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Abstract

Oilfield scale is a significant problem in oil production whasfses due to temperature and
pressure changes and mixing of incompatible brines when a well is produced. The most
successful and commonly used strategy for mitigating against oilfield scale is the
application of scale inhibitor squeeze treatments. Aesggl treatment is applied to the
production well, and involves several stages, which are:flysk, main treatment, over

flush, shutin and backproduction. During a treatment, a scale inhibitor adsorbs or
precipitates into the formation, and its desiarp/dissolution into the produced water when

the well is put back into production prevents scale formation. A well mustdzpisezed
before the scale inhibitor concentration in the produced water falls below the minimum
inhibition concentration (MIC)equired to prevent scaling.

This work focuses on the pflish stage of a squeeze treatment, in which mutual solvents
are applied in order to prepare the well for a treatment. This is the least investigated aspect
of squeeze treatments, and the one wighgreatest opportunity for potential optimisation.
Fundamental to understanding how to best apply mutual solvents (MS) in squeeze
treatments, to achieve squeeze lifetime enhancements and to mitigate any formation
damage risks, is understanding MS phad®liour, the transport of MS through the porous

medium and MS/mineral surface conditioning effects (e.g. wetting changes).

In this work, the phase behaviour of various mutual solvents is investigated in
oil/brine/mutual solvent systems. Effects of s&jirnd chemistry are determined at field
relevant conditions. The influence of scale inhibitors on phase behaviour is also
investigated and mutual solvent blend design is examined. The work also develops a
guantitative understanding of the phase behawdunutual solvents and employs that in

the development of serempirical and thermodynamic models for describing the phase
behaviour. Practical analytical tools are also developed to aid mutual solvent investigations
as well as analysis in the presemdéemutual solvents. Transport studies of MS in sand
packs are used to investigate the transport of mutual solvents in single and multiphase
systems. Numerous field solutions can be obtained from this work, but more importantly,
this work enables and fosithe basis for future mutual solvent investigations in the context

of scde inhibitor squeeze treatments.
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w Volume fraction of component{in phaseQat © )
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) Volume of componenf@ in phase™) at iteration §)
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@ Volume fraction of component®in phase™)

@ Volume fraction of component{in phase™) in sample )
a Fixed feed volume of componerf(

Density (Q £ "Yfor oil, brine and mutual solvent)

Yo Disturbanceo the feed volume of componeif2( "Q at iteration §)
Yo Disturbance to the feed volume of componéft (Q at iteration &)
Yo Disturbance to the feed volume of componétdt © )
0 Number of components
O Number ofdegrees of freedom

0 Number of phases
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w Volume of the overall mixture

w Volume of the source sample

@ Estimated volume of componerin phase ¢)

@ Volume of componentQin the feed

) Volume of phase™Q
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Composition vector of phas&)

Volume fraction of component(§

Combinatorial part of total excess Gibbs free energy
Residual part of total excess Gibbs free energy
Total excess Gibbs free energy

Equilibrium constant for componerig)

Equilibrium constant for componeri@n phase rich in dominant componei (

Molar flow of phase )

Number of possibled§ ) sets in Y )

Number of possibled§ ) sets to test at stagé) (
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Range (Y) adapted for consistency witti{y)
Non-zero containing rangéY()

Start value of rang€eY)

Start value of rangeY)

Universalgas constant

Range of uncertainty around each )

Group volume parameter
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Endvalue of range'Y)

Final values set fofc ) used to calculategy) for a given system
Activity of component'Qin phase Q)

UNIQUAC adjustable parameter for the interaction@ith ('®
Feed fraction of componenif)

Molar flow of dominant componentin phase™Q

A term in the UNIQUAC for component(
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Dominant pair analysis parameter for componént (
Surface area parameter of componé&pt (

Volume parameter of componef(

Average interaction energy for the interactior(®with ('Q

Number of groups of type(} in a molecule of componerif)
Fraction of dominant componerf{n phase Q)

Fraction of component®

XXXVi



@ Fraction of component®in phase rich in dominant compent (Q

() Calculated fraction of componerifin phase '@for sample Q
@ Experimental fraction of componeriin phase @for sample ©
() Fraction of component@phase Q)

a Feed fraction oflominant component®

r Activity coefficient of component’Q

r Combinatorial part of the activity coefficient of componéegt (

r Residual part of the activity coefficient of componé (

r Activity coefficient of componentQin phase ()

— Area fraction of component(g

t UNIQUAC parametefor the interaction of Qwith ('R

yQ Dimensionless Gibbs free energy for a mixture

0'Y Number of values in rangé()

0 ©'Q0 Squared and weightegbnlinear equilibrium condition

0 Q0 Objective function

0 ®'QO0 Squared and weighted dimensionless Gibbs free energy

0 0'QY Composite objective function for calculating thie § parameters
Y User specified range fgto ) calculation

Y The number of the values th@b ) can take within rangéY)

Y Temperature

W@ Weighting factor for§§ & "0

wQ Weighting factor for§ & PO

ay The step size for expanding rangé)(

avy The step size at stagé) (

(98] Theparameter defining the region of uncertainty aroundial) at staged)
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6 @Y The upper bound oflY )

o} Coordination number

The whole number positive multiplier used to defite()

- Initialisation componenbalance parameter
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0 Area intensity for the analyte for rui)(
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0 Ideal area intensity for the analyte for rif (

0 Average area intensity for the analyte

oY Ideal area intensity for the internal standard

&) Speed of light

@ Average differentiation ratio

Q Quantity ratio for run'Q

@ Fraction of mutual solvents with respect to the organic fraction of the sample

@ Fraction ofmutual solvents in the sample
Fraction of brine in the sample

W Fraction of oil in the sample
Pl anckds constant

(ON©) Dilution factor

0 Number of decimal places

(0] Energy

o Area intensity for the internal standard for rif (

o Average area intensity for the internal standard

0 Total number of runs

@ The differentiation ratio

Q The quantity ratio

0 Frequency

- Wavelength

Chapter 8

Y Residual oil saturation

Y Initial water saturation

0w Porevolume

Chapter 9

04 Partition coefficient of the mutligolvent in noctanol to water

Key Abbreviations

A Analyte
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BM Benchmark

D Diluent
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DW De-ionised Water

EDX Energy Dispersive Xay

ESEM Environmental Saaning Electron Microscopy
FID Flame lonisation Detection

GC Gas Chromatography

ICP Inductively Coupled Plasma

IS Internal Standard

KF Karl-Fischer

LLE Liquid-Liquid Equilibrium

LLLE Liquid-Liquid-Liquid Equilibrium
MGFW Modified Glenelg FormatioiWVater
MH Multipar H

MS Mutual Solvent
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Chapter1:l nt roducti on

1.1. THE CONTEXT: OILFIELD SCALES

Before a well is put into production, the reservoir fluids are in thermodynamic equilibrium.
This equilibrium is perturbed once the production starts. The perturbation may involve
both physical and chemical changes, giving risditterent types of both organic and
inorganic scales. These changes present significant flow assurance risks which must be
considered to maintain oil production. Physical and chemical changes to reservoir fluids
are inevitable as part of oilfield opexats. As such, flow assurance in this respect

addresses the consequences of these changes.

The term Aoil field scalesdo is typically 1
solutions(Cowan and Weintritt, 1976; Vetter, 1977; Vetter, 1976; Vetter @richlow,
1979; Vetter, 1975; Vetter and Phillips, 1970)he risks associated with these to both the
nearwellbore region and the production facilities are very well documented in the
literature. Intervention and loss of production costs due to th&fen of inorganic scales
can be cripplindCrabtree et al., 1999; Graham and Collins, 2004; Graham et al., 2002b)
A commonly cited field example is that describedBogwn (1998) in which a production

well (producing at 4770 #fd) in the North Sea (Mer field) lost production entirely within

24 hours due to scaling. Moreover, preventive measwgesn when applied appropriately

i may still dominate operational costs in some c#3esdan et al., 2001) All of this
highlights a preference for prention over intervention, and a considerable drive towards

the optimisation of prevention measures.

