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Abstract

CO» has beerextensivelyused in onshore fieldprimarily for EOR However, ithas
been used less offshore duditaited transportationnfrastructureand the lack o$ecure
CO. supply Recently,CO; flooding has been reconsidered in offshore fidgtisboth
EOR and storageThe performance a2 O; flooding inthe offshoreclasses of reservoirs,
which are characterised by fundamentally dissimilar properties dawélopment
characteristicshan onshore reservojrmight be different from the past experience of
CO: flooding observed onshar®ffshore developments are characterisgtigher rates

of depletion, fewer wells, larger well spacing and higher well radegpared to onshore
reservoirs which are characterisled pattern development and shorter well spacings;
moreovey the motivation behin€O; flooding might be differenbffshore The aim of
this study is to reviewthesedifferences betwee@O; flooding in offshoreandonshore
classes of reservoirexclusivelywithin the context of reservoir engineerini the first
part of this studydifferent aspects o€0O» flooding are comparedbetween twamajor
provinces i.e. thenshorePermian Basirprovincelocated in thdJnited States and the
offshore North Seaprovince It will be shown thatCO-EOR has many similar
characteristics in these two provinces despite the fact that ambient reservoir conditions
are fundamentally differerietween them Next, flow patterns are compared between
these two classes of reservoifslow patteris in each of reservoirs aravestigatedoy
deriving the key dimensionless numbetsich maycharacterise C&flooding in each of
them It will be shown that Ceflooding is slghtly more gravity dominated in the North
Seaclassof reservoirs.Additionally, in the absence of gravigffects,flow patterns upon
CO: flooding are expected to be more stabl¢he North Sealassof reservoirdue to
better mobility ratios thatharacterise the displacement in this proviritiee fact that the
motivationfor CO. flooding is potentially different between these two classes of reservoir
may also promote alterna®0O; flooding process designs offshpwehich shouldsatisfy
both the EOR and storageequirementsf CO; flooding intheoffshore class of reservoirs.

The second part of this thesisvestigats the grid size requirements for modelling
miscible processesich aO,-EOR A new approacbhased omeasurindneterogeneity
induced dispersivites in longitudinal and transverse orientations is introduced and
developed Matching these dispersivities withquivalent numerical dispersianay

determine the corresize of grid blocksn a miscibledisplacemensimulation
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Chapter 1 Introduction and ProblemDescription

1.3 Introduction

Many of the worl dds I mportant producing
account for a significant share of global crude oil supfyamplecases aréhe North

Sea, the Norwegian Sea, the Gulf of Mexico, the Campos and Santos basins, offshore
West Africa, the Persian Gulf, etdrigure 11 shows that crude oil production from
offshore provinces accowetfor 29% of the entire world crude production in 2015, at a
level greater than 27MMSTB per day (USEIA 2016).

Global crude oil production, 2005-15

) \
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Figure 1.1: Global crude oil production in 2013USEIA 2016

Similar to manyonshoreoil provinces offshore provinces in many regions of the world
are increasingly becamg mature andhus oil production from thens now declining
While to some extenthis declinecanbe compensated by measusesh agleveloping
smallerpoolsor exploring new assetparticularlyin harsher areas, the application of
EOR methodsas a method of Maximising Economic RecovéMER), should not be
overlooked

COx-EOR is an established EOR technique in tbeited Statesand hasoffered
outstanding performance this onshore province This has cause@0O: flooding to be
seriouslyconsidereds a potential EOR technique for other mature provinces, particularly
offshore ones Reports show that i8014 136 fields were underCO; flooding in the
United Statesproducing around 300,000bbl/déy/allaceet al 2015)



Chapterl: Introduction and Problem Description

The benefitof CO, flooding in offshorereservoirss not limited to increasing crudeil
productionand security otrudesupply, besidesthat applyingCO»-EOR offshorecan
increase hogl o v e r nrevenudsaldtionally, a more secure and safe marketGar
storagecan be createadffshore which canbe an important enabler fauture CO; storage

progranmes.

DespiteoutstandingCO»-EOR performance in the United States, its application in other
mature provinceparticularly offshore ones atanelementary stagerhis isprincipally
because neecureand abundansource of CO, such as thosavailablein the United

Stateshaveyet been recognized other provinces.

Given the large number of successful Zoding projects inhe United States, this
provinceis sometimes regarded as a benchmarlcémductingCO»-EOR activitiesin
otherregions of the world Thus nmany encouraging resultsave beerextrapolatedoy
correlating the CQEOR performanceobserved in th&nited Stateso other candidate
provincesin the world This is particularly relevant in the North Sea, where enormous
andinspiring results fopotential CO; flooding hasbeen reported in the literatuozer

the past 30 yeargettherehasnotbeeneven a single complete etatend CQ flooding

project in this region.

While the fundamentals of G@looding such agmiscibility development, oil swelling
and viscosity reductiorare importantconsideratios in evaluatingand correlating the
possible CO,-EOR performance in dikely new candidate province, there are other
important considerations thatould affect the CQ flooding characteristicin a new

provincecompared tahe past history of£ O flooding, experiencedn the United States

71 First: the fluid and ambient reservoir properties of a new province might be
fundamentally different thathoseexperienced in thegst CQ-EOR projects in
the United StatesThe Permian Basimeservoirs are characterisbg both low
reservoir temperatures and pressures, whitee North Se for examplgboth of
thesgparameterare high On the other handh the Presalt basiocatedoffshore
Brazil, reservoir temperatures are Idwt pressures are high.

