Human retinal oximetry using hyperspectral imaging
Abstract
The aim of the work reported in this thesis was to investigate the possibility of
measuring human retinal oxygen saturation using hyperspectral imaging. A direct
non-invasive quantitative mapping of retinal oxygen saturation is enabled by
hyperspectral imaging whereby the absorption spectra of oxygenated and deoxygenated
haemoglobin are recorded and analysed. Implementation of spectral
retinal imaging thus requires ophthalmic instrumentation capable of efficiently
recording the requisite spectral data cube. For this purpose, a spectral retinal imager
was developed for the first time by integrating a liquid crystal tuneable filter into the
illumination system of a conventional fundus camera to enable the recording of
narrow-band spectral images in time sequence from 400nm to 700nm. Postprocessing
algorithms were developed to enable accurate exploitation of spectral
retinal images and overcome the confounding problems associated with this technique
due to the erratic eye motion and illumination variation.
Several algorithms were developed to provide semi-quantitative and quantitative
oxygen saturation measurements. Accurate quantitative measurements necessitated an
optical model of light propagation into the retina that takes into account the
absorption and scattering of light by red blood cells. To validate the oxygen saturation
measurements and algorithms, a model eye was constructed and measurements were
compared with gold-standard measurements obtained by a Co-Oximeter. The
accuracy of the oxygen saturation measurements was (3.31%± 2.19) for oxygenated
blood samples. Clinical trials from healthy and diseased subjects were analysed and
oxygen saturation measurements were compared to establish a merit of certain retinal
diseases. Oxygen saturation measurements were in agreement with clinician
expectations in both veins (48%±9) and arteries (96%±5). We also present in this
thesis the development of novel clinical instrument based on IRIS to perform retinal
oximetry.