Organic scales (e.g. asphaltenes, gas hydrates, waxes, organic carboxylates, naphthenates
also pose important risks, but these are treated sepafitdlgnd, 2014) and are not
directly relevant to this work (N.B. inorganic deposits cause more damage than organic

deposits).

The most commonly encountered inorganic scales in the field are calcium carbonate
(CaCQ) and barium sulphate (Ba®(Charleston, 197; Cowan and Weintritt, 1976;
Shen and Crosby, 1983; Vetter, 1976; Weintritt and Cowan, 19@Hheir formation
proceeds through distinctly different mechanisni$ie formation of CaC®is primarily

driven by pressure drop, which causes the evolution dfocadioxide (CQ) from the

produced brine when the pressure in the system falls below the bubble point. This is



described by reactiahl, where CQloss can be sn to clearly drive CaC{precipitation.
Moreover, the problem is exacerbated by an increase in the pH ais @St from the
solution. This is due to a reduction in the concentration of carbonic agietOgHas
illustrated by reactiod.2. Since the solubility of CaC{educes with increasing pH, this
drives further CaCe®precipitation(Atkinson and Mecik, 1997; Kelland, 2014; Meyers,
Skillman and Herring, 1985;d@yne, 1987; Tanner and Wittingham, 1986; Wat et al., 1992)
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As for BaSQ, mixing of incompatible brines drives its precipitation. This is described by
reaction1.3. The source of bariummg is usually the formation brine, and the sulphate

ions will come from injected seawater. The injection of seawater into the reservoir to
maintainits pressure is common practice in offshore operations. While sulphate reduction
technology is availablet is associated with very high capital and operational costs. In
some cases, its use is a necessity due to the inability of alternative methods to manage the
scaling risks (e.g. very high [B3). However, it does not eliminate sulphate scaling risks
ertirely and has no influence on carbonate scafDgvis, Lomax and Plummer, 1996;
Graham and Collins, 2004; Hardy and Simm, 1996; Jordan, Collins and Mackay, 2008; Vu,
Hurtevent and Davis, 2000)

In relation toreactionl.3, strontium and calcium may also precipitate with sulphate ions.
However, barium presents the highest risk due to its lower solubility in comparison
(Mackay et al., 2005)
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Various scale management methods and strategies exist. Of these, chemical treatments
known as scale inhibitor (SI) squeeze treatments are one of the most common and effective
means B which carbonate and sulphate scaling can be delayed or prey€atedlho et

al., 2017; Charleston, 1970; Cowan and Weintritt, 1976; Shen and Crosby, 1983; Sorbie,
Yuan and Jordan, 1994; Vetter, 1976; Weintritt and Cowan, 1987Aypical treatment

will comprise of five main stagdgordan et al., 1995a; Vazquez, Fursov and Mackay,

2016) These are described briefly below and illustratdeiguire.1:

1. Preflush (spearhead) stage: This stage involves the injectiomuitaal solvent
into a producer well. This is thought to prepare the formation for a treatment and
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will be discussed in detail in Chapter 2. This stage may be followed by a dilute Sl
preflush.

2. Main treatment (MT) stage: In this stage, a brine withZ0% active [SI] is
injected into the formation.

3. Overflush stage: This stage is meant to push the main treatment to the desired
depth into the formation.

4. Shutin stage: The shuh period (624 haurs) allows for Sl retention into the
formation. This can happen through adsorption or precipitation mechanisms, or a
combination of both.

5. Backproduction stage: Normal production operations resume once a treatment has
been completed. The Sl and scalioigs concentrations are routinely monitored to
ensure that the well is protected and to plan future treatments. A well must be

treated before the S| concentration drops below the minimum inhibition

concentration (MIC).

F’reTqush

Main treatment
Over-flush
El:
ol
als
...""'iiioi.oii -
[MI'C] o .."..“-..‘ vy LEET T

time, days
Figure 1.1: A typical squeeze treatment.

In relation to the scale inhibitors, two conventional chemistries used in squeeze applications
for the Sl are: phosphonates (e.g. DETPMP) and polymers (e.g. PPCA). Both types inhibit
scale femation through a combination of nucleation inhibition (i.e. causing unfavourable

thermodynamics for crystal formation) and crystal growth inhibition (i.e. blocking active



crystal growth sites) mechanisms. However, phosphonates function primarily @ cryst
growth inhibitors, whereas polymers function primarily as nucleation inhiki@naham,
Sorbie and Jordan, 1997; Sorbie and Laing, 200&4)e adsorption/desorption of a Sl is
affected by several factors, including: SI chemistry and application piatmn brine
chemistry and pH, formation mineralogy and wettability and the temperature; the
precipitation of a Sl is affected by: the SI chemistry and application pH, the brine chemistry
and the temperatuf&raham, Sorbie and Jordan, 1997; Jordan e1295a)

Squeeze treatments have been the subject of extensive research since the advent of the
technology. Much of this research focusedhe mechanisms of scale formation and hence
scale predictionthe mechanisms of Sl retention, factors affecéhgetention/release, the
modelling of this retention/releasand the design and placement of a treatment based on

all of the findings. In this sense, it is argued that the main treatment stage has been the
focus of research efforts, along with some gtodl the overflush and backproduction

stages. In contrast, the giash stage has received very limited attention, and much of the

fundamentals andhé science related to it remainexplored.

The preflush stage, which is the focus of this work, mayd profound influences on the
squeeze treatment. The amphiphile (mutual solvent; MS) deployed at this stage sets the
scene for the treatment. Its physical interactions with the reservoir fluids and the formation
substrate could influence both the Sergton, and consequently the lifetime of a treatment.
This will be explored further in Chapter 2 where the literature concerned with MS research

and MS application in squeeze treatments is reviewed.

Because of this, MS research is currently seen as ghigfity research topic within the
production chemistrgommunityin the context of squeeze treatments research. Research
areas of interest include: the phase behaviour of mutual solvents, their propagation through
porous media, and their surface comiing effects on the formation rock. All of these
research areas are interconnected and must be supplemented by analytical tools and
modelling techniquesHgure 1.2). All aspects of mutual solvent research for squeeze
treatment applications are still at their infancy, eodsiderablevork will be needed before
squeeze treatment optimisations will be possible. This thesis developasikef MS
research. This done with a particular focus on the phase behaviour of MS (in systems of
oil/brine/MS) and the modelling of this phase behaviour. Mutual solvent analysis and
transport will also be addressed, although to a lesser extent with respect to phase behaviour

investigations.
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Figure 1.2: Mutual solvent research topics.

1.2. THESIS OUTLINE

In Chapter 1, the context of the research described in this thesis is provided. The remaining

chapters serve the followirfgnctions:

1 Chapter 2 explores the literature on mutual solvent research relevant to the research
context described in Chapter 1. The aims of the research will be outlined at the end
of this chapter.

1 Chapter 3 employs qualitative phase behaviour studidevelop a fundamental
understanding of the phase behaviour of mutual solvents. Salinity and brine
chemistry effects are investigated. The influence of Sl on the phase behaviour at
different concentrations is explored, and aspects of mutual solventdasih are

discussed.

1 Chapter 4 develops a quantitative understanding of the phase behaviour of mutual

solvents, which serves as a framework for modelling this phase behaviour.