1 Second the dominant flow patterns upo80O:; flooding could be different in a
new province (e.g. the North Sea) compared to those flow patterns observed in
the United StatesCO, flooded reservoirs (e.g. Permian Basin) which are

characterised by relativeghortemwell spacing, lower rates of depletion and lower
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formation permeabilitiesThe difference in flow pattern consequently may affect
the macroscopic sweep efficiency of £i®oding.

1 Third: the motivation for C@flooding could also be differenb the historical
purely EOR driver€O, flooding projects commoin theUnited StatesOffshore
a combination of EOR and GGtoragecould bethe likely driving force behind
anyCO; flood.

1 Fourth: the profile of CO; availability in a new province coulalsobe different
from that observed in th&nited States Both quantity and flexibility of C@
supply could be differerdffshoreasanthropogenisources o€0O, supplywould
be the likely source of CQ, with fundamentally differentharacteristics than

thoseof naturalCO, sourcesavailablein the US.

The above combinatios may affect theCO; flooding characteristicsoffshore in
comparison withhose which have been experienoeghore This in turn may resuin
different CO,-EOR performanceharacteristics offshore in terms @0, requiremers,
performancecharacteristics and process destgan those observedonshore It is,
thereforethe target ofhiis study to review thesssuesand address the likely differences

between C@floodingin onshore andffshore classes of reservoirs.

A variety of offshore provinces could lige targefor the comparisompresented in this
study, however where applicablewe explicitly concentrate the discussion on the
characteristicof COz flooding in the North Sea provincas North Seahas beera
potential candidate for C@flooding for a few decades and could remainpatential

candidate in futurehould a CCS industry develop ingiprovince

In the discussion that follows in this chapter,inigally outline the current status of GO
flooding in the United Statg$Section 1.3anda few otheroffshore provincegSection
1.4). Later, someexamples will b@resentedo show the significance tfiedriving force
in the successful achievement different projectsin the North Se4Section 1.5) The
Next section illustrates and highlighthe impact of C®@ storage on the likely
characteristics of C£EOR (Section 1.6) Finally, the last sectionhighlights the

organization of the remaining chaptefghis thesigSection 1.8)

1.4The CO,-EOR Process

The CO,-EOR process involves injecting supercriti€l, into the reservoir formation

to recover additional oiladditional tothe recovery obtained hyrevious methods.g.
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secondary waterfloodingOlden et al 2015. This can be achieved by a series of
favourable mechanismsuch as oil swelling, oil viscosity reduction, interfacial tension
reduction and compositional exchange betw€®» and the remaining oil inthe

reservoir.

In terms of applicabilityCO,-EOR perhaps hase ofthe most flexible screening criteria
suggestd in the literaturgTaberet al 1997) which makes i practicalEOR candidate
in more than 80% of the oil reservoirs worldw{@®ouet al. 2012) Figure 12illustrates
the suitable oil gravity range for different EOR methodée relative size othe EOR
contribution (barrel/day) is shown by the size of fdbhtan be seen that the combinatio
of all gas injection EOR techniques represtre largest sharef EOR undertaken

worldwide

Oil Gravity °API
0 5 10 45 20 55 30 55 40 45 50 55 60

N, & Flue gas
~-Hydrocarbon .
< CO,- Miscible '

o
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- Gel Treatments —
In situ combustion —

Figure 1.2: The range of suitable oil gravities fa€0O,-EOR application(Taberet al 1997)

For CO; flooding to be a competitive processriousconditionsmust be me{Stalkup
1983) First, an adequate volume 610, must be available at an economic and favourable
rate and cost Secondthe combination of reservoir pressure and temperature and fluid
composition should allow fooptimum miscibility or near miscibility development
Third, the displacement characteristics of injecté@, and reservoir fluid must be
favourable, in that extremely heterogeneous formations with high permeabiibks
aredetrimental taCO flooding. Finally, the project economics must withstand the added
cost ofthe EOR operatior{Stalkup 1983)

In pure EOR terms, incremental oil recovery must be both sufficiently large and also
timely to achieveEOR objectives. While the first three elements may remain identical
for COz flooding between onshore and offshore provinces, the econonti€® dboding

could bedifferentoffshore, as theotivationof CO; flooding might bedifferentoffshore
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Chapter 2 reviews tifendamentals aspects of efboding via modellingstudies hence

theremainingtechnicalmaterialsare postponed fdhis chapter.

1.50nshore Evolution ofCO-EORin the United States

The first patent foCO,-EOR applicatiorin the United Statewas grantedn 1952 and

the first three projects were initiated in Osage County, Oklahoma between 1958 and 1962
(Meyer 2006) However extensive application c£0-EOR (along with a number of

other EOR techniquesyas not initiated until the1 9 7 ,dnrasponse tahe world oll

crisis. Since thentheuse ofCO-EORhas grown significantly in the United Stat@he

first CO-EOR commercialscale development was initiated in 1972 in the SACROC
field. The Denver Unibf the Wasson Fieltbcated in West Texas is theorld largest
CO>-EOR project(Tanneret al 1992) AlthoughCO,-EOR has been practicad other
regions of thevorld (e.g.Canada omn theBati Raman field in TurkeytheUnited States

is the definite leader ithisindustry.

