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Abstract 

Oilfield scale is a significant problem in oil production which arises due to temperature and 

pressure changes and mixing of incompatible brines when a well is produced.  The most 

successful and commonly used strategy for mitigating against oilfield scale is the 

application of scale inhibitor squeeze treatments.  A squeeze treatment is applied to the 

production well, and involves several stages, which are:  pre-flush, main treatment, over-

flush, shut-in and back-production.  During a treatment, a scale inhibitor adsorbs or 

precipitates into the formation, and its desorption/dissolution into the produced water when 

the well is put back into production prevents scale formation.  A well must be re-squeezed 

before the scale inhibitor concentration in the produced water falls below the minimum 

inhibition concentration (MIC) required to prevent scaling. 

This work focuses on the pre-flush stage of a squeeze treatment, in which mutual solvents 

are applied in order to prepare the well for a treatment.  This is the least investigated aspect 

of squeeze treatments, and the one with the greatest opportunity for potential optimisation.  

Fundamental to understanding how to best apply mutual solvents (MS) in squeeze 

treatments, to achieve squeeze lifetime enhancements and to mitigate any formation 

damage risks, is understanding MS phase behaviour, the transport of MS through the porous 

medium and MS/mineral surface conditioning effects (e.g. wetting changes). 

In this work, the phase behaviour of various mutual solvents is investigated in 

oil/brine/mutual solvent systems.  Effects of salinity and chemistry are determined at field 

relevant conditions.  The influence of scale inhibitors on phase behaviour is also 

investigated and mutual solvent blend design is examined.  The work also develops a 

quantitative understanding of the phase behaviour of mutual solvents and employs that in 

the development of semi-empirical and thermodynamic models for describing the phase 

behaviour.  Practical analytical tools are also developed to aid mutual solvent investigations 

as well as analysis in the presence of mutual solvents.  Transport studies of MS in sand 

packs are used to investigate the transport of mutual solvents in single and multiphase 

systems.  Numerous field solutions can be obtained from this work, but more importantly, 

this work enables and forms the basis for future mutual solvent investigations in the context 

of scale inhibitor squeeze treatments. 
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Chapter 1: Introduction 

1.1. THE CONTEXT:   OILFIELD SCALES  

Before a well is put into production, the reservoir fluids are in thermodynamic equilibrium.  

This equilibrium is perturbed once the production starts.  The perturbation may involve 

both physical and chemical changes, giving rise to different types of both organic and 

inorganic scales.  These changes present significant flow assurance risks which must be 

considered to maintain oil production.  Physical and chemical changes to reservoir fluids 

are inevitable as part of oilfield operations.  As such, flow assurance in this respect 

addresses the consequences of these changes. 

The term ñoilfield scalesò is typically used to denote inorganic scales formed in aqueous 

solutions (Cowan and Weintritt, 1976; Vetter, 1977; Vetter, 1976; Vetter and Crichlow, 

1979; Vetter, 1975; Vetter and Phillips, 1970).  The risks associated with these to both the 

near-wellbore region and the production facilities are very well documented in the 

literature.  Intervention and loss of production costs due to the formation of inorganic scales 

can be crippling (Crabtree et al., 1999; Graham and Collins, 2004; Graham et al., 2002b).  

A commonly cited field example is that described by Brown (1998), in which a production 

well (producing at 4770 m3/d) in the North Sea (Miller field) lost production entirely within 

24 hours due to scaling.  Moreover, preventive measures ï even when applied appropriately 

ï may still dominate operational costs in some cases (Jordan et al., 2001).  All of this 

highlights a preference for prevention over intervention, and a considerable drive towards 

the optimisation of prevention measures. 

Organic scales (e.g. asphaltenes, gas hydrates, waxes, organic carboxylates, naphthenates) 

also pose important risks, but these are treated separately (Kelland, 2014), and are not 

directly relevant to this work (N.B. inorganic deposits cause more damage than organic 

deposits). 

The most commonly encountered inorganic scales in the field are calcium carbonate 

(CaCO3) and barium sulphate (BaSO4) (Charleston, 1970; Cowan and Weintritt, 1976; 

Shen and Crosby, 1983; Vetter, 1976; Weintritt and Cowan, 1967).  Their formation 

proceeds through distinctly different mechanisms.  The formation of CaCO3 is primarily 

driven by pressure drop, which causes the evolution of carbon dioxide (CO2) from the 

produced brine when the pressure in the system falls below the bubble point.  This is 
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described by reaction 1.1, where CO2 loss can be seen to clearly drive CaCO3 precipitation.  

Moreover, the problem is exacerbated by an increase in the pH as CO2 is lost from the 

solution.  This is due to a reduction in the concentration of carbonic acid (H2CO3) as 

illustrated by reaction 1.2.  Since the solubility of CaCO3 reduces with increasing pH, this 

drives further CaCO3 precipitation (Atkinson and Mecik, 1997; Kelland, 2014; Meyers, 

Skillman and Herring, 1985; Payne, 1987; Tanner and Wittingham, 1986; Wat et al., 1992). 

ὅὥ ς Ὄὅὕ ᴾὅὥὅὕ ὅὕ Ὄὕ   1.1 

ὅὕ Ὄὕ ᴾὌὅὕ ᴾὌὅὕ Ὄ   1.2 

As for BaSO4, mixing of incompatible brines drives its precipitation.  This is described by 

reaction 1.3.  The source of barium ions is usually the formation brine, and the sulphate 

ions will come from injected seawater.  The injection of seawater into the reservoir to 

maintain its pressure is common practice in offshore operations.  While sulphate reduction 

technology is available, it is associated with very high capital and operational costs.  In 

some cases, its use is a necessity due to the inability of alternative methods to manage the 

scaling risks (e.g. very high [Ba2+]).  However, it does not eliminate sulphate scaling risks 

entirely and has no influence on carbonate scaling (Davis, Lomax and Plummer, 1996; 

Graham and Collins, 2004; Hardy and Simm, 1996; Jordan, Collins and Mackay, 2008; Vu, 

Hurtevent and Davis, 2000). 

In relation to reaction 1.3, strontium and calcium may also precipitate with sulphate ions.  

However, barium presents the highest risk due to its lower solubility in comparison 

(Mackay et al., 2005). 

ὄὥ Ὓὕ ᴾὄὥὛὕ   1.3 

Various scale management methods and strategies exist.  Of these, chemical treatments 

known as scale inhibitor (SI) squeeze treatments are one of the most common and effective 

means by which carbonate and sulphate scaling can be delayed or prevented (Carvalho et 

al., 2017; Charleston, 1970; Cowan and Weintritt, 1976; Shen and Crosby, 1983; Sorbie, 

Yuan and Jordan, 1994; Vetter, 1976; Weintritt and Cowan, 1967).  A typical treatment 

wil l comprise of five main stages (Jordan et al., 1995a; Vazquez, Fursov and Mackay, 

2016).  These are described briefly below and illustrated in Figure 1.1: 

1. Pre-flush (spearhead) stage:  This stage involves the injection of a mutual solvent 

into a producer well.  This is thought to prepare the formation for a treatment and 
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will be discussed in detail in Chapter 2.  This stage may be followed by a dilute SI 

pre-flush. 

