Microwave Swing Adsorption for post-combustion CO₂ capture from flue gases using solid sorbents

Theodore Chronopoulos

A thesis submitted for the degree of Doctor of Philosophy

Heriot-Watt University
Chemical Engineering
Institute of Mechanical, Process and Energy Engineering
School of Engineering and Physical Sciences

July 2016

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information.
Abstract

In recent years, there has been an increasing global interest in carbon dioxide capture and storage (CCS) as an important technology for climate change mitigation. However, improved technologies for the CO$_2$ capture process that could possibly lead CCS to be highly competitive against the renewable energy market, are necessary. The evaluation of a CO$_2$ capture system is often driven by energy demands and in adsorption technology this energy is particularly required for the desorption step. As a result, efficient regeneration systems ensuring multiple re-use of adsorbent materials, while minimizing energy use, are required, in an attempt to replace the conventional PSA (Pressure Swing Adsorption) and TSA (Temperature Swing Adsorption) technologies.

This study presents and analyses a relatively new approach for CO$_2$ sorbent regeneration, namely Microwave Swing Adsorption (MSA). The aim of this research is to intensify the CO$_2$ desorption process from solid materials, focusing on improving the regeneration efficiency and kinetics as well as the energy spent during this step. The hypothesis that the direct absorption of energy during microwave heating by the solid adsorbent may enable a fast process with a low purge gas flow rate low desorption temperature resulting in low energy demands, is examined. However, MSA depends on numerous parameters, divided in two main categories, namely process parameters (flue gas composition, desorption temperature, moisture presence, gas flow rate) and material parameters (adsorbent shape and size, porosity, surface modifications, dielectric properties). To this regard, an extensive investigation of the above criteria and their connection with the performance of the MSA system is studied.

In terms of the adsorption step, it was found that a switch to higher total flow rates results in an increase in the CO$_2$ adsorption capacity of the GAC. Moreover, moisture presence also enhances the CO$_2$ adsorption, as a result of an increase in the total flow rate and in the adsorption temperature. With regards to the desorption step, it was shown that MSA technology leads to enhanced performance efficiency of the sorbent by ~10%, while preserving its porous structure. Moreover, the regeneration time and the energy consumption were also considerably reduced (30% and 40%, respectively), for MSA compared to TSA.
Acknowledgements

Looking back at the past three years, I had the pleasure to meet people from all over the world and take the best from their experiences and knowledge. Undertaking this PhD has been a truly life-changing experience for me and it would not have been possible to accomplish anything without the support and guidance that I received from those people. Therefore, I want to make use of this page to thank those who effectively influenced and supported my PhD journey.

Firstly, I would like to thank my first supervisor Mercedes Maroto-Valer for her continuous guidance and encouragement. Mercedes has been very supportive, not only about technical issues, but also in times when things were going bad. It was a pleasure for me to work under her guidance and I am grateful for giving me the opportunity and the freedom to undertake this project. Without her guidance and constant feedback this PhD project would not have been achievable.

I would also like to thank my second and third supervisors, David A. Reay and Raffaella Ocone for their invaluable advice, support and availability whenever needed.

Furthermore, I would like to thank the CICCS team for their support, especially with regards to technical lab issues. I also thank Prof. Adrian Porch from Cardiff University for his technical insights and advice. Moreover, I would like to thank INCAR-CSIC and Rey Juan Carlos University for providing some of the materials used in this study.

A special thanks goes to my parents for always believing in me and encouraging me to follow my dreams, being supportive when things go rough and sharing my joy during my good moments. They have taught me about hard work and self-respect, about persistence and about how to be independent and this thesis is also the result of their efforts.

Finally yet importantly, I am indebted to all the people that made my journey lighter and happier with their friendship, having to cope with me and my worries. Therefore, thanks to everyone that we shared a flat, a night out, a nice dinner and a constructive discussion through all those years. Patience is the greatest virtue.
Declaration statement

ACADEMIC REGISTRY

Research Thesis Submission

<table>
<thead>
<tr>
<th>Name:</th>
<th>Theodore Chronopoulos</th>
</tr>
</thead>
<tbody>
<tr>
<td>School/PGI:</td>
<td>School of Engineering and Physical Sciences</td>
</tr>
<tr>
<td>Version: (i.e. First, Resubmission, Final)</td>
<td>First Degree Sought (Award and Subject area) PhD in Chemical Engineering</td>
</tr>
</tbody>
</table>

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic versions submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian may require
5) I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

| Signature of Candidate: | Date: |
Submission

<table>
<thead>
<tr>
<th>Submitted By (name in capitals):</th>
<th>THEODORE CHRONOPOULOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature of Individual Submitting:</td>
<td></td>
</tr>
<tr>
<td>Date Submitted:</td>
<td></td>
</tr>
</tbody>
</table>

For Completion in the Student Service Centre (SSC)

<table>
<thead>
<tr>
<th>Received in the SSC by (name in capitals):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Submission</td>
<td></td>
</tr>
<tr>
<td>(Handed in to SSC; posted through internal/external mail):</td>
<td></td>
</tr>
<tr>
<td>E-thesis Submitted</td>
<td></td>
</tr>
<tr>
<td>(mandatory for final theses)</td>
<td></td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Abstract ... i
Acknowledgements .. ii
Declaration statement ... iii
Table of Contents .. v
List of Tables ... ix
List of Figures ... x
Nomenclature ... xvii
List of Publications .. xxiii

Chapter 1 – Introduction ... 1
1.1. Energy trilemma .. 1
1.2. Progress and costs of CCS ... 6
1.3. Challenges in CO₂ capture .. 9
1.4. Aim and objectives ... 10
1.5. Methodology .. 11
1.6. Thesis structure ... 14
References ... 15

Chapter 2 – Literature review ... 18
2.1. Carbon Capture and Storage (CCS) ... 18
2.1.1. CO₂ capture technologies ... 21
2.1.2. Post-combustion CO₂ Capture retrofit options ... 26
2.1.2.1. Pulverized Coal (PC) power plants ... 26
2.1.2.2. Natural Gas Combined Cycle (NGCC) power plants .. 27
2.1.3. Post-combustion separation technologies ... 28
2.1.4. Solid sorbents and selection criteria ... 32
2.1.5. Cyclic adsorption processes ... 34
2.1.6. Challenges in post-combustion CO₂ capture ... 37
2.2. Microwave Swing Adsorption (MSA) ... 38
2.2.1. Process intensification and microwave technology .. 38
2.2.2. Microwave heating process .. 40
2.2.3. Microwave heating mechanisms ... 42
2.2.4. Dielectric heating .. 42
2.2.5. Dielectric constant, loss factor ... 44
2.2.6. Penetration depth and heating uniformity ..46
2.2.7. Factors Affecting Dielectric Properties ..49
 2.2.7.1 Effect of temperature ...50
 2.2.7.2 Effect of moisture ..50
2.2.8. Basic microwave equipment ..51
2.2.9. Microwave swing Adsorption (MSA) ...53
2.3. Summary ..59
References ...61

Chapter 3: Experimental methodology ..75
3.1. Key principles for designing the MSA system75
 3.1.1. Adsorption step principles ...75
 3.1.2. Regeneration step principles ..77
 3.1.3. MSA design principles and equipment78
3.2. MSA equipment ..79
 3.2.1. Reactor design ..80
 3.2.2. Microwave cavity ...81
 3.2.3. Temperature monitoring ..85
 3.2.3.1. Infrared radiation ...87
 3.2.3.2. Emissivity factor ...89
 3.2.3.3. Infrared pyrometer sensing head90
 3.2.4. Time-of-Flight Mass Spectrometer (TOF-MS)91
 3.2.5. Flow controllers ...93
3.3. Analytical characterisation techniques ..95
 3.3.1. Thermogravimetric analysis (TGA) ..95
 3.3.2. BET surface area and DFT pore size analysis96
 3.3.3. Elemental analysis ...100
 3.3.4. Dielectric properties ...100
3.4. MSA/TSA process ..103
3.5. Sorbent materials and experimental nomenclature106
 3.5.1. Solid sorbents ..106
 3.5.2. Experimental nomenclature ..107
3.6. Fixed-bed dynamic adsorption/desorption experiments108
References ...115