SecuringaCO, supply has had a significant impact on the performance efficiency sf CO
EOR; numerous examples are available in this reghrdhe FordGeraldine field the

initial source of CQwas from a gas plant with erratRO, supplyfor 5 years Oncea

more sableCO, supply was secured in 1985, production increased from 381bpd to almost
1160bpd (3 fold increaséPBrock & Bryan 1989) Anotherexampleis the North Coles
Levee (pilot) in which the source of G@as from a refinery that had occasional upsets,
therefore limiting the supply to pilot area and causing the pilot to termieath/in mid-

1984 (Brock & Bryan 1989) In the SACROC field initially 220MM scfd of CO, were
supplied from the Val Verde gas plant and tilséipped via the Canyon Reef Carrier
pipeline (CRC) for injection Current supply is from Bravo Dome in Colorado and

McEImo dome inthe New Mexica

CO flooding entered the commercistiagein 1985 with the completion of three major
COz pipelines to the West Texas a(déathews 1989) These pipelines connect the €0
sources at Sheep Mountain (Colorado), Brd&vome (NM) and McEImo Dome
(Colorado) to the large market of west Texskathews 1989) The Oil & Gas Journal
has reported that G@looding in the United States produces more @htsteam injection
does(308,564 b/drs.300,762 b/d) and accounts for 41%lwd production from all types
of EOR OGJ world EOR survey, 20).2
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In the early days of C&Xlooding in the United States, GQupply was provided from
industrial sources such as gas power plants and fertiliExample cases are SACROC
(Crameik & Plassey 1972North CrosgPontious & Tham 1978&nd Twofred(Thrash
1979)fields, all of which were initially supplied in this way

Currently both atural and industrial (including anthropogenic) sources of &€being
used in théJnited Statesindnaturally supplied C®in the US accoustfor the 83% of

the total supplyDooleyet al. 2010) Ofthe total 3.5Bcf/day C&njectionin theUnited
Statesin 2014, 2.8Bcf/day has been providiedm natural sources (5 sources) and the
remaining 0.7Bcf/day has been supplied by industoatceg12 sourcesjWallaceet al
2015) This suggestthat supply capacity from industrial sources is far less than natural
sourceswhich could be relevant in other provingcsus CQ supplyis expected tbe an
important challenge for other provincgsrticularly offshore oneswhere access to

natural CQ resources is ndeasible

The most important natural sources of 0 the United States are Sheep Mountain
(1TCf at 97% CQ purity), Bravo Dome (6 TCF), MacElImo Dome and DOE Canyon
fields (>10TCF), Jackson Dome-83 CF of CQ) and LaBargeBig Pineyarea (20TCF

of COx with 70% purity from Madison and 90% from Big Ho(Mathews 1989)

A single reportpublishedin 2006 estimates that by injecting 600MT of €@ the US
fields, 245000bbl/dayoil has been recovere(Meyer 2006) In terms of process
technology value, almost $24illion per day or $8.8 billion per yehavebeenproduced

by CO-EORIn the United StatesThreemajorprovinces in the United States have been
themaintargets forCO; flooding. The Permian Basir{61%), Rocky Mountains (12%)
and Mississippi and Louisiana (14%novincescomprige 87% of the totallO» flooding
projectsin the US(Jikich & Ammer 2012) Figure 13 (next pagekhows the current
map ofCO, activities in the USalong with the major operating pipelinesthis country

There is an established e@ansportation network in the United States, comprising 50
individual pipelines in the United States; which spreads omedozen States andto
neighbouring Canada. The first €Qipelines were constructed in the United States in
the 1970s (Canyon RéeCarrier pipeline). Now the combined length of £O
transportation pipelines is over 4,500mil&4ore than 80% of the GAransported in the
US comes from natural sourcehich is expected to decline to 50%,afanned capture

plants becomeperationabs envisaged by 2020 (Wallaet al 2015).
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Figure 1.3: Current CO,-EOR operationsand infrastructures in the United Statg§Vallaceet
al. 2015)

In thePermian Basinmany smaller fieldhavebenefited from thénfrastructure created
for larger fields A review of CQ flooding history inthe Permian basin shows th@O,-
EOR projectdn larger fields have acted aschor projects in thearly stages of C@
EOR activitiesandhashad a significant impact on spd#ag of this EOR technique to
smaller fields An example is the Canyon Reef Carrier (CRC) pipeline which was
constructed tsupplythe SACROCproject the proximity ofsmaller projectsuch aghe
North Crosdield to this pipelineenabledmplementation o£O; flooding in this field as
well (Aryanaet al 2014)

Governmentncentivisationn spreadingO-EOR activities in the United Statssould

not also be overlooked While reservoir and fluid conditions are favourable @,
flooding inthis country CO-EOR also haseenfavoured by the support received from

the United States government, either in the form of direct financial support by introducing
tax incentives for this EOR activity or by cost share agreenierésv candidate élds;

e.g. Mattoon field (Baroni 1995) Knowledge sharingsponsored primarily by the
Department oEnergy €.g.many published SPE/DOE papehnsisalsohad a significant
impact in enabling other operating companies to undei@Beflooding activitiesas

well.

