ROS Theses Repository

View Item 
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  •   ROS Home
  • Mathematical & Computer Sciences
  • Doctoral Theses (Mathematical & Computer Sciences)
  • View Item
  • Admin
JavaScript is disabled for your browser. Some features of this site may not work without it.

Personal named entity linking based on simple partial tree matching and context free grammar

View/Open
BuatongkueS_0417_macs.pdf (5.890Mb)
Date
2017-04
Author
Buatongkue, Sirisuda
Metadata
Show full item record
Abstract
Personal name disambiguation is the task of linking a personal name to a unique comparable entry in the real world, also known as named entity linking (NEL). Algorithms for NEL consist of three main components: extractor, searcher, and disambiguator. Existing approaches for NEL use exact-matched look-up over the surface form to generate a set of candidate entities in each of the mentioned names. The exact-matched look-up is wholly inadequate to generate a candidate entity due to the fact that the personal names within a web page lack uniform representation. In addition, the performance of a disambiguator in ranking candidate entities is limited by context similarity. Context similarity is an inflexible feature for personal disambiguation because natural language is highly variable. We propose a new approach that can be used to both identify and disambiguate personal names mentioned on a web page. Our NEL algorithm uses: as an extractor: a control flow graph; AlchemyAPI, as a searcher: Personal Name Transformation Modules (PNTM) based on Context Free Grammar and the Jaro-Winkler text similarity metric and as a disambiguator: the entity coherence method: the Occupation Architecture for Personal Name Disambiguation (OAPnDis), personal name concepts and Simple Partial Tree Matching (SPTM). Experimental results, evaluated on real-world data sets, show that the accuracy of our NEL is 92%, which is higher than the accuracy of previously used methods.
URI
http://hdl.handle.net/10399/3265
Collections
  • Doctoral Theses (Mathematical & Computer Sciences)

Browse

All of ROSCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

ROS Administrator

Login
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
Copyright
Accessibility
Policies
Privacy & Cookies
Feedback
 
©Heriot-Watt University, Edinburgh, Scotland, UK EH14 4AS.

Maintained by the Library
Tel: +44 (0)131 451 3577
Library Email: libhelp@hw.ac.uk
ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278

  • Copyright
  • Accessibility
  • Policies
  • Privacy & Cookies
  • Feedback
Copyright
Accessibility
Policies
Privacy & Cookies
Feedback