Chapter 4 – Process parameters in MSA/TSA119
4.1. Characterisation of GAC .. 119
4.2. CO\textsubscript{2} adsorption studies .. 122
 4.2.1. Effect of CO\textsubscript{2} concentration in the CO\textsubscript{2}/N\textsubscript{2} binary mixture 123
 4.2.2. Effect of total flow rate .. 126
 4.2.3. Effect of moisture content .. 129
4.3. Comparison of MSA/TSA heating rates 131
4.4. CO\textsubscript{2} Desorption studies ... 134
 4.4.1. Desorption profiles .. 135
 4.4.2. Regeneration efficiency ... 142
 4.4.3. Desorption kinetics ... 148
 4.4.4. Energy consumption ... 157
4.5. Temperature Distribution .. 163
4.6. GAC cyclic process and strength ... 165
4.7. Conclusions .. 168
References ... 172

Chapter 5 – Material parameters in MSA/TSA 177
5.1. Materials Characterisation ... 178
 5.1.1. Textural and chemical properties .. 180
 5.1.2. Dielectric properties ... 183
5.2. GKAS & GKAS-N800 ... 186
 5.2.1. Adsorption .. 188
 5.2.2. Desorption .. 190
 5.2.2.1. Desorption profiles ... 190
 5.2.2.2. Regeneration efficiency ... 194
 5.2.2.3. Desorption kinetics ... 196
 5.2.2.4. Energy consumption .. 198
 5.2.3. Conclusions for GKAS and GKAS-N 200
5.3. Desotec Organosorb ... 201
 5.3.1. Adsorption .. 202
 5.3.2. Desorption .. 205
 5.3.2.1. Desorption profiles ... 205
 5.3.2.2. Regeneration efficiency ... 207
 5.3.2.3. Desorption kinetics ... 210
 5.3.2.4. Energy consumption .. 212
List of Tables

Table 2.1: Advantages and disadvantages of the different CO₂ capture technologies...24
Table 2.2: Cost comparison for different capture processes (IEA, 2006). Costs include CO₂ compression to 110 bar but excluding storage and transportation costs25
Table 2.3: Advantages and disadvantages of different gas separation technologies32
Table 2.4: Dielectric properties of selected materials, in various states, at 2.45GHz (Hashisho, 2007 and Menéndez et al., 2009) ..46
Table 3.1: Emissivity factor of some specific materials at 25°C and 1 bar (Scigiene Corp., ‘Infrared Thermometer Emissivity tables’)...90
Table 4.1: Textural, chemical and dielectric properties of parent GAC120
Table 4.2: CO₂ adsorbed from GAC for various conditions122
Table 4.3: Textural, chemical and dielectric properties of parent and reused (25 MSA or TSA cycles) GAC ..166
Table 5.1: Solid sorbents selected for study in Chapter 5177
Table 5.2: Chemical analysis and textural characterisation of the samples182
Table 5.3: Dielectric properties of the sorbents used in this research. GAC CH/MW: Samples that have undergone 25 TSA/MSA cycles, respectively, GKAS (CH)/(MW): GKAS samples that have undergone 4 TSA/MSA cycles, respectively, GKAS-N (CH)/(MW): GKAS-N samples that have undergone 4 TSA/MSA cycles, respectively, Df₀: change in resonant frequency, Df₈: change in unloaded 3dB bandwidth, ε′: relative permittivity, ε″: loss factor, D_p: penetration depth ...184
Table 5.4: Results obtained from TSA experiments using SBA TEPA under dry and wet feed gas conditions ..218
Table A.1: Average masses of the samples of each material241
List of Figures

Figure 1.1: World Energy Trilemma (World Energy Council, 2013) 1

Figure 1.2: Largest producers of energy-related carbon dioxide emissions in 2014, based on their share of global energy-related CO₂ emissions .. 4

Figure 1.3: Cost impacts of adding CCS to a power station for a supercritical post-combustion plant (Global CCS Institute and WorleyParsons, 2011) 7

Figure 1.4: Costs of CO₂ avoided - Note: For all technologies except gas-fired CCS plants, the amount of CO₂ avoided is relative to the emissions of a supercritical pulverised coal plant. For gas-fired CCS, the reference plant is an unabated combined cycle plant (Global CCS Institute and WorleyParsons, 2011) .. 8

Figure 2.1: Investment risk curve of individual CCS technologies (©SBC Energy Institute) .. 20

Figure 2.2: CCS large projects deployment forecast, 2012-2017 (©SBC Energy Institute analysis, based on Bloomberg New Energy Finance database, March 2012) 21

Figure 2.3: CO₂ capture technologies (Leung et al., 2014) .. 23

Figure 2.4: Electricity generation in a PC power plant ... 26

Figure 2.5: Electricity generation in a NGCC power plant ... 27

Figure 2.6: Options for post-combustion separation technologies (Wang et al., 2011) 28

Figure 2.7: Comparison of TSA and PSA for the regeneration of solid adsorbents (Rackley, 2009) ... 36

Figure 2.8: The electromagnetic spectrum and corresponding wavelengths (Jewett, 1994) .. 41

Figure 2.9: Microwave interactions with different types of materials: (A) conductive material, (B) insulating material, and (C) absorbing material (Durka et al., 2009) 41

Figure 2.10: Polarization mechanisms at various frequencies (von Hippel, 1954) 44

Figure 2.11: Variation of effective loss factor with moisture content (Metaxas and Meredith, 1983) .. 51

Figure 2.12: Multimode microwave applicator (Stefanidis et al., 2014) 52

Figure 2.13: Monomode microwave applicator (Stefanidis et al., 2014) 53
Figure 3.1: Photo of the glass reactor used for the experimental work during MSA and TSA processes... 80

Figure 3.2: Schematic representation of the glass reactor, depicting the inlet/outlet, the fluid flow and the position of the sample... 81

Figure 3.3: The multimode microwave system; the stainless steel cavity on the left and the Eurotherm 3504 controller on the right... 82

Figure 3.4: Photo of the microwave chamber/port that allows the reactor to penetrate into the cavity.. 83

Figure 3.5: Time needed to heat a 500ml beaker filled with water at different positions inside the microwave cavity.. 84

Figure 3.6: Photo of the IRP, assembled to the PID controller. The sensor head can be seen on the right.. 87

Figure 3.7: Photo of the zinc selenide window (ZnSe).. 88

Figure 3.8: ZnSe Transmittance % versus wavelength for 5 different thicknesses 89

Figure 3.9: D:S ratio for the selected IRP for this research ... 91

Figure 3.10: TOF-MS ions analysis: the red and green ions start simultaneously from the accelerator, but reach the detector in different times .. 92

Figure 3.11: Schematic of a Coriolis flow sensor .. 94

Figure 3.12: The Coriflow TM-13 and the TOF-MS .. 94

Figure 3.13: IUPAC classification of adsorption isotherms ... 97

Figure 3.14: The Gemini instrument used for the BET and DFT analysis 99

Figure 3.15: The TM cavity geometry ... 101

Figure 3.16: The blank measurement ... 102

Figure 3.17: Complete layout of the dielectric properties measurement equipment ... 103