Concern regarding global warming has cauge United States to undertake a number

of CO, capture and storage activities, which if implemented can provide additional
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anthropogenic C®sources for enhanced oil recoveryfthere are a number of CCS
projects currently underway in the United Stat€brucearet al (2014) provides a list

of the large scale CCS demonstration projects around the world. Of the 22 such projects,
7 arelocated in the United States, 6 of which expected to use EOR as a storage option

for CO; andonly 1 will use saline aquifeas an storage optiolthe KempeCountyand
PetraNova plants are good examplafssuch projectsn this regardwhere they couple

CO» capture with storage and consequent enhanced oil recovery from the targetriields
the Kemper power plan§5% of the produced CQwill be used for C@EOR which

could recover 2nillion barrels ofoil peryear Parisiet al.2015.

The PetraNova projet is a nice example of using anthropogenic,@® EOR in the
United States. Thiproject isa 50/50 joint venture project between the NRG and JX
Nippon which operates on a commercial scale post combustion carbon capture facility at
NRG southwest of Hotisn TexagNRG 2017). This facility captures more than 90% of

COe from a 240 MW slipstream dhe flue gas for use and ultimate sequestration of 1.6
million tons of this greenhouse gas annuallfs project is the world largest post
combustion CQ@capture project installed at a power sta(NRG 2017).

w HOUSTON

Petra Nova

5 K

West Ranch
Oil Field

Figure 1.4: The location of the PetraNova and West Ranch oil fiel(NRG 2017

The technologysed in thdetraNovaprojecthas the potential to enhance the lbegn
viability and sustainability of codlieled power plants across the United States and
around the world. The project was selected by the United States Department of Energy
(DOE) to reseive up to $190 million as part of the Clean Coal Power Initiative Program
(CCPI), a cosshared collaboration between the federal government and private industry
(NRG 2017. This project utilizes a proven carbon capture process, which was jointly
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develomd by Mitsubishi Heavy Industries, Ltd. (MHI) and the Kansai Electric Power
Co., that uses a higherformance solvent for GQabsorption and desorption (NRG
2017).

The Captured Cowill be used foEnhanced Oil Recovery to enhance production at the
West Rach oil field, which is operated by Hilcorp Energy Comp@iRG 2017) It is
expected that oil production will be boosted from around 300 barrels per day today to up
to 15,000 barrels per day while sequestering GQlerground. This field is currently
estimated to hold approximately 60 million barrels of oil recoverable by EOR operations
(NRG 2017,.

This capture plant is actually a refiibto an already existing power plant (Global CCS
Institute). The C@ will be stored at the Frio formation (sandston&)5a006300ft
beneatithe surface where oil has been produced since 1938. Thes@@nsported by
pipelineusing anonshore to onshore transport facility. Petra Nova is the world's largest
postcombustion C@capture system in operation. The purity of £3@nt to the pipeline

is greater than 99%. The captured G€transported via a new 132 km long,-ih2h
diameter underground pipeline to the West Ranch oil field, located near the city of
Vanderbilt in Jackson County, Texas. Nine injection wells angr@2@uction wells are
being used initially for EOR operations. As many as 130 injection wells and 130
production wells could be used over they@&ar span of the projedh addition to
satisfying the monitoring requirements of the Clean Coal Power Indiétinder which

the project received federal funding) the £fnitoring program is designed to satisfy
the monitoring, sampling and testing requirements of the Railroad Commission of Texas
(RRC) certification program for tax exemptions related to usé®mff@ EOR and use of

COe from anthropogenic sources. The project officially became operational in January
2017 (Global CC3nstitute).

1.6 Status ofOffshore RegardingCO,-EOR Application

Given the successful history GO, flooding in the USCO,-EOR has ben considered
for a number ofoffshore provinces such dbe North Sea, Gulf of MexicGOM),
Vietnam, Malaysia, Brazil and UA&fshore watersThe only successfand operational

offshoreCO»-EOR projecits, howeverthe Lula field located offshore Brazil
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1.6.1Presalt Basin; Offshore Brazil

The Presalt basiocatedoffshore Brazil contains a number of fields wéhelatively
high CO; concentration in theproducedluids. Lula is a supegiant deep water oil field
located in theSantos basin offshorBrasil, some 250km off the coasts of Brazil
Discovered in 2006, this field contain oil of 281 with a GOR of 240r/fim?
(1348scf/stb)Pizarro & Branco 2012)

This is the first project wher€Q; is injected in ultradeep watersand represents a
successful example @&0O. flooding offshore CO; for this project is supplied bthe
separatedCO, from associated gasvhich is reinjected in the field both for EOR and
storage purposesThe CO, composition in the produced flunariesbetween 815%
(Pizarro & Branco 2012)The reservoir is located below a 2000m thick salt layer with a
relatively low reservoir temperature of (6670°C). Safe storage a0 is achieved due

to the presence of a very thick salt layerGas injection (a mixture of CO, and
hydrocarbohin this field wasstarted in 2011 by injecting arouddnillion cubic metes

of gas per dayLater, by initiating gas export to onshoanly pureCO; has been injected
thusreducing the injection rate to alm@&80,000m*/day (Pizarro & Branco 2012)

Located in a remote area, up to 300 km
L offshore

Water depths that can
exceed 2,000 meters

Salt layer more than
2,000 meters thick.

