ROS Theses Repository

View Item 
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure theorems for ordered groupoids

View/Open
MillerEC_0309_macs.pdf (848.2Kb)
Date
2009-03
Author
Miller, Elizabeth Caroline
Metadata
Show full item record
Abstract
The Ehresmann-Schein-Nambooripad theorem, which states that the category of inverse semigroups is isomorphic to the category of inductive groupoids, suggests a route for the generalisation of ideas from inverse semigroup theory to the more general setting of ordered groupoids. We use ordered groupoid analogues of the maximum group image and the E-unitary property – namely the level groupoid and incompressibility – to address structural questions about ordered groupoids. We extend the definition of the Margolis-Meakin graph expansion to an expansion of an ordered groupoid, and show that an ordered groupoid and its expansion have the same level groupoid and that the incompressibility of one determines the incompressibility of the other. We give a new proof of a P-theorem for incompressible ordered groupoids based on the Cayley graph of an ordered groupoid, and also use Ehresmann’s Maximum Enlargement Theorem to prove a generalisation of the P-theorem for more general immersions of ordered groupoids. We then carry out an explicit comparison between the Gomes-Szendrei approach to idempotent pure maps of inverse semigroups and our construction derived from the Maximum Enlargement Theorem.
URI
http://hdl.handle.net/10399/2217
Collections
  • Doctoral Theses (Mathematical & Computer Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

LoginRegister
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • About
  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
AboutCopyright
AccessibilityPolicies
Privacy & Cookies
Feedback