Figure 3.19: Photo of the experimental rig ... 105
Figure 3.20: Analysis of the area calculated for the adsorption step 110
Figure 3.21: Calculation of the sub-area B using the trapezoidal model for integration .. 111
Figure 3.22: Example of a blank experiment during the adsorption step using 40% (vol.) CO\textsubscript{2} and 100ml/min (balance N\textsubscript{2}) .. 112
Figure 3.23: Calculation of the area under the desorption curve, \(AD\), using the trapezoidal model for integration ... 113
Figure 3.24: Example of a blank experiment during the desorption step using 40% (vol.) CO\textsubscript{2} and 100ml/min (balance N\textsubscript{2}) .. 114
Figure 4.1: TGA CO\textsubscript{2} adsorption/desorption test using the parent GAC at 35°C 120
Figure 4.2: \(N_2\) adsorption/desorption isotherm of the granular AC 121
Figure 4.3: Difference in resonant frequency and transmitted power for the parent GAC at 2.45GHz .. 122
Figure 4.4: Amount of CO\textsubscript{2} adsorbed onto the GAC from a 40/60 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, for 4 different parameters .. 124
Figure 4.5: Breakthrough curves obtained from a 40/60 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, comparing flow rates and dry/wet gas conditions .. 125
Figure 4.6: Amount of CO\textsubscript{2} adsorbed onto the GAC from a 15/85 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, for 4 different parameters .. 127
Figure 4.7: Breakthrough curves obtained from a 15/85 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, comparing flow rates and dry/wet gas conditions .. 128
Figure 4.8: Amount of CO\textsubscript{2} adsorbed onto the GAC from a 5/95 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, for 4 different parameters .. 130
Figure 4.9: Breakthrough curves obtained from a 5/95 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, comparing flow rates and dry/wet gas conditions .. 130
Figure 4.10: Heating rates process comparison of MW and CH for 70°C 131
Figure 4.11: Heating rates process comparison of MW and CH for 130°C 132
Figure 4.12: Heating rates for MW at 70°C and 130°C ... 133
Figure 4.13a-d: Time dependent CO₂ outlet concentration profiles during GAC regeneration at 70°C and 130°C via MSA and TSA .. 137

Figure 4.14a-d: Time dependent CO₂ outlet concentration profiles during AC regeneration at 70°C and 130°C via MSA and TSA .. 139

Figure 4.15a-d: Time dependent CO₂ outlet concentration profiles during AC regeneration at 70°C and 130°C via MSA and TSA .. 141

Figure 4.16: ([CO₂]ₐ =40%) Comparison of the regeneration efficiency for MSA and TSA at 70°C .. 144

Figure 4.17: ([CO₂]ₐ =40%) Comparison of the regeneration efficiency for MSA and TSA at 130°C .. 144

Figure 4.18: ([CO₂]ₐ =15%) Comparison of the regeneration efficiency for MSA and TSA at 70°C .. 145

Figure 4.19: ([CO₂]ₐ =15%) Comparison of the regeneration efficiency for MSA and TSA at 130°C .. 146

Figure 4.20: ([CO₂]ₐ =5%) Comparison of the regeneration efficiency for MSA and TSA at 70°C .. 147

Figure 4.21: ([CO₂]ₐ =5%) Comparison of the regeneration efficiency for MSA and TSA at 130°C .. 148

Figure 4.22: Desorption time % decrease for [CO₂]ₐ =40% at 70°C 150

Figure 4.23: Desorption time % decrease for [CO₂]ₐ =40% at 130°C 150

Figure 4.24: Comparison of tₗ₀ for MSA and TSA when heating at 70°C for [CO₂]ₐ = 40% .. 152

Figure 4.25: Comparison of tₗ₀ for MSA and TSA when heating at 130°C for [CO₂]ₐ = 40% .. 152

Figure 4.26: Desorption time % decrease for [CO₂]ₐ =15% at 70°C 153

Figure 4.27: Desorption time % decrease for [CO₂]ₐ =15% at 130°C 154

Figure 4.28: Comparison of tₗ₀ for MSA and TSA when heating at 70°C for [CO₂]ₐ = 15% .. 154

Figure 4.29: Comparison of tₗ₀ for MSA and TSA when heating at 130°C for [CO₂]ₐ = 15% .. 155
Figure 4.30: Comparison of t_{70} for MSA and TSA when heating at 70°C for $[CO_2]_{in} = 5\%$.. 156

Figure 4.31: Comparison of t_{70} for MSA and TSA when heating at 130°C for $[CO_2]_{in} = 5\%$.. 156

Figure 4.32: Energy consumption during GAC regeneration at 70°C for $[CO_2]_{in} = 40\%$.. 158

Figure 4.33: Energy consumption during GAC regeneration at 130°C for $[CO_2]_{in} = 40\%$.. 159

Figure 4.34: Energy consumption during GAC regeneration at 70°C for $[CO_2]_{in} = 15\%$.. 160

Figure 4.35: Energy consumption during GAC regeneration at 130°C for $[CO_2]_{in} = 15\%$.. 160

Figure 4.36: Energy consumption during GAC regeneration at 70°C for $[CO_2]_{in} = 5\%$.. 161

Figure 4.37: Energy consumption during GAC regeneration at 130°C for $[CO_2]_{in} = 5\%$.. 161

Figure 4.38: Heat map of the GAC bed when heated at 70°C with MSA 165

Figure 4.39: Heat map of the GAC bed when heated at 130°C with MSA 165

Figure 4.40: CO$_2$ adsorption capacity (% wt.) of GAC after consecutive adsorption/desorption cycles via MSA and TSA .. 167

Figure 5.1: Heating Efficiency (%) per mg of sorbent. The carbon based materials are highlighted in dark blue, whereas the lithium based silicas are in light blue......... 185

Figure 5.2: NH$_3$ molecular geometry ... 186

Figure 5.3: Breakthrough curves obtained from a 15/85 CO$_2$/N$_2$ binary mixture at 25°C and 1bar, comparing GKAS and GKAS-N at dry and wet gas conditions 189

Figure 5.4: Amount of CO$_2$ adsorbed onto the GKAS and GKAS-N from a 15/85 CO$_2$/N$_2$ binary mixture at 25°C and 1bar, for dry and wet gas conditions 190

Figure 5.5: Time dependent CO$_2$ outlet concentration profiles during GKAS regeneration at 70°C and 130°C for dry gas conditions via MSA and TSA 191
Figure 5.6: Time dependent CO\textsubscript{2} outlet concentration profiles during GKAS regeneration at 70°C and 130°C for wet gas conditions via MSA and TSA 191

Figure 5.7: Heating rates of GKAS for MW and CH at 70°C and 130°C 192

Figure 5.8: Time dependent CO\textsubscript{2} outlet concentration profiles during GKAS-N regeneration at 70°C and 130°C for dry gas conditions via MSA and TSA 193

Figure 5.9: Time dependent CO\textsubscript{2} outlet concentration profiles during GKAS-N regeneration at 70°C and 130°C for wet gas conditions via MSA and TSA 194

Figure 5.10: Comparison of the regeneration efficiency of GKAS for MSA and TSA at 70°C and 130°C at dry/wet gas conditions ... 195

Figure 5.11: Comparison of the regeneration efficiency of GKAS-N for MSA and TSA at 70°C and 130°C at dry/wet gas conditions ... 196

Figure 5.12: Comparison of t\textsubscript{70} for MSA and TSA using GKAS when heating at 70°C for dry/wet gas conditions ... 197

Figure 5.13: Comparison of t\textsubscript{70} for MSA and TSA using GKAS-N when heating at 70°C for dry/wet gas conditions ... 198

Figure 5.14: Energy consumption during GKAS regeneration at 70°C and 130°C for dry/wet gas conditions ... 199

Figure 5.15: Energy consumption during GKAS-N regeneration at 70°C and 130°C for dry/wet gas conditions ... 200

Figure 5.16: Breakthrough curves obtained from a 15/85 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, comparing Org and OrgP at dry and wet gas conditions 203

Figure 5.17: Amount of CO\textsubscript{2} adsorbed onto the Org and OrgP from a 15/85 CO\textsubscript{2}/N\textsubscript{2} binary mixture at 25°C and 1bar, for dry and wet gas conditions ... 204

Figure 5.18: Time dependent CO\textsubscript{2} outlet concentration profiles during Org regeneration at 70°C and 130°C for dry gas conditions via MSA and TSA ... 206

Figure 5.19: Time dependent CO\textsubscript{2} outlet concentration profiles during Org regeneration at 70°C and 130°C for wet gas conditions via MSA and TSA ... 206