Pre-Salt Layer

New Exploratory Reservoirs
Frontier

Figure 15: Lula field and Presalt cluster areas, Santos province Presalt m@B&arro &
Branco 2012)

The strategic decision ntd ventthe COz to the atmosphere was the primary driving
force for undertakingc Oz flooding in this fieldwith consequent EOR benefit3he key
success of the project was phased development initiated byQsloapplication to
reducetherisk and increase learningMoreover early planning of th€O,-EORIn this
field helpedeliminatefacilities installation downtimesnd also provided space for EOR

facilities (Pizarro & Branco 2012)

10
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Given the successfulCO, flooding result observed in this fiel@O;, flooding has also
beenconsideredor the nearbylupiter field offshore Brazilin proximityto theLula field
andwith almost the same reservoir and flpidpertieghigh CO, content in thgoroduced
fluid) (2bl1stconsulting 2014)

1.6.2Gulf of Mexico

The Gulf of Mexico (GOM) is an important offshore province for thaited States
accounting for nearly 20% dhe total US crude productian Since its peak in 2003,
production from this provincdas beerdeclining (Malone et al 2014) Although a
number of approachémvebeensuggestetb enhance the production from this province
such asexploring deeper waters or developing smaller fietoe effectivemeasuras
implemening CO,-EOR, which hasa successful record in the nearbgshorePerman
Basin(Maloneet al 2014)

No CO; flooding activity hagyet been undertaken in theffshoreprovince; howevera
NETL! reportdescribes @omprehensive review of thmotential CO,-EOR benefits in
this offshore provincéMaloneet al 2014) Increasing oil production, providing@O;
market for future capture plants and apgoviding a secure location fo€O, storage
away from human communitieare importantrecognisedenefitsfor conducting CQ@

activities in this offshore province

The reportdentifiestwo important highlights; first, the ne¢dtakeearlier action in the

GOM, because many shallow water fields are approaching abandonment (once they are
abandoned, cost of installi@O,-EORfacilities will be more significant thaat presenk,

second, the deep water oil fields may benefit from €a@yEOR planning as has been
shown inthe Lula field (Maloneet al. 2014)

The promise of additional oil recovery and secOf& storage arg@otentialsignificant
prizes for conductingO,-EOR in thisprovince. Royaltyn the GOM is about 18.5%
and this report estimates that the prize of implemer@i@gEOR in the GOM region
could be around 15billion barrel of oil, if 3.9GT @D is injected(Maloneet al 2014)

CO>-EORIin the offfrore GOM region is not, however, a new concept; in fact,Gie-
EOR pilots have been undertaken in this region during the 1980sQuiamantine Bay

! National Energy Technology Labdoay

11
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COz injection started in 1981 and was completed in 1988 was delivered by barge
and injected at arvarage rate of 1IMMscfd. The project was considered successful as
it recovered 16.9% of OOIP with a n€O; utilisation of 2.81scf/bbl (Malone et al
2014)

. Federal Offshore--Gulf of Mexico Field Production of Crude Oil
N

Figure 16: Left: GOM offshoredeep watecontinental shelf circles locae the position of

potentialfuture CQO; flooding anchor fields(Malone et al. 2014. Right: Gulf of Mexico
crude oil production(USEIA 2016

In the Timbalier Baygravity stable miscibl€0O; flood, CO. was injected fofl5 months
(30%HCPV)followed by field gas injection The Bay St, Elaine field a gravity stable
miscible CO; flood wasalsoinitiated in 1981 Theinjected gas was mixture of COp,
CHs and butane The CQO; injection was followed by Ninjectionin this field to reduce
net CQ consumption In the Weeks Islandfield, gravity stableCO, flood, Shell
recovered 260,000bbil by injecting 24%HCPV C@&mixed with 6% hydrocarbon gas
The ret and gross CQutilizationswererespectively 3.3 and Mscfbbl. In theParadis
field gravity stableCO, flood initiated in 1982, C@mixed with 10% N was injected into
this field (Maloneet al 2014) The fact thathe majority of theabove CQ floodshave
beengravity stabldlooding designgfour out of five) is due tothe existence osuitable

dipping reservoirs in the Louisiana gulf coasta(Cardena®t al. 1984)

Although all of the above offshore pilot projects weeemedtechnically successful,
none of them led to commercistale CQ flooding in this offshore provingesimilar to
the nearby Permian Basin provincd he main barriers for this are limited €8upply
offshore GOM and high well drilling cosf{Maloneet al 2014)

12
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1.6.3The North Sea

The North Sea provinaggigurel.7, left) opened for exploration and productionlia64
(Glennie 1998)mnd reached its peak oil production in 19%#ter this, the production
has beerconstantlydeclining Currently, the North Sea is considered as a mature

province.