2. Main treatment (MT) stage:  In this stage, a brine with 2.5-20% active [SI] is 

injected into the formation. 

3. Over-flush stage:  This stage is meant to push the main treatment to the desired 

depth into the formation. 

4. Shut-in stage:  The shut-in period (6-24 hours) allows for SI retention into the 

formation.  This can happen through adsorption or precipitation mechanisms, or a 

combination of both. 

5. Back-production stage:  Normal production operations resume once a treatment has 

been completed.  The SI and scaling ions concentrations are routinely monitored to 

ensure that the well is protected and to plan future treatments.  A well must be 

treated before the SI concentration drops below the minimum inhibition 

concentration (MIC). 

 

Figure 1.1:  A typical squeeze treatment. 

In relation to the scale inhibitors, two conventional chemistries used in squeeze applications 

for the SI are:  phosphonates (e.g. DETPMP) and polymers (e.g. PPCA).  Both types inhibit 

scale formation through a combination of nucleation inhibition (i.e. causing unfavourable 

thermodynamics for crystal formation) and crystal growth inhibition (i.e. blocking active 
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crystal growth sites) mechanisms.  However, phosphonates function primarily as crystal 

growth inhibitors, whereas polymers function primarily as nucleation inhibitors (Graham, 

Sorbie and Jordan, 1997; Sorbie and Laing, 2004).  The adsorption/desorption of a SI is 

affected by several factors, including:  SI chemistry and application pH, formation brine 

chemistry and pH, formation mineralogy and wettability and the temperature; the 

precipitation of a SI is affected by:  the SI chemistry and application pH, the brine chemistry 

and the temperature (Graham, Sorbie and Jordan, 1997; Jordan et al., 1995a). 

Squeeze treatments have been the subject of extensive research since the advent of the 

technology.  Much of this research focused on the mechanisms of scale formation and hence 

scale prediction, the mechanisms of SI retention, factors affecting SI retention/release, the 

modelling of this retention/release, and the design and placement of a treatment based on 

all of the findings.  In this sense, it is argued that the main treatment stage has been the 

focus of research efforts, along with some study of the over-flush and back-production 

stages.  In contrast, the pre-flush stage has received very limited attention, and much of the 

fundamentals and the science related to it remain unexplored. 

The pre-flush stage, which is the focus of this work, may have profound influences on the 

squeeze treatment.  The amphiphile (mutual solvent; MS) deployed at this stage sets the 

scene for the treatment.  Its physical interactions with the reservoir fluids and the formation 

substrate could influence both the SI retention, and consequently the lifetime of a treatment.  

This will be explored further in Chapter 2 where the literature concerned with MS research 

and MS application in squeeze treatments is reviewed. 

Because of this, MS research is currently seen as a high priority research topic within the 

production chemistry community in the context of squeeze treatments research.  Research 

areas of interest include:  the phase behaviour of mutual solvents, their propagation through 

porous media, and their surface conditioning effects on the formation rock.  All of these 

research areas are interconnected and must be supplemented by analytical tools and 

modelling techniques (Figure 1.2).  All aspects of mutual solvent research for squeeze 

treatment applications are still at their infancy, and considerable work will be needed before 

squeeze treatment optimisations will be possible.  This thesis develops the basis of MS 

research.  This is done with a particular focus on the phase behaviour of MS (in systems of 

oil/brine/MS) and the modelling of this phase behaviour.  Mutual solvent analysis and 

transport will also be addressed, although to a lesser extent with respect to phase behaviour 

investigations. 
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Figure 1.2:  Mutual solvent research topics. 

1.2. THESIS OUTLINE  

In Chapter 1, the context of the research described in this thesis is provided.  The remaining 

chapters serve the following functions: 

¶ Chapter 2 explores the literature on mutual solvent research relevant to the research 

context described in Chapter 1.  The aims of the research will be outlined at the end 

of this chapter. 

¶ Chapter 3 employs qualitative phase behaviour studies to develop a fundamental 

understanding of the phase behaviour of mutual solvents.  Salinity and brine 

chemistry effects are investigated.  The influence of SI on the phase behaviour at 

different concentrations is explored, and aspects of mutual solvent blend design are 

discussed. 

¶ Chapter 4 develops a quantitative understanding of the phase behaviour of mutual 

solvents, which serves as a framework for modelling this phase behaviour. 

¶ Chapter 5 exploits the findings in Chapter 4 to develop the experimental techniques 

and mathematical procedures required to map the phase behaviour of mutual 

solvents semi-empirically. 
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¶ Chapter 6 investigates the use of a thermodynamic model for describing the phase 

behaviour in oil/brine/MS systems.  It does this by capitalising on the framework 

from Chapter 4 and the results from Chapter 5. 

¶ Chapter 7 develops a practical analytical tool to analyse for mutual solvents, thereby 

enabling the validation and verification of the work outlined in the previous 

chapters.  It also enables analysis in the presence of mutual solvents, hence enabling 

the transport studies in Chapter 8. 

¶ Chapter 8 provides preliminary transport studies which focus on the propagation of 

mutual solvents and single/multi-phase displacements in oil/brine/MS systems. 

¶ Chapter 9 summarises the findings and their significance.  It also outlines the case 

for future research through a number of potentially high impact recommendations 

directly enabled by this work. 
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Chapter 2: Literature Review 

2.1. THE CHEMISTRY OF MUT UAL SOLVENTS  

The term ñmutual solvent ï MSò in the context of squeeze treatments refers to simple non-

ionic amphiphiles.  While this term covers a wide range of organic chemistries, preference 

in squeeze treatments is given to glycol ethers, although other simple compounds fitting 

the definition may be used (e.g. some alcohols and ketones).  Table 2.1 compiles a list of 

mutual solvents used in the oil industry.  This list was put together with the aid of 

information provided by Dow (2002), ReachCentrum (2012) and The-American-

Chemistry-Council (2000) and based on uses and production volumes.  Glycol ethers are 

preferred as mutual solvents since their dual functionality as alcohols and ethers enable 

unique physical characteristics, in particular:  their excellent mutual oil/water solubility, 

their thermal stability and the ability to access a wide range of physical properties (e.g. 

boiling point, density, viscosity, surface tension) based on their chemistry (Dow, 2001).  

Ethylene glycols are classed into two series denoting their chemical precursors, namely: 

the E-Series (ñEò w.r.t. ethylene oxide) and the P-Series (ñPò w.r.t. propylene oxide).  

These are typically reacted with alcohols such as n-alkanols to produce the wide range of 

chemical compounds covered by both series.  Varying the molar ratio of the 

ethylene/propylene oxide to the alcohol is an additional parameter to accessing more 

chemistries (Dow, 2001; Dow, 2002; IHS-Markit, 2017).  Example reactions are provided 

below.  Using butan-1-ol as the alcohol, reactions 2.1 and 2.3 denote E-Series glycol ethers 

and reactions 2.2 and 2.4 denote P-Series glycol ethers at 1:1 and 2:1 molar ratios 

respectively. 