Figure 5.20: Time dependent CO\textsubscript{2} outlet concentration profiles during OrgP regeneration at 70°C and 130°C for dry gas conditions via MSA and TSA 207
Figure 5.21: Time dependent CO$_2$ outlet concentration profiles during OrgP regeneration at 70°C and 130°C for wet gas conditions via MSA and TSA .. 207

Figure 5.22: Comparison of the regeneration efficiency of Org for MSA and TSA at 70°C and 130°C at dry/wet gas conditions .. 209

Figure 5.23: Comparison of the regeneration efficiency of OrgP for MSA and TSA at 70°C and 130°C at dry/wet gas conditions .. 210

Figure 5.24: Comparison of t_{70} for MSA and TSA using Org when heating at 70°C for dry/wet gas conditions .. 211

Figure 5.25: Comparison of t_{70} for MSA and TSA using OrgP when heating at 70°C for dry/wet gas conditions .. 212

Figure 5.26: Energy consumption during Org regeneration at 70°C and 130°C for dry/wet gas conditions .. 213

Figure 5.27: Energy consumption during OrgP regeneration at 70°C and 130°C for dry/wet gas conditions .. 213

Figure 5.28: Heat map of the Org bed when heated with MSA at (a) 70°C and (b) 130°C ... 215

Figure 5.29: Heat map of the OrgP bed when heated with MSA at (a) 70°C and (b) 130°C ... 215

Figure 5.30: Time dependent CO$_2$ outlet concentration profiles during SBA TEPA regeneration at 70°C for dry/wet gas conditions TSA .. 219

Figure 5.31: Heating rates process comparison of MW and CH for 70° 220

Figure A.1: Contribution to the resonant bandwidth (in MHz) for all 18 samples 240

Figure A.2: Frequency shift (in MHz) for all of the samples .. 240
Nomenclature

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-amino-2-methyl-1-propanol</td>
<td>AMP</td>
</tr>
<tr>
<td>Air Separation Unit</td>
<td>ASU</td>
</tr>
<tr>
<td>Brunauer, Deming, Deming and Teller</td>
<td>BDDT</td>
</tr>
<tr>
<td>Brunauer, Emmett and Teller</td>
<td>BET</td>
</tr>
<tr>
<td>Capital costs</td>
<td>CAPEX</td>
</tr>
<tr>
<td>Carbon Capture and Storage</td>
<td>CCS</td>
</tr>
<tr>
<td>Carbon Hydrogen Nitrogen analysis</td>
<td>CHN</td>
</tr>
<tr>
<td>Conventional heating</td>
<td>CH</td>
</tr>
<tr>
<td>Cost of Electricity</td>
<td>COE</td>
</tr>
<tr>
<td>Density Functional Theory</td>
<td>DFT</td>
</tr>
<tr>
<td>Department of Energy</td>
<td>DOE</td>
</tr>
<tr>
<td>Diethanolamine</td>
<td>DEA</td>
</tr>
<tr>
<td>Diglycol-amine</td>
<td>DGA</td>
</tr>
<tr>
<td>Dubinin Radushkevich method</td>
<td>DR</td>
</tr>
<tr>
<td>Energy Information Agency</td>
<td>EIA</td>
</tr>
<tr>
<td>Engineering and Physical Sciences</td>
<td>EPS</td>
</tr>
<tr>
<td>Enhanced Oil Recovery</td>
<td>EOR</td>
</tr>
<tr>
<td>Environmental Non-Government Organisation</td>
<td>ENGO</td>
</tr>
<tr>
<td>Equilibrium zone</td>
<td>EZ</td>
</tr>
<tr>
<td>European Union</td>
<td>EU</td>
</tr>
<tr>
<td>Focused Ion Beam</td>
<td>FIB</td>
</tr>
<tr>
<td>Forward Looking Infrared</td>
<td>FLIR</td>
</tr>
<tr>
<td>Global CCS Institute</td>
<td>GCCSI</td>
</tr>
<tr>
<td>Granular Activated Carbon</td>
<td>GAC</td>
</tr>
<tr>
<td>Greenhouse Gases</td>
<td>GHG</td>
</tr>
<tr>
<td>Heat Recovery Steam Generator</td>
<td>HRSG</td>
</tr>
<tr>
<td>Infrared optical pyrometer</td>
<td>IRP</td>
</tr>
<tr>
<td>Infrared</td>
<td>IR</td>
</tr>
<tr>
<td>Instituto Nacional del Carbón</td>
<td>INCAR</td>
</tr>
<tr>
<td>Integrated Coal Gasification Combined Cycle</td>
<td>IGCC</td>
</tr>
<tr>
<td>Intergovernmental Panel of Climate Change</td>
<td>IPCC</td>
</tr>
<tr>
<td>International Energy Agency</td>
<td>IEA</td>
</tr>
</tbody>
</table>
Kawasaki CO₂ Capture system KCC
Levelised COE LCOE
Mass transfer zone MTZ
Metal Organic Framework MOF
Methyl-ethyl-ketone MEK
Microwave heating MW
Microwave Swing Adsorption MSA
Monoethanolamine MEA
National Energy Technology Laboratory NETL
N-methyldiethanolamine MDEA
Operational costs OPEX
Organisation for Economic Co-operation and Development OECD
Photovoltaics PV
Powdered Activated Carbon PAC
Pressure Swing Adsorption PSA
Process intensification PI
Proportional Integral Derivative PID
Pulverized coal PC
Quality factor Q-factor
Scottish Carbon Capture and Storage SCCS
Temperature Swing Adsorption TSA
Tetraethylenepentamine TEPA
Thermo-gravimetric analysis TGA
Time-of-Flight Mass Spectrometer TOF-MS
United Nations Development Programme UNDP
United States Environmental Protection Agency US EPA
Vacuum Pressure Swing Adsorption VPSA
Volatile Organic Compounds VOC

Latin characters

Ambient temperature \(T_{\text{amb}} \)
Arrhenius pre-exponential factor \(A \)
Average microwave absorbed power \(P_{\text{abs}} \)
Bandwidth \(f_B \)
Bed diameter \(d_b \)
Bed height \(h_b\)
Bed length to diameter ratio \(L/d_b\)
Bed volume \(V_b\)
BET surface area \(S_{\text{BET}}\)
Boltzman’s constant \(k_B\)
Breakthrough time \(t_b\)
Change in bandwidth \(\Delta f_B\)
Change in resonant frequency \(\Delta f_0\)
Colburn-Chilton j-Factor \(j_d\)
Concentration of CO\(_2\) entering the reactor \(C_{\text{CO}_2}^{\text{in}}\)
Concentration of CO\(_2\) leaving the reactor \(C_{\text{CO}_2}^{\text{out}}\)
Concentration of N\(_2\) entering the reactor \(C_{N_2}^{\text{in}}\)
Concentration of N\(_2\) leaving the reactor \(C_{N_2}^{\text{out}}\)
Concentration of the adsorbed species \(N\)
Desorption activation energy \(E_A^{\text{des}}\)
Desorption efficiency \(n_{\text{des}}\)
Desorption temperature \(T_{\text{des}}\)
Diffusion coefficient of A to B \(D_{AB}\)
Distance from front of the sensing head to the object \(D\)
Effective cavity volume \(V_{\text{eff}}\)
Effective particle diameter \(d_p\)
Energy consumed for 70% desorption at 130°C \(E_{70}^{130^\circ\text{C}}\)
Energy consumed for 70% desorption at 70°C \(E_{70}^{70^\circ\text{C}}\)
Energy consumed for 70% desorption \(E_{70}\)
Enthalpy of adsorption of the gas on the solid \(H_a\)
Equilibrium CO\(_2\) adsorbed amount \(q_{\text{eq}}\)
Flight-times \(t_{fl}\)
Fluid superficial linear velocity \(u\)
Frequency \(f\)
Gravitational constant \(g_c\)
Heat produced on forming the second and higher layers \(H_L\)
Henry’s adsorption constant \(K_H\)
Ideal gas constant \(R\)
Inner diameter of the reactor \(D_r \)
Kinetic energy \(E_{\text{kin}} \)
Length of the drift \(l_{\text{dr}} \)
Length of the reactor \(l_r \)
Light velocity \(c \)
Magnitude of the internal electric field \(|E| \)
Mass of each ion \(m_i \)
Mass of the adsorbent \(m_{\text{ads}} \)
Mass transfer coefficient \(k \)
Mass \(m \)
Monolayer volume \(V_m \)
Outside diameter of the reactor \(D_{\text{OD}} \)
Packed bed diameter \(d_b \)
Partial pressure of the adsorbate \(P_x \)
Penetration depth \(D_p \)
Pressure drop \(\Delta P \)
Pressure \(P \)
Radius of the dipole \(r \)
Rate constant for the desorption process \(k_{\text{des}} \)
Rate of desorption of an adsorbate \(R_{\text{des}} \)
Resonant frequency \(f_0 \)
Reynolds number \(Re \)
Sample volume \(V_s \)
Saturated pressure of adsorbing gas \(P^0 \)
Schmidt number \(Sc \)
Spot size \(S \)
Strength of the electric field of microwaves \(|E| \)
Strength of the magnetic field of microwaves \(|H| \)
Surface coverage \(X \)
Temperature at depth \(T_z \)
Temperature at the starting point of the slab \(T_0 \)
Temperature difference \(\Delta T \)
Temperature \(T \)
Theoretical radiation \(B_\lambda \)
Thermal conductivity C_p
Thermal energy P_{th}
Time for 70% of total CO$_2$ desorbed t_{70}
Time required to complete the desorption process $t^{0.5}$
Time t
Total bed volume V_t
Total pore volume V_p
Total specific amount of CO$_2$ desorbed q_{des}
Total volumetric flow rate F_{tot}
Velocity u
Void volume V_{void}
Volume of gas adsorbed V

Greek characters
Angular frequency ω
Apparent bed density ρ_{ap}
Bed density ρ_b
Bed void fraction ϵ_B
CO$_2$ density ρ_{CO_2}
Dielectric constant value ε_i
Dynamic viscosity μ_d
Effective dielectric constant ε_{eff}
Electrical conductivity σ_el
Fluid density ρ
High frequency constant ε'_∞
Location parameter μ
Loss angle δ
Magnetic permeability in vacuum μ_0
Particle density ρ_{ads}
Permittivity in vacuum ε_0
Relative dielectric loss factor ε''
Relative magnetic loss μ''_0
Relative permittivity ε'_r
Relaxation time τ
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale parameter</td>
<td>σ</td>
</tr>
<tr>
<td>Void fraction</td>
<td>ε</td>
</tr>
<tr>
<td>Wavelength</td>
<td>λ</td>
</tr>
</tbody>
</table>
List of Publications

Publications in Reviewed Journals

Conferences

Awards

Best Poster award, as voted by Research Fellows/Associates and PhD students, ‘Process Intensification of CO₂ Capture towards a more Sustainable CCS Technology’, 1st Year Institute of Mechanical, Process and Energy Engineering (IMPEE) conference, 2014
Chapter 1 – Introduction

1.1. Energy trilemma

The World Energy Council’s definition of energy sustainability is based on three core dimensions – energy security, energy equity, and environmental sustainability (World Energy Council, 2013). In other words, creating a policy framework that could simultaneously provide secure, affordable, and environmentally sustainable energy, contributing to a continuously feasible energy system, is one of the most important challenges that societies face these days. This tri-polar challenge is also known as the ‘energy trilemma’ (Figure 1.1). In philosophy, a trilemma is a choice between three unfavourable options, whereas in economics it is also known as the ‘impossible trinity’ - a trade-off between three goals, in which two are pursued at the expense of the third. However, the energy trilemma appears to be different: meeting it requires achieving all three goals, while staying within the boundaries of each particular vector.

Each of the triangle edges of the trilemma is critical to the social and economic expansion of a country. However, perspectives on urgency of the three vectors of energy trilemma vary across countries, especially when comparing developed and developing economies. While energy security is prioritised to a great extent by many countries, as it is critical to fuelling economic growth, there is more inconsistency when
it comes to energy access and affordability – the energy equity vector – and even worse for the environmental sustainability vector.

Environmental sustainability is the word that is mostly used in today’s world and is based on a very simple principle, according to the United States Environmental Protection Agency (US EPA): ‘Everything that we need for our survival and well-being depends, either directly or indirectly, on our natural environment’. Sustainability creates and maintains the conditions under which humans and nature can exist in productive harmony, that permit fulfilling the social, economic and other requirements of present and future generations. It is important to make sure that we have and will continue to have water, energy, materials, and resources to protect human health in parallel with environmental preservation.

However, energy security, economic development and environmental preservation are uncertain nowadays as evolution of economies is firmly associated with energy demand; when the future of global energy markets is discussed, two main concerns feature regularly, with the first one being climate change. The other is the question whether the world has enough energy resources to fuel continued economic growth and industrialisation, especially in the economies that are not members of the Organisation for Economic Co-operation and Development (OECD) (Rühl et al., 2012). Fossil fuels are still the prevalent energy resource by being responsible for 82% of the total energy demand and over 90% of energy-related emissions are CO₂ from fossil-fuel combustion, while energy consumption is predicted to increase rapidly by 2030 (EIA, 2015). Coal is presently the world’s primary fossil fuel for generating electrical power - 40% coal, compared to 30% natural gas, 19% nuclear and 11% renewable sources - and, being more abundant and currently less expensive than oil or natural gas, is expected to continue its dominance well into the future (IEA, 2015). Moreover, coal is more carbon intensive than natural gas and oil, namely 91.50gCO₂-eq/MJth in contrast to 68.20gCO₂-eq/MJth and 73gCO₂-eq/MJth respectively (Dowlatabadi and Hanova, 2007), and consequently, coal-fired power plants are large point source emitters of CO₂. Therefore, the global economic development is responsible for various environmental issues with atmospheric pollution and climate change being the most important and urgent ones.
It is apparent that, sustainable energy technologies can contribute to address the energy trilemma, controlling climate change and protecting provision of the increased energy demand only if significant decisions are taken, as reported by Committee on Climate Change (2013). The report includes five important solutions:

- Decarbonisation of the power sector;
- Reduction of emissions from buildings;
- Forest preservation;
- Reduction of emissions from industry;
- Reduction of transport emissions.

Nowadays, developing countries, especially in Asia, are facing a major concern, regarding the above steps: they have to cope with the adverse impacts of climate change and consider whether they should take action to mitigate the risk of more extreme impacts in the future while at the same time reduce social and energy poverty. Traditionally, fast developing and emerging nations have struggled to cultivate an environmentally sensitive perspective as they focus on improving their economic growth and their populations’ access to energy (World energy council, 2013). For example, statistics from the International Energy Agency (IEA 2007) and the United Nations Development Programme (UNDP 2007/2008) indicate that there are still roughly 2.5 billion people who rely heavily on traditional cooking fuels, and around 1.6 billion who have no access to electricity in developing countries (IEA 2007, UNDP 2007/2008). However, economic growth as well as improved living standards, are critically linked with the availability of state-of-the-art energy provision. Increasing energy demand can only be met by the use of fossil fuels in the developing countries, so far, leading to increasing trends of overall CO₂ emissions.

One example supporting the above statement is China, which, according to IEA (2013), has outdistanced the European Union (EU) for the first time with regards to emissions per capita in 2013. The report states that if pollution rates progress at the same pace, the limit for atmospheric CO₂ will be reached in no more than 30 years. It is remarkable that the world’s most populous country and second largest economy is now producing a greater amount of CO₂ than both the EU and US, where the first and second industrial revolution took place. Figure 1.2 shows the emissions share in 2013, proving that China
(24%), USA (14%), EU (10%), and India (6%) possess the largest share with regards to CO₂ emissions, meaning that the top four polluters are responsible for 54% of the global pollution map. In addition, CO₂ emissions, excluding OECD and China, increased by approximately 290 Mt in 2014, mostly due to an increased use of coal for power generation in Southeast Asia and India (IEA, 2015). India’s emissions increased by 5.1% between 2012 and 2013, while China and the US were up 4.2% and 2.9%, respectively.