Norway and UK crude oil production
(1970-2015, million barrels per day)

35
3,0
25
2,0

15

- " - e " - e " = = " = & &N

s NOrway wm— United Kingdom

Sources: BP Statistical Review 2015, DECC, Norwegian Petroleum

Figure 1.7: Left: North Sea Provincd OGAuthority 2016) Right: UK and Norway oll
production (Cryostolenergy 2016

Figure 1.7 (right) shows theprofile of oil production byUK and Norway;the two
significant neighbouring North Sea countrids can be seen tharoduction fromboth
countries hasonsiderablydeclined compared tdheir peak productios The North Sea
is nowconsiderechsa mature province with the oil fields in tientral, Northernand
Southermproducingsignificantly below their initial plateau production m{@ayasekera
& Goodyear 2002)

Miscible gas and WAGEOR have been the top EOR techniques practiced in the North
Sea area (18 project@wan et al. 2008)since gh reservoir temperature and highater
saliniieshavelimited the application obther EOR methods.g.polymerflooding (Bath
1987)

The EOR potential of the North Sea is estimated to be arour@81BCPV(Holt et al
2009) The challengehowever for any EORmethodin the North Sedincluding CO»-
EOR)is that vaterflooding is very efficientconvenientaind also chea this province
In fact in some fieldsthe recovery factoidue towaterfloodingalonecanreach 70%
thoughthe averageecovery forthe UKCS is around45%, which is still significant

comparedo other provinces However given the larger size of reservoirsthe North

13
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Sea,a large EOR targetcannevertheles®e identified(Jayasekera & Goodyear 2002)
High waterflood recoverin this province may also demamdrlier application of EOR
methods The abovealiscussionsuggest that successfuEOR implementation is most
likely in the largest field§Bath 1987) Table 11 shows a list ofhe EOR projects initiated
in the North Sea

Table 11: A number of EOR projects initiated in the North Sea (Awaat al 2008, Brodieet

al. 2012).MG: Miscible Gas injection, MWAG: Miscible WAG injection, IMWAG,
Immiscible WAG injection, FAWAG: Foam Assisted WAG injection.

. . EOR
# | Field Name Operator Prod/Start-up | Location Method
1 | Ekofisk (Ekofisk fm.) | ConocoPhillips| 1971 Norway | MG
2 | Ekofisk (Tor fm.) ConocoPhillips| 1971 Norway | IMWAG
3 | Beryl ExxonMobil 1976 UK MG
4 ]:Q’r;a)tflord (Statfjord | 1o 1979 Norway | MG
5 | Statfjord (Brenfm.) | Statoil 1979 Norway | IMWAG
6 | Brent Shell 1976 UK MG
7 | Alwyn North Total 1987 UK MG
8 | Smorbukk South Statoll 1999 Norway | MG
9 | Snorre (SnA) Statoll 1992 Norway | MWAG
10| SnA (CFB) Statoil 1992 Norway | FAWAG
11| SnA (WFB) Statoil 1992 Norway | FAWAG
12 | South Brae Marathon 1983 UK MWAG
13 | Magnus BP 1983 UK MWAG
14 | Thistle Lundin Oil 1978 UK IMWAG
15| Gulfaks Statoll 1986 Norway | IMWAG
16 | Brage NorskHydro | 1993 Norway | IMWAG
17 | Oseberg Ost NorskHydro | 1999 Norway | IMWAG
18| Siri Statoll 1999 Denmark| SWAG
19| Ula BP 1986 Norway | MWAG
20 | Harding BP 1996 UK MG

As with other major offshore provinces, there iscoommercial scal€0,-EOR activity
in the North Sea province yetheideaof CO; flooding in this province ishowever not
absolutelynew; CO-EOR has been considered in the North Sea sir8&? (Alkemade
1995) CO-EOR however has been proposed in a number of projects such as Magnus,
Ekofisk and Forties, but principally due to unavailability of sed0f® supples its

application has been ed.

The benefit ofCO,-EOR in the North Sea is very simil@rthe Gulf of Mexicoin that,it

can extendield life, delayfield abandonmenandalsoprovide a safe storage fo€O,.

2There are more EOR projects in the North Sea than those depitiailénl1. The data depicted ifable
1.1 have been collected from open literature.
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Moreover a largefractionof producechydrocarbon gas which is now used for EOR can

be released anttiendiverted to European marketsceCO»-EOR is in place

Until recently there have been optimisticcalculationsof the CO-EOR economic
potential in the North Seaegion(Pershacet al 2012)for the UK economy A report
from ElementEnergyidentifies 19 fields apotentialanchor projects for possib@0,-
EOR activitiesin the North Sea This report estimates tHest few CQ-EOR projects
would require substantial fiscal incentive,tbater projectscould be sustained witla
modest fiscaincentive (Pershadt al 2012) CO,-EORwasalsorecognised to provide
benefis such as creating a driving force for C@&ploymenin the carbonconstrained
power generation environment envisagedthe 2020s It has beephowever foreseen
that the first CO>-EOR project in the UKwvould become operational b3020 andthe
cluster development by 203(Durusut & Pershad 2014) This is an optimistic

perspectivewhich is unlikely tobe realisedaswill be illustrated later.