 

2.1 

 

2.2 

 

2.3 
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2.4 

Table 2.1:  Mutual solvents in the oil industry and their structures (MSDS Po/w values are 

experimental; predicted Po/w values via ALOGPS v2.1 (Tetko and Tanchuk, 2002)). 

Name CAS No. Structure 
■▫▌ ╟▫Ⱦ◌  

MSDS Predicted 

2-(2-Hexyloxyethoxy) ethanol 

Diethylene glycol monohexyl 

ether (DGHE) 

112-59-4 

 

1.65 1.65 

2-Hexyloxyethanol 

Ethylene glycol monohexyl 

ether (EGHE) 

112-25-4 

 

1.97 1.82 

2-(2-Butoxyethoxy) ethyl 

acetate 

Diethylene glycol monobutyl 

ether acetate (DGBEA) 

124-17-4 

 

1.70 1.42 

2-Butoxyethanol acetate 

Ethylene glycol monobutyl 

ether acetate (EGBEA) 

112-07-2 

 

1.51 1.63 

1-Pentanol 

N-Amyl alcohol 
71-41-0 

 

1.51 1.47 

2-Butoxyethanol 

Ethylene glycol monobutyl 

ether (EGMBE) 

111-76-2 

 

0.80 0.78 

2-(2-Butoxyethoxy) ethanol 

Diethylene glycol monobutyl 

ether (DGBE) 

112-34-5 

 

0.60 0.63 

2-[2-(2-Butoxyethoxy) ethoxy] 

ethanol 

Triethylene glycol monobutyl 

ether (TGBE) 

143-22-6 

 

0.51 0.63 

2-Methylpropan-2-ol 

Tertiary butyl alcohol 
75-65-0 

 

0.40 0.70 

2-(2-Ethoxyethoxy) ethyl 

acetate 

Diethylene glycol monoethyl 

ether acetate (DGEEA) 

112-15-2 

 

0.30 0.56 

2-Butanol 

Secondary butyl alcohol 
78-92-2 

 

0.15 0.66 
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Butan-2-one 

Methyl ethyl ketone 
78-93-3 

 

0.30 0.41 

2-Propoxyethanol 

Ethylene glycol monopropyl 

ether (EGPE) 

2807-30-9 

 

0.08 0.23 

2-(2-Propoxyethoxy) ethanol 

Diethylene glycol monopropyl 

ether (DGPE) 

6881-94-3 

 

0.08 0.08 

2-Propanol 

Isopropyl alcohol (IPA) 
67-63-0 

 

0.10 0.04 

Propan-2-one 

Acetone 
67-64-1 

 

-0.20 -0.29 

2-Ethoxyethanol 

Ethylene glycol monoethyl 

ether (EGEE) 

110-80-5 

 

-0.32 -0.28 

Ethanol 

Ethyl alcohol 
64-17-5 

 

-0.30 -0.40 

2-[2-(2-Ethoxyethoxy) ethoxy] 

ethanol 

Triethylene glycol monoethyl 

ether (TGEE) 

112-50-5 

 

-0.60 -0.08 

2-(2-Ethoxyethoxy) ethanol 

Diethylene glycol monoethyl 

ether (DGEE) 

111-90-0 

 

-0.54 -0.16 

2-(2-Methoxyethoxy) ethanol 

Diethylene glycol monomethyl 

ether (DEGME) 

111-77-3 

 

-0.47 -0.67 

2-Methoxyethanol 

Ethylene glycol monomethyl 

ether (EGME) 

109-86-4 

 

-0.74 -0.78 

2-[2-(2-Methoxyethoxy) 

ethoxy] ethanol 

Triethylene glycol 

monomethyl ether (TGME) 

112-35-6 

 

-1.12 -0.55 

Ethane-1,2-diol 

Monoethylene glycol (MEG) 
107-21-1 

 

-1.40 -1.53 
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2.2. THE USES OF MUTUAL SOLVENTS 

Mutual solvents are found in most industries.  Their uses cover a wide range of applications, 

and they may be used as both solvents and chemical intermediates.  Examples of solvent 

uses include formulations of pharmaceutical and beauty products, paints, dyes, inks, 

cleaning products, herbicides and insecticides and solvents for chemical reactions.  As 

solvents, main end-product examples include their use in the automotive industry in 

hydraulic and cooling systems and as antifreeze in the aviation industry.  Moreover, as 

chemical intermediates, mutual solvents provide synthesis routes to numerous families of 

compounds including:  ethers, esters, alkoxy alkyl halides, polyether alcohols and 

hemiacetals/acetals (Dow, 2001; IHS-Markit, 2017; IHS-Markit, 2018). 

In the oil industry, mutual solvents are also used extensively.  On the production side, the 

following uses have been identified with reference to the literature: 

¶ In HuffônôPuff surfactant formulations for improved oil recovery (IOR) applications 

(Shuler et al., 2016; Wang et al., 2008). 

¶ As a pre-flush in polymeric water shut-off technologies (Dalrymple et al., 2002). 

¶ In the formulations of foamers for liquid unloading in gas wells (Jelinek and 

Schramm, 2005), and in the formulations of foam diverters for acid well stimulation 

(Nasr-El-Din, 2000). 

¶ As a pre-flush in squeeze treatments (Chapman et al., 1997; Collins, 1998; Jordan, 

Graff and Cooper, 2000). 

¶ In the formulation of the aqueous phase or as a demulsifier in emulsified scale 

inhibitor squeeze treatments (Collins, 2005; Collins and Vervoort, 2003). 

¶ As water-wetting agents for oil removal in acid stimulation treatments and for 

enabling the removal of spent acid in gas well stimulation (Kelland, 2014; Nasr-El-

Din et al., 2004; Collins et al., 2001a). 

¶ Cleaning up the surfaces of iron sulphide deposits to enable their removal (Miller, 

2005). 

¶ To resolve formation damage issues relating to viscoelastic surfactant gel 

treatments with high surfactant loading (Nasr-El-Din et al., 2006). 
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¶ To relieve solvency issues associated with the use of acids to manage naphthenate 

deposition (Kelland, 2014). 

¶ As thermodynamic hydrate inhibitors (Cha et al., 2013). 

¶ In blends used in hot-oiling for chemical wax removal (Walton, 1989). 

¶ In standard tests for evaluating the performance of a demulsifier (Wu et al., 2004). 

¶ For improving the performance of biocides (Jones and Talbot, 2004). 

¶ For improving the performance of drag reduction agents (Hellsten and Harwigsson, 

1999). 

¶ In enhanced oil recovery (EOR) applications (Negin, Ali and Xie, 2017). 

In acid stimulation treatments, the use of mutual solvents ï especially EGMBE ï is most 

relevant and comparable to its use in squeeze treatments.  They are predominantly used to 

reduce the risk of water-block in tight formations, and to enable maintaining a water-wet 

formation (Gidley, 1971; Kalfayan, 2000).  As with squeeze treatments, the use of mutual 

solvents is not optimised, and rules of thumb are followed based on operational experience.  

