ROS Theses Repository

View Item 
  •   ROS Home
  • Textiles & Design
  • Doctoral Theses (Textiles & Design)
  • View Item
  •   ROS Home
  • Textiles & Design
  • Doctoral Theses (Textiles & Design)
  • View Item
  •   ROS Home
  • Textiles & Design
  • Doctoral Theses (Textiles & Design)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of selected contemporary biomaterials and surface treatments for soft tissue repair prosthesis

View/Open
NairnMD_0310_std.pdf (11.77Mb)
Date
2010-03
Author
Nairn, Michael Douglas
Metadata
Show full item record
Abstract
The aim of this project was to determine the best materials and surface treatments for soft tissue repair and to enhance our understanding of material / cell interactions by comparing the response of human cells growing on a selection of currently approved and novel biomaterials. This study focused on comparing the materials and also investigated the effect of modifying the surfaces using gas plasma and other treatments with the aim of enhancing cell growth. In addition, chitosan was studied to examine the reported bacteriostatic effect and promotion of human cell growth. Chitosan has many properties but this research focused on its reported acceleration of wound healing haemostatic and bacteriostatic properties. To examine the bacteriostatic properties of chitosan, a number of experimental designs were used. The bacteriostatic study led onto a selection of means to incorporate chitosan into/onto some of the biomaterials being tested. A selection of biomaterials were examined for their ability to support tissue growth in native and surface modified forms (plasma treatment/ chitosan treatment). Cells were seeded on the samples and the growth of the cells was measured at weekly intervals. The outcome of this research was that the optimal material for soft tissue repair was found to be polyurethane with an ammonia plasma treatment. This can be made into a mesh prosthesis for hernia repair and can be coated with chitosan to inhibit bacterial colonisation if required.
URI
http://hdl.handle.net/10399/2330
Collections
  • Doctoral Theses (Textiles & Design)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback