Optoelectronic devices and packaging for information photonics
Abstract
This thesis studies optoelectronic devices and the integration of these components onto
optoelectronic multi chip modules (OE-MCMs) using a combination of packaging
techniques. For this project, (1×12) array photodetectors were developed using PIN
diodes with a GaAs/AlGaAs strained layer structure. The devices had a pitch of 250μm,
operated at a wavelength of 850nm. Optical characterisation experiments of two types
of detector arrays (shoe and ring) were successfully performed. Overall, the shoe
devices achieved more consistent results in comparison with ring diodes, i.e. lower dark
current and series resistance values. A decision was made to choose the shoe design for
implementation into the high speed systems demonstrator. The (1x12) VCSEL array
devices were the optical sources used in my research. This was an identical array at
250μm pitch configuration used in order to match the photodetector array. These
devices had a wavelength of 850nm. Optoelectronic testing of the VCSEL was
successfully conducted, which provided good beam profile analysis and I-V-P
measurements of the VCSEL array. This was then implemented into a simple
demonstrator system, where eye diagrams examined the systems performance and
characteristics of the full system and showed positive results.
An explanation was given of the following optoelectronic bonding techniques: Wire
bonding and flip chip bonding with its associated technologies, i.e. Solder, gold stud
bump and ACF. Also, technologies, such as ultrasonic flip chip bonding and gold
micro-post technology were looked into and discussed. Experimental work
implementing these methods on packaging the optoelectronic devices was successfully
conducted and described in detail. Packaging of the optoelectronic devices onto the OEMCM
was successfully performed. Electrical tests were successfully carried out on the
flip chip bonded VCSEL and Photodetector arrays. These results verified that the
devices attached on the MCM achieved good electrical performance and reliable
bonding. Finally, preliminary testing was conducted on the fully assembled OE-MCMs.
The aim was to initially power up the mixed signal chip (VCSEL driver), and then
observe the VCSEL output.