Most operators would not exceed a mutual solvent concentration of 10%, with most 

operating over the 3-5% range (Kalfayan, 2000).  Commercial mutual solvent blends are 

designed for the purpose of targeting strong water-wet characteristics, but it is generally 

recommended to use pure mutual solvents or simple blends to avoid unforeseen issues 

(Kalfayan, 2000).  Precipitation risks from mutual solvent/brine incompatibilities are also 

known to occur, but no detailed investigations have been carried out.  Most investigations 

look at the possibility of controlling precipitation using mutual solvents in acid stimulation 

applications (Hall and Dill, 1988).  Finally, mutual solvents use in acid stimulation 

treatments is known to strip adsorbed additives such as corrosion inhibitors, which may 

have implications to squeeze treatments and must be addressed by mutual solvent research 

(Hall, 1975; Kalfayan, 2000). 

Many other uses for mutual solvents exist in the petroleum industry beyond the context of 

production chemicals.  In terms of their uses in production processes, the identified uses 

generally serve the same functions.  These are summarised below: 

¶ Displacing the formation fluids (oil/water). 
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¶ Removing oil deposits from surfaces/substrates. 

¶ Removing water block and emulsion damage. 

¶ Removing wettability-alteration damage and changing the wettability in some cases 

from oil-wet to water-wet. 

¶ Improving solvency and reducing surface tension. 

¶ Achieving faster well clean-up after treatments. 

These functions will be reviewed in greater detail in section 2.3 in the context of scale 

inhibitor squeeze treatments. 
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2.3. MUTUAL SOLVENTS IN S QUEEZE TREATMENTS  

The evidence for squeeze lifetime enhancement due to the use of mutual solvents in the 

pre-flush is overwhelming in the literature.  However, this is often confused with enhanced 

scale inhibitor (SI) retention.  This phrasing seems to suggest a mechanism by which the 

application of MS in the pre-flush causes the SI to bind more strongly to the formation 

rock, leading to slower desorption kinetics when the well is produced.  While this is 

possible (e.g. if the MS itself provides additional binding sites for SI adsorption), no 

evidence for this exists.  It is more appropriate to say that the functions of the MS ï rather 

than the MS itself ï may lead to more SI retention in the treated formation.  The reported 

mechanisms for squeeze lifetime enhancement through MS pre-flush applications are 

interrelated and described by: 

1. The displacement of oil prior to the main treatment (MT).  This exposes more rock 

to the SI containing MT, thereby enabling more SI to adsorb (or precipitate in the 

case of precipitation squeeze treatment) per unit volume of treated rock.  Related to 

this, MS use can also help displacing heavy oil deposits (Tjomsland et al., 2008). 

2. Altering the wettability of the formation rock from oil-wet to water-wet.  This would 

enable the water-soluble SI to access active sites on the rock, leading to more 

favourable adsorption kinetics (Jordan et al., 1995b; Jordan et al., 1994). 

In addition to improving the squeeze lifetime, other functions are also attributed to the use 

of MS in squeeze treatments.  These include: 

1. Preventing water-block attributed to the application of an aqueous squeeze 

treatment.  This is particularly an issue in water sensitive formations (e.g. low water-

cut), whereby the application of an aqueous treatment damages the relative 

permeability to the oil post-treatment (Scott and Littlewood, 2000; Collins et al., 

2001b; Jordan, Graff and Cooper, 2001).  The flowback of the MS when the well is 

back-produced prevents these relative permeability effects by lowering the surface 

tension and enabling the mobilisation of the residual water (King and Lee, 1988; 

Nasr-El-Din, 2003).  Therefore, while non-aqueous treatments are an option in these 

scenarios, MS enables the use of more conventional treatments without water block 

formation damage risks encountered without them (Jordan, Graff and Cooper, 

2001).  In fact, even when non-aqueous treatments are used, MS is needed to enable 
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successful treatment without solvency/injectivity issues (Jordan, Graff and Cooper, 

2001; Bogaert et al., 2006; Frigo et al., 2005; Graham et al., 2002a). 

2. Even if the formation is not water sensitive, MS use can lead to faster well clean-

up by enabling faster production of the injected brines during the treatment (Jordan, 

Graff and Cooper, 2001).  Well clean-up refers to the time it takes a well to return 

to the pre-treatment production rate. 

Achieving longer squeeze lifetime reduces the number of squeeze treatments required over 

the lifetime of the field.  Moreover, faster well clean-up and avoidance of water block issues 

reduce the amount of deferred oil due to squeeze treatments over production lifetime.  Both 

of these combine to deliver significant cost savings enabled by MS use, thereby enabling 

more profitable and economical operations. 

As an example for the benefits of MS use, the largest known published study involving MS 

application in the field involved 125 producer wells in the Cedar Lake Unit Field in Texas.  

The wells in this study (Przybylinski et al., 1996) were divided into three groups:  control 

wells (no MS/surfactant pre-flush), MS pre-flush wells and surfactant pre-flush wells.  In 

this study, 95% of wells treated with MS gave better well clean-up time vs. 68% of wells 

treated with surfactant, with MS treated wells averaging 86% and 76% faster well clean-up 

with respect to the control and surfactant treated wells respectively.  In terms of squeeze 

lifetime enhancement, MS treated wells averaged 57% and 27% longer squeeze lifetimes 

with respect to the control and surfactant treated wells respectively.  This implies that the 

MS and the surfactant in this study share similar mechanisms for the observed effects, with 

MS delivering far superior performance ï the details of which are unknown.  It is worth 

mentioning that superior MS performance over surfactants is not universal.  For instance, 

one recent study which targets wettability alterations in carbonate rocks shows superior 

performance of surfactant vs. MS (Ghosh, Alklih and Li, 2016; Ghosh, Li and Alklih, 

2016).  However, this may be an artefact of the MS concentration used (4% EGMBE).  In 

fact, in both cases, it is unknown if the chemicals involved, and the concentrations and 

volumes used in the treatments are appropriate for direct deductive comparisons.  Research 

instead should focus on understanding the mechanisms of the observed effects, and these 

can be used to design better treatments. 



 

15 

The described key functions above are reported consistently across many publications 

based on both coreflood data and field applications.1  Several issues exist with these, most 

importantly: 

1. All known experimental studies on MS use in the pre-flush stage of a squeeze 

treatment are conducted as part of a campaign for field application.  No known work 

has been done to isolate the mechanisms of squeeze lifetime enhancement due to 

MS use directly.  While the reported mechanisms for squeeze lifetime 

enhancements (i.e. oil displacement and wettability changes) are certainly important 

and participating factors, their relative contributions as well as the existence of 

hidden factors cannot be gauged with the current level of knowledge. 

2. No sensitivity studies are carried out.  Almost all studies investigate the use of a 

single MS or MS blend, most of which are based on EGMBE, and assume that 

performance will be the same across all treatments.  However, EGMBE is known 

to display a wide range of phase behaviour and wetting characteristics at different 

temperatures, salinities and oil content in the matrix (Kahlweit et al., 1989; 

Kahlweit et al., 1988a).  Therefore, its ability to perform both oil displacement and 

wettability changes may be drastically different across different scenarios.  An 

exception is the work of Jordan, Graff and Cooper (2001) in which two MS are 

investigated (i.e. EGMBE and DEGMBE); however, the results of this assessment 

are not reported.  Moreover, Nasr-El-Din, Lynn and Al-Dossary (2002) 

demonstrated how EGMBE vs. a blend perform very differently in terms of 

formation damage potential for the same application.  Additional sensitivities 

include:  substrate type, SI type, pre-flush volume, MS concentration in the pre-

flush and brine chemistry to mention a few. 

Additional not commonly mentioned factors that could influence the squeeze lifetime due 

to a MS pre-flush have been identified.  Firstly, the MS itself could adsorb to the substrate 

or influence the adsorption/desorption of other chemicals (e.g. SI, corrosion inhibitors, 

surfactants) (Graham et al., 2010; Graham et al., 2012; Hall, 1975; King and Lee, 1988).  

                                                 
1 References denoting the functions/benefits of MS in various experiments and field applications: 

(Jordan et al., 1995b; Przybylinski et al., 1996; Chapman et al., 1997; Collins et al., 1997a; Collins et al., 

1997b; Bourne et al., 1998; Collins, Williams and Bourne, 1998; Collins, 1998; Bourne, Booth and Brunger, 

1999; Bourne et al., 1999; Collins et al., 1999; Graham et al., 1999; Williams, Collins and Wade, 1999; 

Jordan, Graff and Cooper, 2000; Poynton et al., 2000; Scott and Littlewood, 2000; Collins et al., 2001a; 

Collins et al., 2001b; Jordan, Graff and Cooper, 2001; Graham et al., 2002a; Nasr-El-Din, 2003; Frigo et al., 

2005; Bogaert et al., 2006; Bogaert et al., 2007; Jordan et al., 2007; Bogaert et al., 2008; Fleming et al., 2008; 

Jordan, Mackay and Vazquez, 2008; Tjomsland et al., 2008; Fleming et al., 2009; Jordan and Mackay, 2009; 

Vazquez et al., 2009; Graham et al., 2010; Graham et al., 2012). 
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Graham et al. (2010) showed how high concentrations of MS in the pre-flush returns can 

lead to significant stripping of the adsorbed SI during the main treatment. 

Secondly, the presence of clay minerals in the formation matrix can have significant impact 

on squeeze lifetime enhancements when a MS pre-flush is applied.  For instance, formation 

matrices containing kaolinite show some of the longest known squeeze lifetimes when a 

MS pre-flush is used (Fleming et al., 2009; Fleming et al., 2008).  The application of MS 

alters the wettability of the preferentially oil-wet kaolinite, thereby providing further 

squeeze lifetime increases beyond those that would occur in their absence (Jordan et al., 

1994; Bantignies, Moulin and Dexpert, 1997).  Therefore, formulation mineralogy can be 

used to assess how well a treatment will be influenced by a MS pre-flush.  Note that caution 

must be exercised when assessing the influence of a MS pre-flush on squeeze lifetime 

enhancement, as this is an implicit function of the [MIC] of the treatment.  For instance, 

the presence of favourable clay minerals for squeeze lifetime enhancement (e.g. kaolinite) 

delivers longer squeeze lifetimes over intermediate [MIC]; at very low [MIC], the SI 

returns with and without the clay minerals converge which would mean no lifetime 

enhancements occurred.  Hence, any comparisons (e.g. across different field applications) 

should be done on the same basis. 

Thirdly, a mechanism that may play a role in squeeze lifetime enhancements due to MS use 

in the pre-flush is the influence of MS on dissolution of the formation substrate.  It is known 

that MS, such as EGMBE, can lead to enhanced dissolution rates of calcite and barite 

minerals in dissolver treatments (Jordan et al., 2002).  For example, in the presence of 0.1 

N HCl, 10% MS (EGMBE) in the treatment can increase the dissolution rate of calcite and 

dolomite by up to 9% and 29%, respectively (Taylor, Al-Ghamdi and Nasr-El-Din, 2003; 

Taylor, Al-Ghamdi and Nasr-El-Din, 2004).  The acidic nature of most squeeze treatments 

may mean that MS-induced enhanced dissolution rates of the substrate during the treatment 

cannot be ruled out.  It may contribute pH and compositional (Ca2+/Mg2+) changes that 

would alter the adsorption kinetics.  Observations involving enhanced squeeze lifetime 

when acidic additives (e.g. 10% polyaspartic acid) are included in the pre-flush/over-flush 

(Sutherland and Jordan, 2016) are in line with this proposition.  In addition to the 

mechanism suggested by the authors of this work, the pH changes due to the polyaspartic 

acid presence may contribute to the observed squeeze lifetime enhancement.  Finally, 

potential incompatibilities between the MS in the pre-flush and the SI in the main treatment 

can lead to the precipitation of the SI into the formation.  Should this occur without 

formation damage, a prolonged squeeze lifetime is expected.  This is due to precipitation 
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squeeze treatments generally exhibiting longer squeeze lifetime compared to their 

adsorption counterpart. 

Unrelated to squeeze lifetime enhancement, the MS can also serve additional functions.  

Two examples in the literature include:  a) to prevent formation damage by emulsion 

formation on back-production in some squeeze applications, e.g. where iron bearing 

minerals are encountered, and surfactants are used in the treatment (Lynn, Nasr-El-Din and 

Hashem, 2002; Tjomsland et al., 2008); b) enable the blending of incompatible products 

for applications involving few chemical injection lines (Jordan et al., 2003; Feasey et al., 

2006; Jordan et al., 2006); c) to avoid injectivity problems and to provide initial production 

stimulation in some cases post-treatment (Jordan et al., 2007; Bogaert et al., 2008; Bogaert 

et al., 2006; Bogaert et al., 2007; Frigo et al., 2005). 

Despite all the benefits of MS applications, caution must be exercised in their use to prevent 

unintended formation damage.  Several formation damage mechanisms associated with MS 

use have been reported.  These include:  a) MS incompatibilities with the reservoir fluids 

(in terms of phase behaviour) which may lead to residual oil/water saturation (Bennion, 

Thomas and Bietz, 1996);  b) the participation of the MS in emulsion formation in the 

presence of surfactants or the failure of MS to prevent emulsion formation due to poor 

treatment design (Lynn, Nasr-El-Din and Hashem, 2002; Nasr-El-Din, 2003); c) damage 

due to both organic (e.g. asphaltenes; (Bogaert et al., 2008; Nasr-El-Din, 2003)) and 

inorganic scaling (e.g. sulphate salts; (Nasr-El-Din, 2003)).  Topside issues relating to high 

MS concentrations after a treatment are also mentioned (Miles et al., 2003). 

All of the above-mentioned risks may be manageable with proper understanding of the 

phase behaviour of MS and their transport.  Currently, poor understanding of MS phase 

behaviour aspects can lead to significant production losses.  Nasr-El-Din, Lynn and Al-

Dossary (2002) document a case in which a vendor-recommended MS blend (over pure 

EGMBE) showed potential for significant formation damage (i.e. 85% permeability loss 

due to formation of an emulsion stabilised with precipitates) that would not be encountered 

with EGMBE alone.  In terms of efficiency aspects, the blend seemed to perform no better 

than EGMBE.  Another example in Nasr-El-Din (2003) showed the potential of a MS blend 

recommended by a service company for tight carbonate reservoir applications to induce 

both organic and inorganic precipitation; whereas the same was not observed with EGMBE 

alone.  It is unknown if the blend would perform any better than EGMBE in this example 

in terms of efficiency.  These examples illustrate how poor understanding of the phase 
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behaviour and the associated risks can lead to poor commercial products with potentially 

severe consequences to oil production. 