On the other hand, the 28-nation EU managed to slash emissions by 1.8% between 2010 and 2012, mostly because of the introduction of renewable energy technology. These trends suggest that India will be following China in due time, also out-polluting the EU; specifically, it is estimated that coal-fired power plants capacity is going to grow by 35% in the next 10 years, with the highest increase rate to be recorded in India - from 95,000 MW to 294,000 MW - which will result in a rise of CO₂ emissions of 955 Mtpa (million tons per annum) – and overall in Asia from 918,000 MW in 2011 to 1,464,000 MW in 2020 (Mcilvaine company, 2012). It becomes clear that, the relationship between economic growth and emissions growth remains strong across most emerging and developing countries, as these countries are in the energy-intensive process of building up their capital stock. Consequently, even if the US and Europe were to cut
CO₂ emissions by far more than the targeted 20%, the total CO₂ increase from developing countries will offset it by a wide margin.

However, according to the Global CCS Institute (GCCSI, 2015), an agreement between China and the US was reached recently with regards to limiting greenhouse gases, binding China to introduce a cap-and-trade system for its polluting industries. The program will commence in 2017 and will set annual emission limits to specific industries. According to this cap-and-trade system, industries that surpass the pre-agreed limits will need to purchase credits from firms that pollute less. As a result, China, will be expected to commit to prioritizing low-carbon and efficient electricity production technologies. This deal is predicted to put pressure on India in terms of implementing low-carbon technologies as well.

Furthermore, following COP-21 Paris climate summit agreement, representatives of both international governments and business leaders in the private sector announced commitments and partnerships to achieve a major increase in investments for research and development in low-carbon technologies and ways to speed up their diffusion in developing countries. The importance of this commitment lies behind one of the most surprising outcomes of the agreement, namely the aim of limiting warming to 1.5°C (Article 2).

To this end, it is apparent that the benefits from accelerating the commercial implementation of Carbon Capture and Storage (CCS) can potentially be very large, especially in the short-term (20-50 years). Large scale CO₂ capture is most efficient for industries that create large quantities of CO₂, both in terms of flow-rates and concentration in the exhaust stream, such as large electricity generation power plants that utilise fossil fuels or biomass. In addition, considering that >25% of the current global CO₂ emissions – which rises up to 50% in the developing countries (IPCC, 2014) – derives from large industrial sources (iron and steel, cement, aluminium, chemicals production and refineries), it is crucial to examine the potential of commencing commercialisation of CCS to those sources (SCCS, 2014). The Boundary Dam project in Canada – being in operation from October 2014 - (developed by SaskPower) can show the road forward to the development of CCS globally.
Another factor that supports advancement of CCS is the abundance of fossil fuel reserves; it is believed that the most significant effect of a successful implementation of CCS will possibly be that Greenhouse Gases (GHG) abatement targets will be met easier by fossil fuel-dependent economies, without the need of purchasing CO₂ credits, as previously mentioned. This is an extremely important parameter since it will prevent developing countries from being isolated from security of supply, while economic competition between regions will not be an issue, due to restrictions on GHG emissions. Commercialisation of CCS would result in enhanced energy security of supply since the use of coal for power generation will be continued, especially with regards to domestic lignite in countries such as China, Korea, Japan and Turkey (DOE/EIA, 2015). In contrary, failure to adopt CCS would mean that the global energy community will almost immediately start ruling out the utilisation of fossil fuels, a scenario which seems rather unlikely, taking into consideration the vast amount of coal in developing countries such as India and China (Johnsson et al., 2012).

1.2. Progress and costs of CCS

As discussed above, fossil fuels are still predominant for energy production, with the IEA predicting that they will provide ~75% of the world’s primary energy in 2040. As a result, it is evident that CCS can play a very significant role in terms of climate change mitigation and it is already considered a significant component of the low-carbon technologies. It is true that CCS is able to provide a short-term solution in order to stop the resultant CO₂ getting into the atmosphere and countries that have committed to the carbon trade scheme are expected to benefit greatly from this technology. Specifically, according to the IEA (2014), CCS has the potential to provide 14-19% of the global abatement in GHG emissions required by 2050 and notably more in the following decades.

However, progress on deployment of CCS has been significantly delayed nowadays (IEA, 2014), since commercially available technologies still remain unprofitable; in simple terms, employment of CCS in the power industry increases electricity costs and prices (BGS, 2014). As a result, there is a noticeable reluctance by electricity generators to apply this technology, since it is a substantial additional capital and operational cost (CAPEX & OPEX) on their sites and reduces the flexibility of their plants (Carbon Capture Journal, 2012). The economic affordability of CCS depends
largely on the value and price put on environmental and ecosystem sustainability; however, improved technologies for CO₂ capture are also necessary to achieve lower costs and energy penalties in order for CCS to be highly competitive against the renewable energy market. Effective solutions need to be derived from the research projects that are now under investigation all over the world, with UK alone funding a 4-year (2011-2015) £125 million cross-governmental CCS research, according to the Department of Energy and Climate Change (DECC, 2013).

When applied to electricity generation, CCS has four main impacts on the cost structure for any project seeking to meet a given level of electricity demand:

- Additional capital expenditure associated with the CO₂ capture and compression plants;
- Additional fuel costs for the energy used in the capture process;
- Additional capital expenditure to build a larger power plant (to ensure net power output is unchanged) in order to compensate for the energy used in the capture process (i.e. host plant compensation); and
- Additional operations and maintenance costs associated with both the larger plant and the capture and compression requirements (Zero Emissions Platform, 2011).

![Figure 1.3: Cost impacts of adding CCS to a power station for a supercritical post-combustion plant (Global CSS Institute and WorleyParsons, 2011)](image-url)
The relative share of the above cost increases varies across the different capture technologies reflecting differences in the processes. However, regardless of the process, it is the capture facilities and the additional energy requirements as part of the capture process that have the largest impact on costs (GCCSI, 2011); as seen in Figure 1.3, a reference coal power plant without the use of CCS corresponds to £55/MWh, whereas this price increases to £95/MWh when adding CCS. 70% of this increase in the price of MWh comes from capital costs and energy penalties, with another 10% coming from storage.

In 2011, the GCCSI presented a comparison of low-carbon technologies (Global CCS Institute, 2011) in the electric power sector based on a review of technology cost studies by a number of agencies including the IEA, the IPCC, the US Energy Information Agency (EIA), WorleyParsons, the US National Energy Technology Laboratory (NETL) and US National Renewable Energy Laboratory. This comparison shows that there are technologies that have zero or negative avoided costs, such as conventional geothermal and hydropower plants among others. Negative avoided costs can occur if the cost of the low-carbon technology is less than the fossil fuel technology. The finite availability of wind and hydro resources limits their role in meeting emission targets and requires higher cost options of CCS, solar and nuclear technologies. Figure 1.4 shows that CCS still remains a cost-competitive technology alongside other large-scale abatement options in the power generation sector, such as offshore wind and solar thermal or Photovoltaic (PV) processes. As a result, CCS technology is the only means of reducing CO₂ emissions in the near term and could serve as a bridging strategy to a time when non-carbon energy technologies are broadly deployed.

![Figure 1.4: Costs of CO₂ avoided](image)

Note: For all technologies except gas-fired CCS plants, the amount of CO₂ avoided is relative to the emissions of a supercritical pulverised coal plant. For gas-fired CCS, the reference plant is an unabated combined cycle plant (Global CCS Institute and WorleyParsons, 2011)
1.3. Challenges in CO\textsubscript{2} capture

The issue of an efficient and scalable CO\textsubscript{2} capture process is regarded as one of most challenging processes in the energy research sector (NETL-DOE, 2012). When applied to power generation, there are three main pathways for CO\textsubscript{2} capture, namely post-combustion, pre-combustion and oxy-fuel combustion. This research focuses on post-combustion capture, since it is believed to be the best candidate for short term CCS application to CO\textsubscript{2} emission sources (NETL-DOE, 2014), as it can be retrofitted to existing plants. However, retrofitting has a significant impact on the efficiency of the power generation process, since additional energy and costs are associated with the operation of the capture plant. Post-combustion CCS requires significantly innovative advancements in the field of process engineering, as well as materials design and synthesis, in order to compete with the other carbon neutral technologies (nuclear, renewables, biomass). CO\textsubscript{2} capture process represents typically about 70\% of the total cost of the CCS chain, and therefore, novel technologies that can offer various advantages over conventional absorption technologies using alkanolamines, such as high operating flexibility and low maintenance costs, are gaining support (IEA, 2013).

Firstly, CO\textsubscript{2} needs to be rapidly and selectively separated from an exhaust gas mixture that consists of various other gaseous components; a typical 550 MW coal-fired power plant produces approximately 3Mft3/h of flue gas at atmospheric pressure and CO\textsubscript{2} concentration accounts for approximately 12–15\% with the rest being nitrogen, water, oxygen as well as traces of sulphur and nitrogen oxides. Hence, production of a high purity CO\textsubscript{2} stream from separating and capturing it from this complex mixture requires highly efficient and cost-effective technologies. Secondly, CO\textsubscript{2} is a thermodynamically stable molecule and capturing it requires a distortion of the molecule away from its linear and symmetric arrangement. However, the binding of CO\textsubscript{2} to the capture medium cannot be too strong, since the sheer quantity of CO\textsubscript{2} that is present in large scale plants exhausts necessitates the need to re-use this medium for further CO\textsubscript{2} capture (Meisen and Shuai, 1997). As a result, the CO\textsubscript{2} must be released from the capture medium relatively fast, meeting the kinetics of the capture process and with the least possible energy input, in order for the process to be economically feasible (Plasynski and Chen, 1998).
The economic evaluation of a CO$_2$ capture system is often driven by energy demands and in adsorption technology this energy is particularly associated with the desorption step. Hence, it is evident that, CO$_2$ capture is the most energy demanding step in the CCS chain and as a result it directly affects the overall cost of the CCS process; CO$_2$ separation, capture and regeneration represent about 70% of the total CCS cost (Davison, 2007). It is this conjugation of high-speed and efficient capture as well as regeneration systems with high selectivity and minimal energy loss that makes this a truly grand challenge problem whose possible solution will drive today’s world’s energy policies to a new level of discussions.

Two cyclic capture procedures are typically followed in laboratory and/or industrial applications nowadays, namely Pressure Swing Adsorption (PSA) and Temperature Swing Adsorption (TSA). However, PSA and TSA are not considered to be the optimum pathways for post-combustion CO$_2$ adsorption technology. PSA is fully efficient for processes that take place at elevated pressures; otherwise the installation of additional compressors and/or vacuum pumps is required, which complicates the process while having a negative effect on the overall efficiency (Cherbanski et al., 2008). TSA systems, on the other hand, provide a stronger driving force for CO$_2$ desorption contributing to higher regeneration efficiencies, but unfortunately, they are time and energy consuming, resulting in increased energy penalties for the power plant. This is mostly associated with the large time scale involved in heating and cooling large adsorbent vessels, as well as with the massive amount of hot purge gas needed for the heating of the sorbents (Bonjour et al., 2002). In addition, this hot purge gas (e.g. steam) dilutes the recovered CO$_2$ and a separate downstream separation is required. Finally, successive heating cycles have a deteriorating effect on the textural characteristics of the sorbent, leading to a further decrease of its CO$_2$ adsorption and working capacity. Accordingly, research towards the development of innovative cyclic capture technologies that involve rapid thermal processes avoiding the aforementioned disadvantages is required.

1.4. Aim and objectives

The aim of this study is to develop and analyse the use of Microwave Swing Adsorption (MSA) to intensify the CO$_2$ desorption process from solid materials, focusing on improving the regeneration efficiency and kinetics as well as the energy spent during
this step. The above aim was based on the hypothesis that direct absorption of energy during microwave heating by the solid adsorbent, in contrast to the indirect supply of heat by thermal conduction, may enable a much faster process with a lower purge gas flow rate and lower process temperature. Consequently, this may result in energy savings and faster desorption kinetics, making the desorption process more efficient and cost-effective than conventional heating technologies. As a result, the first objective of this research is to compare MSA against TSA in terms of sorbent regeneration efficiency, CO₂ desorption kinetics and energy consumption. Secondly, the optimum conditions for the MSA process and the importance of the nature of the sorbent (raw material, shape, size) during microwave heating are also examined and discussed.

Utilisation of microwave energy for heating processes has been known for a long time, and the development of microwave ovens has more than 60 years of history. However, the concept of using microwave energy in CO₂ capture applications to replace the conventional TSA and/or PSA cyclic processes has not been studied yet. As a result, microwave energy was extensively studied in order to evaluate its application in the field of CO₂ capture and a comprehensive study on the main parameters that affect the dielectric heating of a sorbent material is presented. Moreover, a comparison with the existing conventional heating technology (TSA) was conducted, trying to propose alternative solutions to the critical issue of the high-cost desorption step in the CCS chain. Finally, the preservation of the textural, chemical and dielectric characteristics of the sorbent materials under consecutive adsorption/desorption cycles was investigated, since the stability of the material has an immediate effect on the operating costs of the CO₂ capture process.

1.5. Methodology

This section includes all the steps that were followed during this study, broken down into three major tasks:

Task I: Preparation and characterisation of six different kinds of solid sorbents

The first task of this three-year PhD study included the selection, preparation and characterisation of the solid sorbents under investigation. A wide selection of sorbents with regards to form, size, shape and physical, chemical and dielectric properties was
used, in order to examine the effect that microwave heating has on each one. This study would later help to understand which parameters play the most important role in microwave applications and consequently predict the heating performance of similar materials. As a result, the following solid sorbents were selected:

a. Carbon based sorbent materials:
 ✓ Microporous granular activated carbon (GAC):
 i. Made from palm shell, obtained by NORIT, used as the reference sample – Chapter 4.
 ✓ Activated carbon, obtained by Desotec:
 ii. Pellet form, from coconut shell, with product name Organosorb 10-CO (Org) – Chapter 5.
 iii. Powder form, obtained after grinding the original Organosorb (OrgP) – Chapter 5
 ✓ Granular AC from almond shells (AS), obtained from Instituto Nacional del Carbón (INCAR), Spain:
 iv. Parent sample, referred to as GKAS – Chapter 5
 v. GKAS – N800, treated with ammonia, introducing basic functionalities on the parent sample’s surface, resulting in better CO$_2$ adsorption capacities as reported at INCAR – Chapter 5.

b. Silica-based sorbent materials, obtained from Rey Juan Carlos University, Madrid, Spain
 ✓ SBA-15-TEPA (30):
 vi. Mesoporous silica, impregnated with tetraethylenepentamine (TEPA), resulting in considerable CO$_2$ uptake, previously examined at Rey Juan Carlos University. However, slow desorption rates as well as a slow but steady loss of adsorption capacity were reported with continuous-cyclic use due to TEPA evaporation – Chapter 5.

Task II: Design of the microwave system

The second main task was the design of the MSA system. An initial investigation for the suitability of several commercially available microwave systems was undertaken
and after careful consideration, a multimode microwave system was purchased and modified accordingly:

a. Design of the microwave cavity and its chambers in terms of dimensions and maximum power output;
b. Design of the glass reactor for the adsorption/desorption experiments;
c. Design of the temperature control and measurement system of the microwave cavity;
d. Thermal distribution studies, in order to explore the optimum position of the reactor inside the cavity in terms of microwave absorbance.