1 Chapter 5 exploits the findings in Chapter 4 to develop the experimentabieetin
and mathematical procedures required to map the phase behaviour of mutual

solvents semempirically.



Chapter 6 investigates the use of a thermodynamic model for describing the phase
behaviour in oil/brine/MS systems. It does this by capitalisingherframework

from Chapter 4 and the results from Chapter 5.

Chapter 7 develops a practical analytical tool to analyse for mutual solvents, thereby
enabling the validation and verification of the work outlined in the previous
chapters. It also enables &ss in the presence of mutual solvents, hence enabling
the transport studies in Chapter 8.

Chapter 8 provides preliminary transport studies which focus on the propagation of

mutual solvents and single/mufthase displacements in oil/brine/MS systems.

Chapter 9 summarises the findings and their significance. It also outlines the case
for future research through a number of potentially high impact recommendations

directly enabled by this work.



Chapter2:Li t er ature Review

2.1. THE CHEMISTRY OF MUT UAL SOLVENTS

The term AnMSwWali nsalheveermtont ext of squ-eeze
ionic amphiphiles. While this term covers a wide range of organic chemisteés,gnce

in squeeze treatments is given to glycol ethers, although other simple compounds fitting
the definition may be used (e.g. some alcohols and ketofieb)e2.1 compiles a list of
mutual solvents used in the oil industry. This list was put together with the aid of
information provided byDow (2002) ReachCentrum (2012pnd TheAmerican
ChemistryCouncil (2000)and based on uses and production volumes. Gétbers are
preferred as mutual solvents since their dual functionality as alcohols and ethers enable
unigue physical characteristics, in particular: their excellent mutual oil/water solubility,
their thermal stability and the ability to access a widgeaof physical properties (e.g.

boiling point, density, viscosity, surface tension) based on their cherfixivy, 2001)

Ethylene glycols are classed into two series denoting their chemical precursors, namely:
the ESeri es (AEO w. r dthe PSetrh yelse n(efl Pox iwd. er). tan
These are typically reacted with alcohols such-atkanols to produce the wide range of
chemical compounds covered by both series. Varying the molar ratio of the
ethylene/propylene oxide to the alcohol is afditional parameter to accessing more
chemistriegDow, 2001; Dow, 2002; IH®/arkit, 2017) Example reactions are provided
below. Using butati-ol as the alcohol, reactiosl and2.3 denote ESeries glycol ethers

and reaction2.2 and 2.4 denote PSeries glycol ethers at 1:1 and 2:1 molar ratios

respectively.

ethylene 2-butoxyethan-1-ol
oxide (etylene glycol monobutyl ether) 21

/\/\OH -+ 1 & — /\/\0/\/0"'

butan-1-ol

butan-1-ol propylene 1-butoxypropan-2-ol
oxide (propylene glycol monobutyl ether)
NN 0 NN
on + 1. A — 0/\/ 22
OH
butan-1-ol ethy:lene ) 2-(2-butoxyethoxy)ethan-1-ol
oxide (diethylene glycol monobutyl ether) 23

/\/\OH + 2- & —_— /v\o/\/o\/\OH



propylene 1-(2-butoxy-1-methylethoxy)propan-2-ol
oxide (dipropylene glycol monobutyl ether)

Ao + 2, i\—p N\O/\ro 24

butan-1-ol

OH

Table 2.1: Mutual solvents in the oil industry and their structures (MSDS Rw values are
experimental; predicted Pyw values via ALOGPS v2.1(Tetko and Tanchuk, 2002).

o

MSDS Predicted

Name CAS No. Structure

2-(2-Hexyloxyethoxy) ethanol
Diethylene glycol monohexyl | 112594 | ci~2rgrr 1.65 1.65
ether (DGHE)

2-Hexyloxyethanol
Ethylene glycol monohexyl 112-254 AN AN 1.97 1.82
ether (EGHE)

2-(2-Butoxyethoxy) ethyl

acetate ° R L N N
Diethylene glycol monobutyl 124114 T 1.70 1.42

ether acetate (DGBEA)

2-Butoxyethanol acetate a
Ethylene glycol monobutyl 112-07-2 Y 1.51 1.63
ether acetate (EGBEA)

1-Pentanol

- i OH
N-Amy! alcohol 71-41-0 AN 1.51 1.47

2-Butoxyethanol
Ethylene glycol monobutyl 112762 | Horg ™~ 0.80 0.78
ether (EGMBE)

2-(2-Butoxyethoxy) ethanol
Diethyleneglycol monobutyl 112345 | anmPeg e 0.60 0.63
ether (DGBE)

2-[2-(2-Butoxyethoxy) ethoxy]
ethanol

: 14322-6 By Py 0.51 0.63
Triethylene glycol monobutyl
ether (TGBE)
2-Methyl 2-ol o

-Methylpropan2-o
Tertiary butyl alcohol 75650 X 0.40 0.70
2-(2-Ethoxyethoxy) ethyl
acetate ~°
Diethylene glycol monoethyl N2152 | o mn 030 0.56
ether acetate (DGEEA)
OH

2-Butanol
Secondary butyl alcohol 18922 )\/ 0.15 0.66




Butan2-one
Methyl ethyl ketone

78933

@]

0.30

0.41

2-Propoxyethanol
Ethylene glycol monopropyl
ether (EGPE)

2807309

w/\\/O\L\

0.08

0.23

2-(2-Propoxyethoxy) ethanol
Diethylene glycol monopropyl
ether (DGPE)

6881-94-3

o SO N

0.08

0.08

2-Propanol
Isopropyl alcohol (IPA)

67-63-0

OH

0.10

0.04

Propan2-one
Acetone

67-64-1

-0.20

-0.29

2-Ethoxyethanol
Ethylene glycol monoethyl
ether (EGEE)

110805

T

-0.32

-0.28

Ethanol
Ethyl alcohol

64-17-5

\/OH

-0.30

-0.40

2-[2-(2-Ethoxyethoxy) ethoxy]
ethanol

Triethylene glycol monoethyl
ether (TGEE)

112505

oo T g A

-0.60

-0.08

2-(2-Ethoxyethoxy) ethanol
Diethylene glycol monoethyl
ether (DGEE)

111-900

OH’\/J\/\O/‘\

-0.54

-0.16

2-(2-Methoxyethoxy) ethanol
Diethylene glycol monomethy
ether (DEGME)

111-77-3

/O\/\O/‘\-\/CH

-0.47

-0.67

2-Methoxyethanol
Ethylene glycol monomethyl
ether (EGME)

109-86-4

-0.74

-0.78

2-[2-(2-Methoxyethoxy)
ethoxy] ethanol
Triethylene glycol
monomethyl ether (TGME)

112356

A~ g L ~"oH

-1.12

-0.55

Ethanel,2-diol
Monoethylene glycol (MEG)

107-21-1

-1.40

-1.53




2.2. THE USES OF MUTUAL SOLVENTS

Mutual solvents are found in most industries. Their uses cover a wide range of applications,
and they may be used as both solvents and chemical intermediates. Examples of solvent
uses include formulations of pharmaceutical and beauty products, paiats, idls,
cleaning products, herbicides and insecticides and solvents for chemical reactions. As
solvents, main engroduct examples include their use in the automotive industry in
hydraulic and cooling systems and as antifreeze in the aviation indudtigeover, as
chemical intermediates, mutual solvents provide synthesis routes to numerous families of
compounds including: ethers, esters, alkoxy alkyl halides, polyether alcohols and
hemiacetals/aceta(®ow, 2001; IHSMarkit, 2017; IHSMarkit, 2018)

In the oil industry, mutual solvents are also used extensively. On the production side, the
following uses have been identified with reference to the literature:

T I'n Huf fonodéPuff surfactant formul ations
(Shuler etal., 2016; Wang et al., 2008)

1 As a preflush in polymeric water shudff technologiegDalrymple et al., 2002)

1 In the formulations of foamers for liquid unloading in gas wéllslinek and
Schramm, 2005)and in the formulations of foam diverters fordawell stimulation
(NasrEI-Din, 2000)

1 As a preflush in squeeze treatmer{Shapman et al., 1997; Collins, 1998; Jordan,
Graff and Cooper, 2000)

1 In the formulation of the aqueous phase or as a demulsifier in emulsified scale
inhibitor squeeze treatmex(Collins, 2005; Collins and Vervoort, 2003)

1 As waterwetting agents for oil removal in acid stimulation treatments and for
enabling the removal of spent acid in gas well stimulgiicland, 2014; NasEl-
Din et al., 2004; Collins et al., 2001a)

1 Cleaning up the surfaces of iron sulphide deposits to enable their refioie,
2005)

1 To resolve formation damage issues relating to viscoelastic surfactant gel
treatments with high surfactant loadifiasrEI-Din et al., 2006)

10



1 To relieve solvency mies associated with the use of acids to manage naphthenate
deposition(Kelland, 2014)

1 As thermodynamic hydrate inhibitof€ha et al., 2013)

1 In blends used in haiiling for chemical wax removgWalton, 1989)

1 In standard tests for evaluating the parfance of a demulsifigkVu et al., 2004)
1 For improving the performance of biocid@®nes and Talbot, 2004)

1 For improving the performance of drag reduction ag@tédisten and Harwigsson,
1999)

1 In enhanced oil recovery (EOR) applicatighegin, Ali and Xie, 2017)

In acid stimulation treatmés, the use of mutual solveritespecially EGMBE is most
relevant and comparable to its use in squeeze treatments. They are predominantly used to
reduce the risk of watdrlock in tight formations, and to eralmaintaining a watewet
formation(Gidley, 1971; Kalfayan, 2000 As with squeeze treatments, the use of mutual
solvents is not optimised, and rules of thumb are followed based on operational experience.
Most operators would not exceed a mutual sdh@ncentration of 10%, with most
operating over the-3% range Kalfayan, 2000. Commercial mutual solvent blends are
desigred for the purpose of targeting strong watest characteristics, but it is generally
recommended to use pure mutual solventsimple blends to avoid unforeseen issues
(Kalfayan, 2000 Precipitation risks from mutual solvent/brine incompatibilities are also
known to occur, but no detailed investigations have been carriedvimst investigations

look at the possibility of conthing precipitation using mutual solvents in acid stimulation
applications Hall and Dill, 1988. Finally, mutual solvestuse in acid stimulation
treatments is known to strip adsorbed additives such as corrosion inhibitors, which may
have implications tequeeze treatments and must be addressed by mutual solvent research
(Hall, 1975 Kalfayan, 2000

Many other uses for mutual solvents exist in the petroleum industry beyond the context of
production chemicals. In terms of their uses in production presetise identified uses

generally serve the same functions. These are summarised below:

1 Displacing the formation fluids (oil/water).

11



1 Removing oil deposits from surfaces/substrates.
1 Removing water block and emulsion damage.

1 Removing wettabilityalterationdamage and changing the wettability in some cases

from oil-wet to watetwet.

1 Improving solvency and reducing surface tension.

=

Achieving faster well cleanp after treatments.

These functions will be reviewed in greater detail in sec@in the context of scale

inhibitor squeeze treatments.

12



2.3.MUTUAL SOLVENTS IN S QUEEZE TREATMENTS

The evidence for squeeze lifetime enhancement due to the use of mutual solvents in the
pre-flush is overwhelming in the literature. However, this is often confused with enhanced
scale inhibitor (SI) retention. This phrasing seems to suggest a mechangmch the
application of MS in the prush causes the Sl to bind more strongly to the formation
rock, leading to slower desorption kinetics when the well is produced. While this is
possible (e.g. if the MS itself provides additional binding sitesSfloadsorption), no
evidence for this exists. It is more appropriate to say that the functions of thediter

than the MS itself may lead to more Sl retention in the treated formation. The reported
mechanisms for squeeze lifetime enhancement thrddghpreflush applications are

interrelated and described by:

1. The displacement of oil prior to the main treatment (MT). This exposes more rock
to the Sl containing MT, thereby enabling more Sl to adsorb (or precipitate in the
case of precipitation squeeze treatment) per unit volume of treated rock. Related to

this, MS use can also help displacing heavy oil dep¢$jtamsland et al., 2008)

2. Altering the wettability of the formation rock from aiet to wateswet. This would
enable the watesoluble Sl to access active sites on the rock, leading to more
favourable dsorption kineticgJordan et al., 1995b; Jordan et al., 1994)

In addition to improving the squeeze lifetime, other functions are also attributed to the use

of MS in squeeze treatments. These include:

1. Preventing wateblock attributed to the applicatioof an aqueous squeeze
treatment. This is particularly an issue in water sensitive formations (e.g. low water
cut), whereby the application of an aqueous treatment damages the relative
permeability to the oil podteatment(Scott and Littlewood, 2000; Qoils et al.,
2001b; Jordan, Graff and Cooper, 200The flowback of the MS when the well is
backproduced prevents these relative permeability effects by lowering the surface
tension and enabling the mobilisation of the residual w#eg and Lee, 1988
NasrEl-Din, 2003) Therefore, while nolaqueous treatments are an option in these
scenarios, MS enables the use of more conventional treatments without water block
formation damage risks encountered without th@aerdan, Graff and Cooper,

2001) In fect, even when neaqueous treatments are used, MS is needed to enable

13



successful treatment without solvency/injectivity isSidesdan, Graff and Cooper,
2001; Bogaert et al., 2006; Frigo et al., 2005; Graham et al., 2002a)

2. Even if the formation is not wer sensitive, MS use can lead to faster well clean
up by enabling faster production of the injected brines during the treathoedn,
Graff and Cooper, 2001)Well cleanup refers to the time it takes a well to return

to the pretreatment productiorate.

Achieving longer squeeze lifetime reduces the number of squeeze treatments required over
the lifetime of the field. Moreover, faster well cleap and avoidance of water block issues
reduce the amount of deferred oil due to squeeze treatments asecton lifetime. Both

of these combine to deliver significant cost savings enabled by MS use, thereby enabling

more profitable and economical operations.

As an example for the benefits of MS use, the largest known published study involving MS
application in the field involved 125 producer wells in the Cedar Lake Unit Field in Texas.
The wells in this stud{Przybylinski et al., 1996)ere divided into three groups: control

wells (no MS/surfactant prtush), MS preflush wells and surfactant pfeish wells. In

this study, 95% of wells treated with MS gave better well clgatime vs. 68% of wells
treated with surfactant, with MS treated wells averaging 86% and 76% faster welliplean

with respect to the control and surfactant treated wells resplctiin terms of squeeze
lifetime enhancement, MS treated wells averaged 57% and 27% longer squeeze lifetimes
with respect to the control and surfactant treated wells respectively. This implies that the
MS and the surfactant in this study share similachanisms for the observed effects, with

MS delivering far superior performan¢ehe details of which are unknown. It is worth
mentioning that superior MS performance over surfactants is not universal. For instance,
one recent study which targets weilityo alterations in carbonate rocks shows superior
performance of surfactant vs. M&hosh, Alklih and Li, 2016; Ghosh, Li and AlKlih,

2016) However, this may be an artefact of the MS concentration used (4% EGMBE). In
fact, in both cases, it is unknowinthe chemicals involved, and the concentrations and
volumes used in the treatments are appropriate for direct deductive comparisons. Research
instead should focus on understanding the mechanisms of the observed effects, and these

can be used to desidpetter treatments.
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The described key functions above are reported consistently across many publications
based on both coreflood data and field applicattoBgveral issues exist with these, most

importantly:

1. All known experimental studies on MS use ire threflush stage of a squeeze
treatment are conducted as part of a campaign for field application. No known work
has been done to isolate the mechanisms of squeeze lifetime enhancement due to
MS use directly. While the reported mechanisms for squedeéimie
enhancements (i.e. oil displacement and wettability changes) are certainly important
and participating factors, their relative contributions as well as the existence of

hidden factors cannot be gauged with the current level of knowledge.

2. No sensitivty studies are carried out. Almost all studies investigate the use of a
single MS or MS blend, most of which are based on EGMBE, and assume that
performance will be the same across all treatments. However, EGMBE is known
to display a wide range of phalsehaviour and wetting characteristics at different
temperatures, salinities and oil content in the matikehlweit et al., 1989;
Kahlweit et al., 1988a) Therefore, its ability to perform both oil displacement and
wettability changes may be drasticatlyfferent across different scenarios. An
exception is the work adordan, Graff and Cooper (200ih) which two MS are
investigated (i.e. EGMBE and DEGMBE); however, the results of this assessment
are not reported. MoreovemasrEIl-Din, Lynn and AiDossay (2002)
demonstrated how EGMBE vs. a blend perform very differently in terms of
formation damage potential for the same application. Additional sensitivities
include: substrate type, Sl type, {fiesh volume, MS concentration in the pre
flush and brie chemistry to mention a few.

Additional not commonly mentioned factors that could influence the squediradiféue

to a MS preflush havebeen identified. Firstly, the MS itself could adsorb to the substrate
or influence the adsorption/desorption ohert chemicals (e.g. Sl, corrosion inhibitors,
surfactantsGraham et al., 2010; Graham et al., 2012; Hall, 1975; King and Lee,.1988)

I References denoting the functions/benefits of MS in various experiments and field applications:

(Jordan et al., 1995b; Przybylinski et al., 1996; Chapmaai.£1997; Collins et al., 1997a; Collins et al.,
1997b; Bourne et al., 1998; Collins, Williams and Bourne, 1998; Collins, 1998; Bourne, Booth and Brunger,
1999; Bourne et al., 1999; Collins et al., 1999; Graham et al., 1999; Williams, Collins and Wa@le, 19
Jordan, Graff and Cooper, 2000; Poynton et al., 2000; Scott and Littlewood, 2000; Collins et al., 2001a;
Collins et al., 2001b; Jordan, Graff and Cooper, 2001; Graham et al., 2002& Nlasy 2003; Frigo et al.,

2005; Bogaert et al., 2006; Bogaerak, 2007; Jordan et al., 2007; Bogaert et al., 2008; Fleming et al., 2008;
Jordan, Mackay and Vazquez, 2008; Tjomsland et al., 2008; Fleming et al., 2009; Jordan and Mackay, 2009;
Vazquez et al., 2009; Graham et al., 2010; Graham et al., 2012).
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Graham et al. (201Ghowed how high concentrations of MS in the-fush returns can

lead to significant stripping dhe adsorbed S| during the main treatment.

Secondly, the presence of clay minerals in the formation matrix can have significant impact
on squeeze lifetime enhancements when a MSlysh is applied. For instance, formation
matrices containing kaolinitthew some of the longest known squeeze lifetimes when a
MS preflush is usedFleming et al., 2009; Fleming et al., 2008he application of MS
alters the wettability of the preferentially -ovlet kaolinite, thereby providing further
squeeze lifetime ineases beyond those that would occur in their abdgiocdan et al.,
1994; Bantignies, Moulin and Dexpert, 1997herefore, formulation mineralogy can be
used to assess how well a treatment will be influenced by a MBiphe Note that caution
must beexercised when assessing the influence of a MSlysk on squeeze lifetime
enhancement, as this is an implicit function of the [MIC] of the treatment. For instance,
the presence of favourable clay minerals for squeeze lifetime enhancement (e.gekaolini
delivers longer squeeze lifetimes over intermediate [MIC]; at very low [MIC], the SI
returns with and without the clay minerals converge which would mean no lifetime
enhancements occurred. Hence, any comparisons (e.g. across different field apglicatio

should be done on the same basis.

Thirdly, a mechanism that may play a role in squeeze lifetime enhancements due to MS use
in the preflush is the influence of MS on dissolution of the formation substrate. Itis known
that MS, such as EGMBE, can letm enhanced dissolution rates of calcite and barite
minerals in dissolver treatmer(tkordan et al., 2002)For example, in the presence of 0.1

N HCI, 10% MS (EGMBE) in the treatment can increase the dissolution rate of calcite and
dolomite by up to 9% ah29%, respectivelyTaylor, Al-Ghamdi and NasEl-Din, 2003;

Taylor, Al-Ghamdi and NasEl-Din, 2004) The acidic nature of most squeeze treatments
may mean that Mdhduced enhanced dissolution rates of the substrate during the treatment
cannot be ruledut. It may contribute pH and compositional {@s&lg?*) changes that

would alter the adsorption kinetics. Observations involving enhanced squeeze lifetime
when acidic additives (e.g. 10% polyaspartic acid) are included in tHeiphéoverflush
(Suthetand and Jordan, 201@re in line with this proposition. In addition to the
mechanism suggested by the authors of this work, the pH changes due to the polyaspartic
acid presence may contribute to the observed squeeze lifetime enhancénmetily,
potertial incompatibilities between the MS in the ghesh and the Sl in the main treatment

can lead to the precipitation of the Sl into the formation. Should this occur without

formation damage, a prolonged squeeze lifetime is expected. This is due pagireci
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squeeze treatments generally exhibiting longer squeeze lifetime compared to their

adsorption counterpart.

Unrelated to squeeze lifetime enhancement, the MS can also serve additional functions.
Two examples in the literature include: a) to préviemmation damage by emulsion
formation on baclproduction in some squeeze applications, e.g. where iron bearing
minerals are encountered, and surfactants are used in the tre@ynaentNasrEl-Din and
Hashem, 2002; Tjomsland et al., 2008) enable th blending of incompatible products

for applications involving few chemical injection lingkrdan et al., 2003; Feasey et al.,
2006; Jordan et al., 200&)) to avoid injectivity problems and to provide initial production
stimulation in some cases pastatmen{Jordan et al., 2007; Bogaert et al., 2008; Bogaert

et al., 2006; Bogaert et al., 2007; Frigo et al., 2005)

Despite all the benefits of MS applications, caution must be exercised in their use to prevent
unintended formation damage. Several fdiamedamage mechanisms associated with MS
use have been reported. These include: a) MS incompatibilities with the reservoir fluids
(in terms of phase behaviour) which may lead to residual oil/water satu(Bganion,
Thomas and Bietz, 1996)b) the pdicipation of the MS in emulsion formation in the
presence of surfactants or the failure of MS to prevent emulsion formation due to poor
treatment desigLynn, NasfEI-Din and Hashem, 2002; NaEi-Din, 2003) c) damage

due to both organic (e.g. asphaklts; (Bogaert et al., 2008; Na&#-Din, 2003) and
inorganic scaling (e.g. sulphate saftdasrEI-Din, 2003). Topside issues relating to high

MS concentrations after a treatment are also mentifvidels et al., 2003)

All of the abovementioned risksnay be manageable with proper understanding of the
phase behaviour of MS and their transport. Currently, poor understanding of MS phase
behaviour aspects can lead to significant production losdasrEI-Din, Lynn and A}
Dossary (2002flocument a cas@ which a venderecommended MS blend (over pure
EGMBE) showed potential for significant formation damage (i.e. 85% permeability loss
due to formation of an emulsion stabilised with precipitates) that would not be encountered
with EGMBE alone. In termsf@fficiency aspects, the blend seemed to perform no better
than EGMBE. Another example kasrEI-Din (2003)showed the potential of a MS blend
recommended by a service company for tight carbonate reservoir applications to induce
both organic and inorganprecipitation; whereas the same was not observed with EGMBE
alone. Itis unknown if the blend would perform any better than EGMBE in this example

in terms of efficiency. These examples illustrate how poor understanding of the phase
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behaviour and thesaociated risks can lead to poor commercial products with potentially

severe consequences to oil production.

The phase behaviour of amphiphiles in pure systems of oil (e.g. alkane) and water has been
studied extensively, and the influence of various pararade.g. size of alkane, type of

MS, temperature, pressure) on the phase behaviour has been addressed. The influence of
salinity has also been addressed in very simple systems (e.g. single salt systems). The
reader is referred to the following referesdor more details(Kahlweit, Strey and Busse,

1993; Kahlweit et al., 1988a; Kahlweit et al., 1988b; Kahlweit et al., 1989; Burauer et al.,
1999; Sassen et al., 1989%ormation of three liquid phases is well documented in these
systems and has sigméint impact on the surface tension and wetting properties of the MS
system. In the context of squeeze treatments, while this is known to(Gatlims et al.,

1999; Scott and Littlewood, 20Q0¥ is rarelyi if at all i considered. This is partly
attributed to the poor understanding of the phase behaviour of MS at field relevant
conditions (i.e. multcomponent systems involving oils and formation/seawater brines). It

is unknown under which conditions three phases will form, and whether this is tesirab
Scott and Littlewood (200@)ostulate that formation of three phases will enable the MS to
perfectly wet the formation rock, thereby maximising wettability and oil displacement
benefits. However, no evidence for this in squeeze applications exigtsissues

associated with the thrgghase flow that would ensue are unknown.

It has so far been illustrated that the gap in knowledge relating to the MS phase behaviour
in squeeze applications affects: a) the ability to design suitable MS blends; becatigin

of phase behaviour aspects on MS performance. Additional parameters affected by this
include: c) the inability to model the influence of MS-fitssh on a squeeze treatment
appropriately; d) issues relating to the field relevance of coreflagtiest designed to
assess Sl treatment performance when MS is used adlagbre These additional issues

are discussed below.

Firstly, in terms of the modelling, the only known attempt to model the influence of MS
application on squeeze treatments iswuwek of Vazquez et al. (2009) The surfactant
model implemented for this study is describedazquez et al. (2008)The model assumes

a constant partition factor for the MS during oil/water displacement. Based on this, new
relative permeability cungeare calculated as a function of the [MS] in the oil/brine phases.
In practice, the MS will not have a constant partition factor and the [MS] will be dictated
by phase separation. Moreover, the model only allows foiptrese flow and oil and

water arenot allowed to intermix; whereas in reality, singlevo- and thregphase flows
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are possible. Additionally, the model assumes no mass transfer for the Sl across phases.
However, the ability of MS to solubilise oil and water means that sagqaeous phse may

contain significant amount of water (e.g. 20%), and hence some Sl. While the model can
capture field data through curve fitting, it cannot be used to investigate or to design a priori

a preflush that would deliver an optimised squeeze treatment.

Secondly, in terms of coreflood studies for field applications, an ability to model the MS
returns during the bagsroduction is essential. Two examples are provided to illustrate
the importance of this parameter. In the first exanmpleaham et al. (2@ showed how

field data indicates squeeze lifetime enhancement while a coreflood study for the same
application indicates squeeze lifetime deterioration when MS is used. Simulating the [MS]
in the returns in the coreflood study was found to be the tudpd was deemed
unrepresentative of the field situation. To achieve an ability to model [MS] in the back
production stage, an ability to model the phase behaviour of the MS is required. In the
second exampld3ogaert et al. (200&howed how MS prlush in a coreflood study can
show no signs of formation damage; however, [MS] in returns can cause significant
formation damage. In this example, the MS and the oil were found to be incompatible (i.e.
asphaltenes) only at low [oil]. Therefore, an abilaymodel the [MS] in the returns will

allow more representative coreflood studies to be developed for field applications.

In addition to enablin§IS selection/MS blend design, MS research should ultimately lead
to an ability to design squeeze treatments while optimising the followingluste
parameters: a) the volume of MS filesh; b) the concentration of the MS in the-fitesh.

The functiors associated with these parameters should enable: a) maximising oil/brine
displacement; b) maximising wettability alterations; ¢) minimising Sl stripping due to MS
returns; d) minimising formation damage; e) minimising veédlan up time; f) minimising

the cost of the treatment. Any additional parameters identified through MS research should

be used to update this list.

By comparison, current state of the art design practices for squeeze treatments optimise the
main treatment and the ovitush parameterenly. The preflush is not considered at all

in the optimisation(Jordan, Mackay and Vazquez, 2008; Jordan and Mackay, 2009;
Vazquez, Fursov and Mackay, 2016)herefore, treatment design practices in the field
vary considerably. For instance, MS camications in the prlush can be anywhere
between 10100% v/v, and the volume of the pitash varies too as seen in the reported

examples in the literature.
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All of this highlights the potential for substantial improvements to current squeeze design
pracices by incorporating aspects of ghesh design. However, before this is possible,

the fundamentals of MS use in the context of squeeze treatments must be explored. Key to
this work, and with reference to the above discussion, is understanding tdphasiour

of MS in oil/brine/MS systems, and enabling its modelling.
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2.4.RESEARCH AIMS

The aim of this thesis is to develop the leading edge in mutual solvent research. As
identified from the literature review, it is paramount that this development & witin a
focus on the phase behaviour of mutual solvents to enable and to facilitate research in other

areas. Therefore, the following objectives were set:

1. To classify the variety of mutual solvents available based on a field relevant
parameter. This slid be done in a way that highlights the wide range of options

available in terms of mutual solvent selection.

2. To investigate the influence of directly relevant parameteirs the context of
squeeze treatmeriton the phase behaviour of mutual solveiitisis should enable
understanding what should be expected from the phase behaviour of mutual

solvents under different conditions.

3. To study mechanisms for formation damage related to the phase behaviour of
mutual solvents; most importantly, the effects dd Belection and brine chemistry

should be considered.

4. To investigate phase behaviour design using mutual solvent blending and the

influence of common scale inhibitors on the phase behaviour.

5. To develop a quantitative understanding of the phase behaviourtoél solvents
in complex oil/brine/MS systems, and to investigate means to model this phase

behaviour.

6. To develop practical analytical methods for mutual solvent analysis that would

enable the verification of MS models and transport investigations.

7. To perform preliminary transport studies investigating the displacement of oil and

brine using mutual solvents with reference to the phase behaviour.
The direct impact of achieving these objectives would be:

1. Appreciating the influence of mutual solvent selation the phase behaviour under
different scenarios. Therefore, developing a better understidtsavency issues
to be expected in different applications.
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. Mitigating risks associated with mutual solvent use, particularly ones attributed to

incompatibilties with the brine.

. Developing preliminary understanding for mutual solvent blend design.

. Enabling the design of experiments to investigate the transport of mutual solvents.
. Enabling the design of more representative coreflood studies foapipletations.