The phase behaviour of amphiphiles in pure systems of oil (e.g. alkane) and water has been 

studied extensively, and the influence of various parameters (e.g. size of alkane, type of 

MS, temperature, pressure) on the phase behaviour has been addressed.  The influence of 

salinity has also been addressed in very simple systems (e.g. single salt systems).  The 

reader is referred to the following references for more details:  (Kahlweit, Strey and Busse, 

1993; Kahlweit et al., 1988a; Kahlweit et al., 1988b; Kahlweit et al., 1989; Burauer et al., 

1999; Sassen et al., 1989).  Formation of three liquid phases is well documented in these 

systems and has significant impact on the surface tension and wetting properties of the MS 

system.  In the context of squeeze treatments, while this is known to occur (Collins et al., 

1999; Scott and Littlewood, 2000), it is rarely ï if at all ï considered.  This is partly 

attributed to the poor understanding of the phase behaviour of MS at field relevant 

conditions (i.e. multi-component systems involving oils and formation/seawater brines).  It 

is unknown under which conditions three phases will form, and whether this is desirable.  

Scott and Littlewood (2000) postulate that formation of three phases will enable the MS to 

perfectly wet the formation rock, thereby maximising wettability and oil displacement 

benefits.  However, no evidence for this in squeeze applications exists, and issues 

associated with the three-phase flow that would ensue are unknown. 

It has so far been illustrated that the gap in knowledge relating to the MS phase behaviour 

in squeeze applications affects:  a) the ability to design suitable MS blends; b) consideration 

of phase behaviour aspects on MS performance.  Additional parameters affected by this 

include:  c) the inability to model the influence of MS pre-flush on a squeeze treatment 

appropriately; d) issues relating to the field relevance of coreflood studies designed to 

assess SI treatment performance when MS is used as a pre-flush.  These additional issues 

are discussed below. 

Firstly, in terms of the modelling, the only known attempt to model the influence of MS 

application on squeeze treatments is the work of Vazquez et al. (2009).  The surfactant 

model implemented for this study is described in Vazquez et al. (2008).  The model assumes 

a constant partition factor for the MS during oil/water displacement.  Based on this, new 

relative permeability curves are calculated as a function of the [MS] in the oil/brine phases.  

In practice, the MS will not have a constant partition factor and the [MS] will be dictated 

by phase separation.   Moreover, the model only allows for two-phase flow and oil and 

water are not allowed to intermix; whereas in reality, single-, two- and three-phase flows 
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are possible.  Additionally, the model assumes no mass transfer for the SI across phases.  

However, the ability of MS to solubilise oil and water means that a non-aqueous phase may 

contain significant amount of water (e.g. 20%), and hence some SI.  While the model can 

capture field data through curve fitting, it cannot be used to investigate or to design a priori 

a pre-flush that would deliver an optimised squeeze treatment. 

Secondly, in terms of coreflood studies for field applications, an ability to model the MS 

returns during the back-production is essential.  Two examples are provided to illustrate 

the importance of this parameter.  In the first example, Graham et al. (2010) showed how 

field data indicates squeeze lifetime enhancement while a coreflood study for the same 

application indicates squeeze lifetime deterioration when MS is used.  Simulating the [MS] 

in the returns in the coreflood study was found to be the culprit and was deemed 

unrepresentative of the field situation.  To achieve an ability to model [MS] in the back-

production stage, an ability to model the phase behaviour of the MS is required.  In the 

second example, Bogaert et al. (2008) showed how MS pre-flush in a coreflood study can 

show no signs of formation damage; however, [MS] in returns can cause significant 

formation damage.  In this example, the MS and the oil were found to be incompatible (i.e. 

asphaltenes) only at low [oil].  Therefore, an ability to model the [MS] in the returns will 

allow more representative coreflood studies to be developed for field applications.  

In addition to enabling MS selection/MS blend design, MS research should ultimately lead 

to an ability to design squeeze treatments while optimising the following pre-flush 

parameters:  a) the volume of MS pre-flush; b) the concentration of the MS in the pre-flush.  

The functions associated with these parameters should enable:  a) maximising oil/brine 

displacement; b) maximising wettability alterations; c) minimising SI stripping due to MS 

returns; d) minimising formation damage; e) minimising well-clean up time; f) minimising 

the cost of the treatment.  Any additional parameters identified through MS research should 

be used to update this list. 

By comparison, current state of the art design practices for squeeze treatments optimise the 

main treatment and the over-flush parameters only.  The pre-flush is not considered at all 

in the optimisation (Jordan, Mackay and Vazquez, 2008; Jordan and Mackay, 2009; 

Vazquez, Fursov and Mackay, 2016).  Therefore, treatment design practices in the field 

vary considerably.  For instance, MS concentrations in the pre-flush can be anywhere 

between 10-100% v/v, and the volume of the pre-flush varies too as seen in the reported 

examples in the literature. 
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All of this highlights the potential for substantial improvements to current squeeze design 

practices by incorporating aspects of pre-flush design.  However, before this is possible, 

the fundamentals of MS use in the context of squeeze treatments must be explored.  Key to 

this work, and with reference to the above discussion, is understanding the phase behaviour 

of MS in oil/brine/MS systems, and enabling its modelling. 
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2.4. RESEARCH AIMS  

The aim of this thesis is to develop the leading edge in mutual solvent research.  As 

identified from the literature review, it is paramount that this development is done with a 

focus on the phase behaviour of mutual solvents to enable and to facilitate research in other 

areas.  Therefore, the following objectives were set: 

1. To classify the variety of mutual solvents available based on a field relevant 

parameter.  This should be done in a way that highlights the wide range of options 

available in terms of mutual solvent selection. 

2. To investigate the influence of directly relevant parameters ï in the context of 

squeeze treatments ï on the phase behaviour of mutual solvents.  This should enable 

understanding what should be expected from the phase behaviour of mutual 

solvents under different conditions. 

3. To study mechanisms for formation damage related to the phase behaviour of 

mutual solvents; most importantly, the effects of MS selection and brine chemistry 

should be considered. 

4. To investigate phase behaviour design using mutual solvent blending and the 

influence of common scale inhibitors on the phase behaviour. 

5. To develop a quantitative understanding of the phase behaviour of mutual solvents 

in complex oil/brine/MS systems, and to investigate means to model this phase 

behaviour. 

6. To develop practical analytical methods for mutual solvent analysis that would 

enable the verification of MS models and transport investigations. 

7. To perform preliminary transport studies investigating the displacement of oil and 

brine using mutual solvents with reference to the phase behaviour. 