A DECC pilot taskforcealsosuggestdthat CO,-EOR is the best EOR technique in the
UKCS (Garlick 2013. Another report estimates thiite governments of UK, Norway
and Denmarkould receive up to £22billion taxesjf CO,-EOR isdeployedn the North
Sea(Durusut & Pershad 2014)

However there ardactorsthatconsiderablyuestion theseptimisticviews;recentlythe
potential forCQO, flooding in the North Sed&as beersignificantly put at risk after
withdrawal of UK £1bnCCScompetitionbudget Halting CO-EOR inthe Miller field,
(which occurredlong before this decision wasannouned) was due tothe delay in

approvingthis fundwhich was required by the operator (BP)

In this atmosphere, amy companies believe th&0O,-EOR in the North Sea can only
follow a full successful CCS prograne therefore operatorspractice a wait and see
approach which may lead to decommissioningdacflities in the North Seabefore any

CO. project can commencglershadet al 2012) Once platforns and facilities are
removedtheapplication ofCO,-EORbecomes even more challengiri§igure 18 shows

the envisagedshrinkage of the field structures in the UKCS sector of the North Sea to
2020(Jayasekera & Goodyear 2002)his figure shows that the opportunity EORIis
becomingsmallereverin the North Sea and therefounegent action for implementing

CO»-EORIis required, if it is ever to take place.

3 Department of Energy and Climate Change
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2020

Figure 1.8: Facilities shrinkage in theUKCS sectorof the North Sea(Jayasekera &
Goodyear 2002)

The status of CQflooding is, however, slightly different in the Norwegian sector of the
North SeaAs with the UK, he sameconditionsprevailin the petroleum operatiain

the Norwegian sector of the North Saathat a large number of fields are incliegsy
become mature and a few of them are approaching abandofthant & Halland 201)7
Since 1982, several major Norwegian increased oil recovery programshloawaver,
beeninitiated to increase production frotine Norwegian assetdn 2003 theéNorwegian

oil and gas taskforce identified a number of technology targetkiding CQ-EORto
increase the average oil recovery to 50% and gas tofi@¥the NCS (Norwegian
Continental Shelf) including the North Séawan et al. 2008) In Norway, the CQ@
storage atlas has also been recently prepared by the Norwegian Petroleum Directorate
(Pham & Halland 201)7

Recently NPDhasperformed several Cenhanced oil recovery studiestending from
regional screening to more details studies in a few oildieldhe Norwegiansectorof
the North SeaKigure 19).
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P— "
OE ! %

Figure 1.9: Location of the studied areal; the Norwegian NortBea(Pham & Halland 2017)
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The resultseconfirmedthe existence ofgreat EOR potential for CQOnjection in the
Norwegian sector of the North Seah@m & Halland 201)7 Results of this study also
revealedthat an average 4%covery factor improvement due CO,-EOR application
with gas storage efficiency of 7AD0% is potentially achievable. In comparison with dry
gas (CH) flooding, CQ injection hasalsoshown considerably better EOR res@Rsam

& Halland 2017)

Unlike the UK, Norwayhas, howevertaken a different strategy toward GBOR and

CO; storage activities in the North Sea. Norway has been the pioneer in establishing the
CCS activitiesin the North Sea and in fact there are over 20 years of St@age
experience in the Norwayham & Halland2017). Since 1996, C&from natural gas
production on the Norwegian shelf has been captured and reinjected irdeatidul
formations. The CCS projects on the Sleipner, Gudrun and Snghvit petroleum fields are
the onlyindustrial scaleCCS projects currentlin operation in Europe and the only
projects in the offshore industri){iPD 2017.

A single report identifies six important stepsverd establishinga full CO, economy in
Norway, of which EOR is a significarapportunity.Important highlights aréhe need for
meetinglong term climate targets in a cost effectygproach ensuring future use of
natural gas, conducting GE&OR activities and finally using the curresit production
infrastructure have been recognised astheialreasons to applgCS in the Norwegian
sector of the North Sg8ellona 2017)

Unlike the UK, a important driving force fopursuingCQO, storage activities in the
Norwegian continental shelhcludingthe Norwegian North Sea is the potentalsitive

gas production outlik in Norway which is likely to remain importarforthec ount r y 0 s
economy at least ithe mediunterm (until 2020) In fact, Norway is the third largest gas
exporter in the worldNPD 2017)
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Figure 1.10: Left: UK dry natural gas consumption and production terms of TCF(USEIA
2011), Right: Historical and expected hydrocarbon production in Norwdydrwegian
PetroleumDirectorate2017).
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Figure 110 shows that whildJK gas production is declining, in Norwdlye trendis
increasingAdditionally, the Norwegian Sea has also been proven to contain significant
depositof naturalgas (NPD2017). This is in addition tgas hydrategthe next generation
natural gas resourceBhis reveals that unlike the UK, fossil fuels are likely to remain as

a fundamental source of energy and a key element for the Norwegian economy which
necessitates the application of CCS as an impogphon in Norway to offset and
stabilise the emission targets. In the UK as was mentioned, the strategy is to shit to non

fossil fuels, thus CCS may havea@nsiderablyess opportunity.

The Norwegian Government aims to construct at least onredaléCCS demonstration

facility (NPD 2017) A techro-economic feasibility study of possible demonstration
projects in Norway was completed in 2QNPD 2017). The Norwegian government has
proposed to grant 360 million Norwegian kroner for the continued plgfia fullscale

CCS demonstration facility in Norway (Norwegian Government 200l&.aim of these
activitieswas to identify at least one technically feasible CCS chain with corresponding
cost estimates. Three industrial players have completed feigsshildies of CQcapture.

Gassco has carried out a ship transport study and Statoil has completed feasibility studies
of CO;, storage at three different sites on the Norwegian Continental (BH&lf 2017).

Theresults from the feasibility studigshich werepresented in July 2016howthat it

is technically feasible testablisha CCS chain in Norway. Theorwegiangovernment
hasalsocontinued the planning of arige scale CCS project in Norwajfter conducting

FEED studies by late 2018 and with a positive final investment decision, a large scale
CCS project is likely to be operational by 2022. It is expectediih&050,the CQ
storage industry in Norway willebabouthe size of theurrent UK oil and gas industry
(NPD 2017.

1.6.40ther Offshore Provinces

RecentlyADNOC* in the United Arabic Emiratdsasinvestigated the possibility @O
flooding in the lower Zakum fieldff the UAE coast in the Persian Guth enhance the
fieldo secovery In this project CO. will be collected froma few onshore industrial
plants and will be used to replace thagrocarbon gawhich is currently used for EOR
(PennEnergy 2010, Belhajf al. 2012)

4 Abu-Dhabi National Oil Company
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Another pilotCO; flooding activity was conducted in the Rang Dong oil field offshore
Vietnam The test was a single well Huff & Pubperationwith positive results in the
absence of any reported injectivity problerfitie injectedCO, wasinitially trucked from

its sourceonshoe to the nearby port frowhere itis was sento the fieldby barge A
total of 163MT of 99.97% purit€ O, was transported to the fie{hchiyamaet al 2012,
Haet al. 2012)

CQ: flooding has also been considered for EOR in the Dulang &ett Baram Delta
operations (BDQ)offshore MalaysigZain et al 2001, Rosmaret al 2011) It was
identified thatsince MMP is higher than initial reservoir pressureiscible CO;
displacement would not be feasible at Dulang ambient reservoir conditidhg
immiscible WAG pilot testhowever wasinitiated in 2002 in block EXQ4 of this field
and since then ihas shown successful resulsbu Bakaret al 2011, Nadesowet al
2004, Zairet al. 2001)

Although thesexamplesplusCO: flooding in tre Lula field areall successfuinstances
of CO; flooding offshore none of them are consideredesmblerexample for a cluster
scaleCO»-EOR deploymenivhich isconsidered to be tHiéely arrangemenforeseerin
the North Sea ahe Gulf of Mexico,should commercial scale GEOR ever take place

in these provinces.

1.7 The Challengeof CO; Supply Offshore

The growth in the number &0 flooding projects in the United States is primarily due
to the ease of access to commercial volumes of nbtweturring CO, and alsothe
existence oéstablishegipelinefacilities aprerequisite foCO»-EOR, which is currently
unavailablein many offshore provinces includinipe North Sea Of the offshore
provincesreviewed so faronly the Lula field has established its own secQ@; supply,

this is onlyfrom its ownproducedassociated gas

Since there are no natural CO; reservesin the North Sea, carbon capture from
anthropogenic sources is expected to be the unique solistio@0O, supply with
capacities as high &/0MT/year(Pershad & Stewart 2010WWhile theoretical figures
for potential CO, supplyfrom North Seaneighbouringcountries are very encouraging,
the readily available potential is very limited he only threeavailale CO, producing

projectsin the North Seare perhaps Peterhead, Sleipner and Snghvit projects with 1.0,
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0.85 and 0.7Mt/yeaC O, production capadis respectivelyGlobal CCSnstitute2016
which at bestcould securelysupport one or two medium sized projeatshe scale of
EOR in theMagnus field In Magnus so fararound 112BCF ofiydrocarborgashave
been injectedvith ratesas high ad00MM scfd (Brodieet al. 2012. In CO; equivalent
terms this could translate toa cumulative CO; injection of around 6MTCO, with

injection rats as high a2MT/yearCO..

Similar to the Lula field, in the North SeaCO, canalso be supplied fronproduced
associated gasin fact, some fields in the North Sea hasignificantconcentration®f
CQ; in their produced fluids The Brae (35%), Toni and Sleipndields are good
examples, but their contributionyet uncertair(Fayerset al 1981, Jethwat al 2000)
Neverthelessthis metlod of CO, supply at bestcansupporta few point-to-point CO
flooding projects and notfall cluster scal€O,-EORdeploymentsimilar to the Permian

Basin.

Apart from the issues ofcO, sources, the transportation infrastructisenot readily
available forCO; transportationin the North Sea Although HC-gas transportation
infrastructurecan bepotentially converted taCO» transportatiorfacilities in the North
Sea €.g.in the Goldeneye projegtthis can only happen once the productive life of the
field has beemerminatedimplying thatCO; flooding canonly servefor storageand not

for combined EOR and storagtf EOR is expected to besamultaneousbjective then
construction of new pipelines facilitishould beessential CO; pipelines however can

utilise the sene corridor laicbutfor hydrocarborgas transportatiofMaloneet al 2014)

Figure 1.11: Existing oil and gas pipelinein the North SeaPershad & Stewart 2010)
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