progressive and instructive design scenarios. Finally, we formulate a problem of approximating finite point sets with lattice nodes and describe a solution to this problem.
URI
http://hdl.handle.net/10399/2341
Collections
  • Doctoral Theses (Mathematical & Computer Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback