Geometric and photometric affine invariant image registration
Abstract
This thesis aims to present a solution to the correspondence problem for the registration
of wide-baseline images taken from uncalibrated cameras. We propose an affine
invariant descriptor that combines the geometry and photometry of the scene to find
correspondences between both views. The geometric affine invariant component of the
descriptor is based on the affine arc-length metric, whereas the photometry is analysed
by invariant colour moments. A graph structure represents the spatial distribution of the
primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs
represent connectivities by extracted contours. After matching, we refine the search for
correspondences by using a maximum likelihood robust algorithm. We have evaluated
the system over synthetic and real data. The method is endemic to propagation of errors
introduced by approximations in the system.