The direct impact of achieving these objectives would be: 

1. Appreciating the influence of mutual solvent selection on the phase behaviour under 

different scenarios.  Therefore, developing a better understating of solvency issues 

to be expected in different applications. 
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2. Mitigating risks associated with mutual solvent use, particularly ones attributed to 

incompatibilities with the brine.  

3. Developing preliminary understanding for mutual solvent blend design. 

4. Enabling the design of experiments to investigate the transport of mutual solvents. 

5. Enabling the design of more representative coreflood studies for field applications. 

6. Enabling the development of existing mutual solvent models to better describe the 

influence of a mutual solvent pre-flush on a squeeze treatment. 

7.  Providing a foundation for the analytical methods that would enable future studies 

on topics such as mutual solvent adsorption/propagation. 
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Chapter 3: Qualitative Experimental Studies on the 

Phase Behaviour of Mutual Solvents 

3.1. OVERALL AIMS AND OBJ ECTIVES 

The lack of the analytical tools required to investigate the phase behaviour in the complex 

oil/brine/mutual solvent systems hindered research into the parameters influencing the 

phase behaviour in the context of scale inhibitor squeeze treatments.  Key parameters of 

direct relevance to field applications include: 

¶ The salinity effects on the phase behaviour of mutual solvents in oil/brine/mutual 

solvent systems. 

¶ The brine chemistry effects on the liquid phase behaviour and the inorganic 

precipitates formed in the presence of mutual solvents. 

¶ The general effects expected from the presence of the two most common scale 

inhibitors in oil/brine/mutual solvent systems. 

¶ The phase behaviour of mutual solvents in blends of more than one mutual solvent. 

¶ The effects of temperature on the phase behaviour of oil/brine/mutual solvent 

systems. 

The development of analytical techniques for the analysis of oil/brine/mutual solvent 

systems is considered as part of this PhD.  However, since this work is at its infancy, 

qualitative phase behaviour experiments should enable progress and advancements in 

mutual solvent applications in the field.  In qualitative phase behaviour experiments, the 

different regions on the phase diagram are mapped through preparation of samples covering 

all areas of the phase diagram and allowing them to equilibrate.  While this method is 

expensive and time consuming, it represents the most feasible route to develop 

understanding of the phase behaviour of mutual solvents.  Hence, it is used to investigate 

the parameters of interest outlined above. 
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3.2. MUTUAL SOLVENTS  

Ten mutual solvents (MS) were selected based on their standard (i.e. n-octanol/water at 20-

25  and 1 atm; (OECD, 1995; OECD, 2004; OECD, 2006)) partition coefficients (Po/w).  

The selection of the mutual solvents was done with the aim of covering a wide range of 

(Po/w) values.  Correlations between the qualitative phase behaviour of the mutual solvents 

and their respective (Po/w) were subsequently investigated.  The selected mutual solvents 

for the work described in this chapter, as well as their sources, purities, (Po/w) and structures, 

are provided in Table 3.1. 

Figure 3.1 outlines the selected mutual solvents based on their standard relative solubilities 

(oil/water).  It also highlights the predictability of the (Po/w) using the ALOGPS v2.1 

programme developed by Tetko and Tanchuk (2002), with roughly 95% precision (R2 = 

0.92).  In both Table 3.1 and Figure 3.1, the (Po/w) values are expressed in the logarithmic 

form (base 10) to achieve a relatable symmetry (e.g. when log10 Po/w = 0, the mutual solvent 

is equally soluble in oil and water; when log10 Po/w = 1, the mutual solvent is 10 times more 

soluble in oil; when log10 Po/w = -1, the mutual solvent is 10 times more soluble in water).  

This symmetry is emphasised in Figure 3.1 with boundary lines highlighting the relative 

solubilities of the mutual solvents in oil and water. 
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Table 3.1:  A full list of the investigated mutual solvents (Supplier:  VWR) . 

Mutual Solvent Product Code Purity  log10 Po/w Structure 

2-Butoxyethanol acetate 

Ethylene glycol monobutyl 

ether acetate (EGBEA) 

8.01395.1000 Ó98.0% 1.51 

 

2-Butoxyethanol 

Ethylene glycol monobutyl 

ether (EGMBE) 

A17976.0F Ó99.0% 0.80 

 

2-(2-Butoxyethoxy) ethanol 

Diethylene glycol monobutyl 

ether (DGBE) 

8.03129.2500 Ó98.0% 0.60 

 

2-Propanol 

Isopropyl alcohol (IPA) 
20880.290 Ó99.8% 0.10 

 

2-Propoxyethanol 

Ethylene glycol monopropyl 

ether (EGPE) 

8.43947.1000 Ó99.0% 0.08 

 

Propan-2-one 

Acetone 
20067.320 100.0% -0.20 

 

Ethanol 

Ethyl alcohol 
20821.330 Ó99.0% -0.30 

 

2-(2-Methoxyethoxy) ethanol 

Diethylene glycol monomethyl 

ether (DEGME) 

8.03128.1000 Ó98.0% -0.47 

 

2-Methoxyethanol 

Ethylene glycol monomethyl 

ether (EGME) 

1.00859.2500 Ó99.5% -0.74 

 

Ethane-1,2-diol 

Monoethylene glycol (MEG) 
24041.320 Ó99.7% -1.40 
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Figure 3.1:  The experimental and the predicted log10 (Po/w) values for a number of mutual solvents.  

The selected mutual solvents for this work are highlighted using the circular red markers (ǒ).  The 

experimental values are obtained from MSDS sheets for a number of mutual solvents.  The predictions 

are obtained from ALOGPS v2.1 (Tetko and Tanchuk, 2002). 
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3.3. EXPERIMENTAL CONDITI ONS 

Qualitative phase diagrams were constructed for all of the selected mutual solvents at 

laboratory conditions (22.5ęC and 1 atm) with oil and different brines.  For this purpose, 

clean mineral oil (Multipar H; supplied by Brenntag; C11-C12, isoalkanes, <2% aromatics) 

was used.  As for the brines, three brines of different chemistries and salinities were used, 

namely:  North Sea Seawater (NSSW; SO4
2- rich; TDS å 36,000 ppm); Nelson Forties 

Formation Water (NFFW; Ca2+ rich; TDS å 91,000 ppm); and Glenelg Formation Water 

(MGFW; contains HCO3
-; TDS å 264,000 ppm).  The compositions of the brines are 

provided in Table 3.2.  Phase diagrams were constructed for all the mutual solvents with 

de-ionised water as well (DW; TDS å 0 ppm).  The oil, brines, and mutual solvents were 

all filtered prior to use in the experiments to remove any solids (brine was filtered at 0.45 

ɛm, while the oil and the MS were filtered at 2.7 ɛm). 

To investigate the brine chemistry effects on the liquid phase behaviour, selected qualitative 

experiments were repeated for the same NSSW/MGFW brines in the absence of the 

sulphate/bicarbonate ions respectively. 

Table 3.2:  The salinities and chemistries of the brines used in the salinity mapping study. 

