MIMO channel modelling and simulation for cellular and mobile-to-mobile
Abstract
Recently, mobile-to-mobile (M2M) communications have received much attention due
to several emerging applications, such as wireless mobile ad hoc networks, relay-based
cellular networks, and dedicated short range communications (DSRC) for intelligent
transportation systems (e.g., IEEE 802.11p standard). Different from conventional
fixed-to-mobile (F2M) cellular systems, in M2M systems both the transmitter (Tx)
and receiver (Rx) are in motion and often equipped with low elevation antennas.
Multiple-input-multiple-output (MIMO) technologies, employing multiple antennas
at both the Tx and Rx, have widely been adopted for the third generation (3G) and
beyond-3G (B3G) F2M cellular systems due to their potential benefits of improving
coverage, link reliability, and overall system capacity. More recently, MIMO has been
receiving more and more attention for M2M systems as well.
Reliable knowledge of the propagation channel obtained from channel measurements
and corresponding channel models serve as the enabling foundation for the design
and analysis of MIMO F2M and M2M systems. Furthermore, the development of
accurate MIMO F2M and M2M channel simulation models plays a major role in the
practical simulation and performance evaluation of these systems. These form the
primary motivation behind our research on MIMO channel modelling and simulation
for F2M cellular and M2M communication systems.
In this thesis, we first propose a new wideband theoretical multiple-ring based MIMO
regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering
F2M macro-cell scenarios and then derive a generic space-time-frequency (STF)
correlation function (CF). The proposed theoretical reference wideband model can be
reduced to a narrowband one-ring model, a new closed-form STF CF of which is derived
as well. Narrowband and wideband sum-of-sinusoids (SoS) simulation models
are then developed, demonstrating a good agreement with the corresponding reference
models in terms of correlation functions.
Secondly, based on a well-known narrowband two-ring single-input single-output (SISO)
M2M channel reference model, we propose new deterministic and stochastic SoS simulation
models for non-isotropic scattering environments. The proposed deterministic
simulator is the first SISO M2M deterministic simulator with good performance, while
the proposed stochastic simulator outperforms the existing one in terms of fitting the
desired statistical properties of the corresponding reference model.
Thirdly, a new adaptive narrowband MIMO M2M RS-GBSM is proposed for nonisotropic
scattering environments. To the best of our knowledge, the proposed M2M
model is the first RS-GBSM that has the ability to study the impact of the vehicular
traffic density on channel statistics. From the proposed theoretical reference
model, we comprehensively investigate some important M2M channel statistics including
the STF CF, space-Doppler-frequency power spectral density, envelope level
crossing rate, and average fade duration. A close agreement between some channel
statistics obtained from the proposed reference model and measurement data is
observed, confirming the utility of our model.
Finally, we extend the above narrowband model to a new wideband MIMO M2M RSGBSM
with respect to the frequency-selectivity. The proposed wideband reference
model is validated by observing a good match between some statistical properties of
the theoretical model and available measurement data. From the wideband reference
model, we further design new wideband deterministic and stochastic SoS simulation
models. The proposed wideband simulators can be easily reduced to narrowband
ones. The utilities of the newly derived narrowband and wideband simulation models
are validated by comparing their statistical properties with those of the corresponding
reference models.
The proposed channel reference models and simulators are expected to be useful for
the design, testing, and performance evaluation of future MIMO cellular and M2M
communication systems.