. Enabling the development of existing mutual solvent models to better describe the

influence of a mutual solvent pfieish on a squeeze treatment.

Providing a foundation for the analytical methods that would enable future studies

on topics sah as mutual solvent adsorption/propagation.
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Chapter3:Qual i tative Experi ment .

Phase Behaviour o f Mut ual S

3.1.OVERALL AIMS AND OBJ ECTIVES

The lack of the analytical tools required to investigate the phase behavibardomplex
oil/brine/mutual solvent systems hindered research into the parameters influencing the
phase behaviour in the context of scale inhibitor squeeze treatments. Key parameters of
direct relevance to field applications include:

1 The salinity effecton the phase behaviour of mutual solvents in oil/brine/mutual

solvent systems.

1 The brine chemistry effects on the liquid phase behaviour and the inorganic

precipitates formed in the presence of mutual solvents.

1 The general effects expected from the preseof the two most common scale

inhibitors in oil/brine/mutual solvent systems.
1 The phase behaviour of mutual solvents in blends of more than one mutual solvent.

1 The effects of temperature on the phase behaviour of oil/brine/mutual solvent

systems.

The deelopment of analytical techniques for the analysis of oil/brine/mutual solvent
systems is considered as part of this PhD. However, since this work is at its infancy,
gualitative phase behaviour experiments should enable progress and advancements in
mutual solvent applications in the field. In qualitative phase behaviour experiments, the
different regions on the phase diagram are mapped through preparation of samples covering
all areas of the phase diagram and allowing them to equilibrate. While thisdristh
expensive and time consuming, it represents the most feasible route to develop
understanding of the phase behaviour of mutual solvents. Hence, it is used to investigate

the parameters of interest outlined above.
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3.2.MUTUAL SOLVENTS

Ten mutual solventdMS) were selected based on their standiaed noctanol/water at 20

25 and 1 atm{OECD, 1995; OECD, 2004; OECD, 20Dp@hgrtition coefficients (Fw).

The selection of the mutual solvents was done with the aim of covering a wide range of
(Pom) values. Correlations between the qualitative phase behaviour of the reatushts

and their respectiveP{w) were subsequently investigated. The selected mutual solvents
for the work described in this chapter, adhas their sources, puritie$dw) andstructures,

are provided inrable3.1.

Figure3.1 outlines the selected mutual solvents based on their standard relative solubilities
(oil/lwater). It also highlihts the predictability of theP¢w) using the ALOGPS v2.1
programme developeoly Tetko and Tanchuk (2002)vith roughly 95% precision @R=

0.92). In bothrable3.1 andFigure3.1, the Pow) values are expressed in the logarithmic
form (base 10) to achieve a relatable symmetry (e.g. whesReg= 0, the mutual solvent

is equally soluble in oil and water; when 168.w = 1, the mutual solvent is 1nes more
soluble in oil; when log Pow = -1, the mutual solvent is 10 times more soluble in water).
This symmetry is emphasised figure 3.1 with boundary lines highlighting the relative

solubilities of the mutual solvents in oil and water.
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Table 3.1: A full list of the investigated mutual solventySupplier: VWR).

Mutual Solvent Product Code | Purity | logio Pow Structure
2-Butoxyethanol acetate ) .
Ethylene glycol monobutyl 8.01395.1000 O9 8 . 1.51 M/\:f
ether acetate (EGBEA)
2-Butoxyethanol )

Ethylene glycol monobutyl A17976.0F | O9 9. 0.80 H g™
ether (EGMBE)

2-(2-Butoxyethoxy) ethanol )

Diethylene glycol monobutyl 8.03129.2500 O9 8 . 0.60 o N
ether (DGBE)

2-Propanol . Y
Isopropyl alcohol (IPA) 20880.290 | 09 9. 0.10 1
2-Propoxyethanol ) o
Ethylene glycol monopropyl 8.43947.1000| O9 9 . 0.08 1
ether (EGPE)

Propanz-one 20067.320 | 100.0% | -0.20 Y
Acetone |
Ethanol - OH
Ethyl alcohol 20821.330 | ©O9 9. -0.30 S~
2-(2-Methoxyethoxy) ethanol )

Diethylene glycol monomethyl | 8.03128.1000f O9 8 . -0.47 Ay
ether (DEGME)

2-Methoxyethanol )

Ethylene glycol monomethyl 1.00859.2500| (09.5% | -0.74 O ™o
ether (EGME)

Ethanel,2-diol . o i OH
Monoethylene glycol (MEG) 24041.320 | P9.7% 1.40 ~" on
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Experimental and predicted log,, (P,,,) values
The selected mutual solvents are represented by red markers

logyg Posw (Predicted)
4

20
Trendline (All) }
y =0.947x EGBEA 2 ",r"
R%=0.9211 | P
1.5 P .
1.0 —a"/
@ EGMBE
LIS 2
05 - z .
-~ DGBE
z EGPE
I plFA { I
15 - s - "olo 0.5 1.0 1.5 2.0

Ethan

" @ DEGME
@

%= EGME

5 -
‘. Acetone
ol
05

logyo Poyw (Experimental)

<3.16x soluble in oil ~ e===>3 16x soluble inoil  es=>10x soluble in oil

<3.16x soluble in water esssm>3 16X soluble in water esss>10x soluble in water

Figure 3.1: The experimental and the predicted log (Pow) values for a number of mutual solvents.

The

experimental values are obtained from MSDS sheetsr a number of mutual solvents. The predictions

s el

ected mutual solvents for this work

are obtainedfrom ALOGPS v2.1 (Tetko and Tanchuk, 2002)
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3.3.EXPERIMENTAL CONDITI ONS

Qualitative phase diagrams were constructed for all of the selected mutual solvents at
| aboratory ti (22.5eC and 1 at m)
clean nneral oil (Multipar H; supplied by Brenntag;2Ci», isoalkanes, <2% aromatics)

was used. As for the brines, three brines of different chemistries and salinities were used,

condi ons

namely: North Sea Seawater (NSSW;s5@ i ¢ h ; TDS & 36,000 ppr
Formation Water (NFFW; Gar i ch; TDS & 91,000 ppm); anc
(MGFW; contains HC@; TDS & 264, 000 ppm). The <co

provided inTable3.2. Phase diagrams were constructed for all the mutual solvents with

(DW; TDS a4 0 ppm)
all filtered prior to use in the experiments to remove any solids (brine was fiétefed5
t he the MS were fil

dei oni sed water as wel |

e m, whi |l e oi | and ter e

To investigate the brine chemistry effects on the liquid phase behaviour, selected qualitative

experiments were repeated for the same NSSW/MGFW brines in the absence of the

sulphate/bicarbonations respectively.

Table 3.2: The salinities and chemistries of the brines used in the salinity mapping study.

lonic Concentration (ppm) Brine 5
NSSW | NFFW | MGFW'

Na* 10,890 31,275| 68,700
ca* 428 2,000 20,000
Mg? 1,368 739 2,500
K* 460 654 8,000
Ba?* 0 296 3,700
Srt 0 771 2,000
SO 2,960 0 0
HCOs 0 0 180
CI 19,774| 55,279| 159,297
Total TDS 35,880] 90,987| 264,377

*NFFW was reduced in calcium (from 5,038 ppm to 2,000 ppm) in order to achieve consisterfugtait

work involving scale inhibitor investigations.

*MGFW was reduced in sodium (from 80,000 ppm to 68,700 ppm) in order to achieve a lower salinity that

allows studying the threphase region in oil/brine/mutual solvent systems.
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3.4.GENERAL EXPERIMENTAL METHODS
3.4.1.Qualitative Phase Diagrams

For the experiment, 10 ml samples containing oil + brine + MS were prepared at 10%
intervals (using Gilson Type 401 Diluttror hi gh preci si on; NO. 5
mixed and the number of liquid phases was recorded at equilibrium. Any inorganic
precipitation was also noted. This information aided the construction of the qualitative

phase diagrams in which the liquiddasolid phase boundaries are roughly determined.

To produce a qualitative ternary phase diagram, 66 samples were prepared by varying the
feed compositions of oil, brine and mutual solvent at 10% v/v increments to an overall
volume of 10 ml. The relativeolumes of the sample constituents were measured using an
electrical dispenser fitted with a 10 ml syringe (Gilson Type 401 Diluter for high precision;
NO.5 ¢1l) . Bor osiokl=lé mma x Ib rans) sealédevshtPTRE lids e s
were used to ete the samples. Once prepared, the samples were shaken vigorously, and
left to equilibrate for at least 24 hours. The volumes of each of the resulting phases was
tracked down to 0.1 ml precision, and ensured to bechanging prior to recording the
reallts. For each sample, the results collected were the volumes of the liquid phases, as
well as whether a solid phase was present, e.g. due to salt dropout. Experiments were

subsequently conducted for the purposes of characterising the inorganic solids.
3.4.2.Characterisation of the Inorganic Precipitates

In order to characterise the inorganic precipitates formed, two identical 100 ml set of
samples were prepared. For simplicity, this was done generally at 90:10% v/v mutual
solvent to brine ratio, which gendsabave the highest mass of precipitéa¢ 10% v/v
intervals) For each mutual solvent, the first set of samples was left to equilibrate for 24
hours before proceeding. After that, the precipitates were collected by filtering the samples
t hr ou g hm fiker paper7 and wermicro-analysed qualitatively foropography and
elemental composition using Environmental Scanning Electron Microscopgergy
Dispersive Xray (ESEMEDX). The second set of samples was left to equilibrate
separately for 24 hoursSince the mass of the precipitates was small, the supernatant was
analysed instead by diluting in distilled water and analysing for all the cations in NSSW
and the sulphate anion usiimgluctively Coupled PlasmiaOptical Emission Spectroscopy
(ICP-OES) analysis.
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3.5.SALINITY MAPPING
3.5.1.Salinity Mapping: Aims

The key aim of this study is to understand how different mutual solvents behave in systems
of different salinities in the presenceal, and to classify the phase behaviour in groups
based on a relatable parameter. Field relevant brine salinities/compositions are
investigated, and the results should inform understanding on the phase behaviour features

of the identified groups of mutlsolvents.
3.5.2.Results and Discussion

In terms of the impact of salinity on the phase behaviour, mutual solvents can be divided
into three groups, namely MS withhigh preferential oil solubility, high preferential

water solubility or no preferential solubility/intermediate preferential oil solubility .

These definitions are dependent on the experimental conditions. For instance, changing
the temperature will change the partition coefficient, making a mutual solvent more oil
soluble than water solub{&ahlweit, Strey and Busse, 1990; Collins et al., 1999 such,

the definitions are not inherent properties of the mutual solvents under investigation.
Instead, they are the properties of a mutual solvent with a similar partition coeficika

conditiors of interest.

The value of this approach is the ability to extend the findings of the salinity mapping to
any experimental conditions by using the partition coefficient as a reference parameter to
describe the influence of salinity. For example, a MSsehlogo Powd 1 3ais 90
predicted to exhibit largely similar qualitative phase behaviour as a MS whasPdag

1 at 22.3 in terms of salinity effects in this context. However, this can be extended to
any parameter of interest, e.g. fixing thérsty and varying the temperature, the pressure

or the oil quality.

With this in mind, the influence of salinity on the three groups of mutual solvents are

described below with examplé®m the experimental results.

3.5.2.1.MS with High Preferential Oil Solubtly at the Test Conditions

MS with high preferential oil solubility are insensitive to the salinity effects. This can be
seen clearly ifFigure3.2. This shows the phase behaviour of EGBEA {}d&w = 1.51)

with Multipar H and a given brine. As the salinity increases from 0 ppm to 264,000 ppm
(Figure 3.2a to Figure 3.2d), there are no observable effects on the qualitative phase
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behaviourand the phase diagrams remain largely the same. The high partition coefficient

of EGBEA indicates its very low solubility in water. Therefore, at the test conditions,

EGBEA does not behave like a mutual solvent, and increasing the salinity of thevibirine

not influence its phase behaviour due to its inability to enter the aqueous phase in any

appreciable amounts.

(a)

90

100
0 10
Multipar H, %

TDS = 0 ppm

70

AVAYAYAYAYAYAYAYA
AVAYAYAYAYAYAYAYAVA

®One Phase
@0One Phase + Solids
M Two Phases

EGBEA, %

B Two Phases + Solids
AThree Phases
A Three Phases + Solids

30

AVAYAYAYAVAYAYA

20

10

70 a0 100

DW, %

20 30 40 50 60

(b)
TDS = 36,000 ppm

EGBEA, %

VAVAVAYAVAN
aAvavavavava

70

90

100

0 10 20 30 40 50 60 70

Multipar H, %

50

AVAYAYAYAVAV)

AVAYAYAYAYAYVAVA
AVAYAYAYAYAYAYAYA

AVAYAYAYAYAYAYAYAVA

® One Phase

©@0One Phase + Solids

M Two Phases

B Two Phases + Solids
A Three Phases
AThree Phases + Solids

40

30

20

10

90 100

NSSW, %

(c)

0 10

Multipar H, %

TDS = 91,000 ppm

70

®One Phase
@ One Phase + Solids

EGBEA, %

W Two Phases

B Two Phases + Solids
A Three Phases
AThree Phases + Solids

30

AVAYAYAYAYAYAVA

(d)
TDS = 264,000 ppm

EGBEA, %

VAVAYAYAVAN
AVAYAYAYAYA

70

100
0 10
Multipar H, %

20 30

50

AVaYAYaVAYaVa
AVAYAYAYAYAYAYA
aAVaYavaVaVavavava
AVAVAYAYAYAVAYVAYAVA

@ One Phase

@ One Phase + Solids

W Two Phases

B Two Phases + Solids
A Three Phases
AThree Phases + Solids

40

30

20

90 100

MGFW, %

Figure 3.2: The influence of salinity on the phase behaviour of EGBEA (lagPow = 1.51)at 22.88 and

1 atm: (a) DW; (b) NSSW; (c) NFFW; (d) MGFW.

3.5.2.2.MS with High Preferential Water Solubility at the Test Conditions

MS with high preferential water solubility also experience negligible salinity effects on

their qualitative phase behaviour. Axaenple is provided for EGME (lagPow = -0.74)

in Figure3.3. This is countemtuitive as the high solubility of EGME, for example, in the

agueous phase at the test conditions would lead one to expect its phase behaviour to be

altered by the increas@ salinity. However,qualitatively, it appears that EGME is

sufficiently water soluble to a point beyond which increasing the salinity cannot noticeably

alter its qualitative liquid phase behaviour, i.e. the number of liquid phases and where they
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appearon the phase diagranQuantitatively, the phase behaviour will be influeice
this case by the change in salinifygure3.3a toFigure3.3d), i.e. the tidines on the phase
diagram will almost certainly be affected.

Figure 3.3: The influence of salinity on the phase behaviour of EGME (log Pow =-0.74) at22.%8 and
1 atm: (a) DW; (b) NSSW; (c) NFFW; (d) MGFW.

The qualitative diagrams of ethanol, DEGME and MEG follow the same trErls€3.4,
Figure3.5 andFigure3.6 respectively).
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