Ionic Concentration (ppm) 
Brine 

NSSW NFFW*  MGFW**  

Na+ 10,890 31,275 68,700 

Ca2+ 428 2,000 20,000 

Mg2+ 1,368 739 2,500 

K+ 460 654 8,000 

Ba2+ 0 296 3,700 

Sr2+ 0 771 2,000 

SO4
2- 2,960 0 0 

HCO3
- 0 0 180 

Cl- 19,774 55,279 159,297 

Total TDS 35,880 90,987 264,377 

 

*NFFW was reduced in calcium (from 5,038 ppm to 2,000 ppm) in order to achieve consistency with historic 

work involving scale inhibitor investigations. 

**MGFW was reduced in sodium (from 80,000 ppm to 68,700 ppm) in order to achieve a lower salinity that 

allows studying the three-phase region in oil/brine/mutual solvent systems.  
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3.4. GENERAL EXPERIMENTAL METHODS  

3.4.1. Qualitative Phase Diagrams 

For the experiment, 10 ml samples containing oil + brine + MS were prepared at 10% 

intervals (using Gilson Type 401 Diluter for high precision; Ñ0.5 ɛl).  The samples were 

mixed and the number of liquid phases was recorded at equilibrium.  Any inorganic 

precipitation was also noted.  This information aided the construction of the qualitative 

phase diagrams in which the liquid and solid phase boundaries are roughly determined. 

To produce a qualitative ternary phase diagram, 66 samples were prepared by varying the 

feed compositions of oil, brine and mutual solvent at 10% v/v increments to an overall 

volume of 10 ml.  The relative volumes of the sample constituents were measured using an 

electrical dispenser fitted with a 10 ml syringe (Gilson Type 401 Diluter for high precision; 

Ñ0.5 ɛl).  Borosilicate glass test tubes (Do × L = 16 mm × 125 mm) sealed with PTFE lids 

were used to store the samples.  Once prepared, the samples were shaken vigorously, and 

left to equilibrate for at least 24 hours.  The volumes of each of the resulting phases was 

tracked down to 0.1 ml precision, and ensured to be non-changing prior to recording the 

results.  For each sample, the results collected were the volumes of the liquid phases, as 

well as whether a solid phase was present, e.g. due to salt dropout.  Experiments were 

subsequently conducted for the purposes of characterising the inorganic solids. 

3.4.2. Characterisation of the Inorganic Precipitates 

In order to characterise the inorganic precipitates formed, two identical 100 ml set of 

samples were prepared.  For simplicity, this was done generally at 90:10% v/v mutual 

solvent to brine ratio, which generally gave the highest mass of precipitate (at 10% v/v 

intervals).  For each mutual solvent, the first set of samples was left to equilibrate for 24 

hours before proceeding.  After that, the precipitates were collected by filtering the samples 

through a 2.7 ɛm filter paper, and were micro-analysed qualitatively for topography and 

elemental composition using Environmental Scanning Electron Microscopy ï Energy 

Dispersive X-ray (ESEM-EDX).  The second set of samples was left to equilibrate 

separately for 24 hours.  Since the mass of the precipitates was small, the supernatant was 

analysed instead by diluting in distilled water and analysing for all the cations in NSSW 

and the sulphate anion using Inductively Coupled Plasma ï Optical Emission Spectroscopy 

(ICP-OES) analysis.  
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3.5. SALINITY MAPPING  

3.5.1. Salinity Mapping:  Aims 

The key aim of this study is to understand how different mutual solvents behave in systems 

of different salinities in the presence of oil, and to classify the phase behaviour in groups 

based on a relatable parameter.  Field relevant brine salinities/compositions are 

investigated, and the results should inform understanding on the phase behaviour features 

of the identified groups of mutual solvents. 

3.5.2. Results and Discussion 

In terms of the impact of salinity on the phase behaviour, mutual solvents can be divided 

into three groups, namely MS with:  high preferential oil solubility , high preferential 

water solubility  or no preferential solubility/intermediate preferential oil solubility .  

These definitions are dependent on the experimental conditions.  For instance, changing 

the temperature will change the partition coefficient, making a mutual solvent more oil 

soluble than water soluble (Kahlweit, Strey and Busse, 1990; Collins et al., 1999).  As such, 

the definitions are not inherent properties of the mutual solvents under investigation.  

Instead, they are the properties of a mutual solvent with a similar partition coefficient at the 

conditions of interest. 

The value of this approach is the ability to extend the findings of the salinity mapping to 

any experimental conditions by using the partition coefficient as a reference parameter to 

describe the influence of salinity.  For example, a MS whose log10 Po/w å 1 at 90ᴈ is 

predicted to exhibit largely similar qualitative phase behaviour as a MS whose log10 Po/w å 

1 at 22.5ᴈ in terms of salinity effects in this context.  However, this can be extended to 

any parameter of interest, e.g. fixing the salinity and varying the temperature, the pressure 

or the oil quality. 

With this in mind, the influence of salinity on the three groups of mutual solvents are 

described below with examples from the experimental results. 

3.5.2.1. MS with High Preferential Oil Solubility at the Test Conditions 

MS with high preferential oil solubility are insensitive to the salinity effects.  This can be 

seen clearly in Figure 3.2.  This shows the phase behaviour of EGBEA (log10 Po/w = 1.51) 

with Multipar H and a given brine.  As the salinity increases from 0 ppm to 264,000 ppm 

(Figure 3.2a to Figure 3.2d), there are no observable effects on the qualitative phase 
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behaviour and the phase diagrams remain largely the same.  The high partition coefficient 

of EGBEA indicates its very low solubility in water.  Therefore, at the test conditions, 

EGBEA does not behave like a mutual solvent, and increasing the salinity of the brine will 

not influence its phase behaviour due to its inability to enter the aqueous phase in any 

appreciable amounts. 

 

Figure 3.2:  The influence of salinity on the phase behaviour of EGBEA (log10 Po/w = 1.51) at 22.5ᴈ and 

1 atm:  (a) DW; (b) NSSW; (c) NFFW; (d) MGFW. 

3.5.2.2. MS with High Preferential Water Solubility at the Test Conditions 

MS with high preferential water solubility also experience negligible salinity effects on 

their qualitative phase behaviour.  An example is provided for EGME (log10 Po/w = -0.74) 

in Figure 3.3.  This is counter-intuitive as the high solubility of EGME, for example, in the 

aqueous phase at the test conditions would lead one to expect its phase behaviour to be 

altered by the increase in salinity.  However, qualitatively , it appears that EGME is 

sufficiently water soluble to a point beyond which increasing the salinity cannot noticeably 

alter its qualitative liquid phase behaviour, i.e. the number of liquid phases and where they 
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appear on the phase diagram.  Quantitatively , the phase behaviour will be influenced in 

this case by the change in salinity (Figure 3.3a to Figure 3.3d), i.e. the tie-lines on the phase 

diagram will almost certainly be affected. 

 

Figure 3.3:  The influence of salinity on the phase behaviour of EGME (log10 Po/w = -0.74) at 22.5ᴈ and 

1 atm:  (a) DW; (b) NSSW; (c) NFFW; (d) MGFW. 

The qualitative diagrams of ethanol, DEGME and MEG follow the same trends (Figure 3.4, 

Figure 3.5 and Figure 3.6 respectively). 




























































































































































































































































































