Task III: Regeneration studies

Lastly, the main part of this PhD research was the comparison of TSA and MSA processes, using the aforementioned sorbents and microwave system. An investigation of the process parameters was completed, including the effect of temperature, CO$_2$ concentration, moisture presence and exhaust gas flow rate. Moreover, the preservation of the sorbents after 25 cyclic adsorption/desorption tests was also studied, in an attempt to examine the effect of microwave and conventional heating on the structure of each material. As such, the following steps were completed:

a. Microwave Swing Adsorption (MSA) studies of the aforementioned sorbent materials using a fixed bed reactor at ambient pressure and comparison with conventional heating – temperature swing Adsorption (TSA) - under various parameters:
 ✓ Desorption temperature:
 i. 70°C;
 ii. 130°C;
 ✓ Concentration of CO$_2$ in the gas mixture:
 iii. 5% (vol.), simulating the exhaust gas of a gas fired power plant;
 iv. 15% (vol.), simulating the exhaust gas of a coal fired power plant;
 v. 40% (vol.), simulating the exhaust of the cement industry;
 ✓ Exhaust gas condition:
 vi. Anhydrous;
vii. Wet (10% H₂O);
✓ Total gas flow rate:
viii. 100ml/min;
 ix. 150ml/min.

b. Energy consumption measurements;
c. Material preservation experiments, including material characterisation after 5, 10 and 25 cycles in terms of:
✓ CO₂ adsorption capacity;
✓ BET surface area;
✓ Chemical composition;
✓ Dielectric properties;
✓ Pore volume.

1.6. Thesis structure

Chapter 1 introduces the issue of global warming and focuses on the measures that need to be taken in order to mitigate climate change. Chapter 2 is divided in two main sections, presenting a thorough literature study of CCS and MSA technologies. Thereafter, a detailed analysis of the experimental process used for this research is presented in Chapter 3.

Chapter 4 investigates the comparison between TSA and MSA for a granular activated carbon (GAC), which acts as the reference material for this study, examining the most important process parameters; total volumetric flow rate, CO₂ composition in the feed gas mixture, anhydrous/wet feed gas conditions and desorption temperature are investigated. Subsequently, the optimal process conditions for MSA lab scale CO₂ capture technology are decided. Those conditions are then be used in Chapter 5, which investigates the effect of material properties – surface chemical modifications and adsorbent shape and size - on the CO₂ desorption process via MSA and TSA. A total of five different adsorbents with diverse properties are tested and compared to the reference material. Chapter 6 summarises the conclusions of the previous chapters, followed by future work suggestions in the field of MSA technology, including an introduction to the issue of microwave processes scaling up.
References

Global CCS Institute (2012) ‘CO₂ capture technologies - pre combustion capture’, Global Carbon Capture and Storage Institute, Canberra, Australia

Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V., Legrand, M.,

Chapter 2 – Literature review

2.1. Carbon Capture and Storage (CCS)

In December 2015, the GCCSI together with the Environmental Non-Government Organisation (ENGO) published a report, highlighting the importance of keeping CCS on the international agenda, stating that the technology can make a significant contribution toward reducing carbon emissions from the widespread use of fossil fuels nowadays. The report also states that CCS can play a significant role in achieving the international goal of avoiding global warming of two degrees Celsius above pre-industrial temperatures, however, progress has been too slow (ENGO Network on CCS, 2015). The report mentions that CCS projects, if implemented, will be able to achieve 70% of the IEA’s target mitigation activities for CCS by 2020. However, a substantial increase in new projects will be required to meet the challenges of 2050 target. This target, according to the OECD, will be accomplished if GHG emissions would be reduced by almost 40% compared to 2000 levels, and if new technologies could move emissions onto a pathway that would stabilise atmospheric concentrations at low levels and significantly limit the risk of climate change impacts in the long-term. CCS is seen as a technology that is able to contribute to IEA’s 2050 targets by as much as 20%, however, immediate steps need to be taken in order to persuade governmental bodies and industries to invest on this technology.

During 2014-2015, there have been a number of promising steps regarding CCS development, with the most important being the beginning of operation of the Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project, the world’s first CCS project in the power sector at large scale. The successful operation of the Boundary Dam power plant will work as a benchmark activity for future CCS projects and until now, the results look encouraging; according to its operator, SaskPower, Boundary Dam extracts 90% of the CO₂ from its exhaust gas, which then is used for Enhanced Oil Recovery (EOR) activities into nearby oil wells. So far, it has captured 0.4 Mt of CO₂, while when operating at full throttle by the end of this year, that number will go up to 1Mt CO₂/year, equivalent to taking more than 200,000 cars off the road.

Moreover, two projects, including the Petra Nova CO₂ Capture Project in Texas (formerly the NRG Energy Parish CCS Project), the third large-scale power sector CCS
project to have taken a positive financial investment decision, and the Abu Dhabi CCS Project, the first large-scale CCS project in the iron and steel sector, moved to the construction stage. Meanwhile two projects moved to the define stage, one in the US (Sargas Texas Point Comfort Project) and one in China (Yanchang Integrated Carbon Capture and Storage Demonstration Project). Furthermore, a new project in the power sector utilising post-combustion capture was identified in China, currently examining offshore geologic storage (China Haifeng Resources Power Integrated Carbon Capture and Sequestration Demonstration Project with a CO\(_2\) capture capacity of 1 Mtpa).

On the other hand, fourteen projects were unfortunately cancelled or put on hold during the same period. Most of those (seven) were projects located in Europe - two of them in the UK (White Rose and Peterhead CCS Project) - while two were in the US and one in Australia, China and the UAE, respectively. Eight of those were in the early development stage, with the rest being in the define stage (including the Porto Tolle Project in Italy, the OXY-CFB 300 Compostilla Project in Spain, the Low-Impact Steel Project in France and the Lake Charles CCS Project in the US). The majority of the abandoned projects were related to power generation, with post-combustion capture suffering the largest decline. In addition, Drax Group is reported to withdraw as a partner of Capture Power Ltd, the developer of the White Rose CCS project, stating that even if they would continue to be involved with the pre-construction feasibility study, they will not invest any more money into the project, mostly because of governmental changes to the subsidy regime for renewable energy (Tunnicliffe, 2015). Lastly, the shut-down of the SSI Redcar steel plant in Teeside, UK, will affect the so called “Teeside-collective”, a cluster initiated by industries with a shared vision: to establish Teesside as the go-to location for future clean industrial development by creating Europe’s first CCS equipped industrial zone (BBC, 2015).

However, it is generally believed that there is still future for CCS in the UK; the Secretary of State specified that in the next decade emphasis will be given in gas-fired power stations. Combined with nuclear, renewables and demand-reduction, the replacement of coal with gas will play an important role in reducing UK emissions. Nevertheless, a push for gas cannot get the UK to its 2050 targets without utilisation of CCS. The Prime Minister, David Cameron, acknowledged this when he stated that he would ‘not commit to the decarbonisation targets that people sometimes want [him] to
until we know about carbon capture and storage’ (Energy and Climate Change Committee, 2016).

In addition to the above, it is also true that the demonstration stage of the on-going large-scale CCS projects has progressed far more slowly than it is required towards climate change mitigation, as seen in Figure 2.1. With growth of only 6% per year over the last five years and a forecast 50MtCO₂/year in operation by 2017, the IEA’s recommended pathway to achieve decarbonisation appears out of reach (37% annual growth required and 255MtCO₂/year stored by 2020, respectively). Even though financial support for large demonstration projects (below $3 billion a year, with no sign of an increase) remains considerably below that of renewable energy sources such as wind and solar ($131 billion and $75 billion in 2011, respectively), it remains too large for the governments and as a result they rarely have the political will to subsidize CCS to the extent required.

![Figure 2.1: Investment risk curve of individual CCS technologies (©SBC Energy Institute)](https://example.com/figure2.1.png)

CCS is seen as a costly technology because of its high up-front costs and uncertain long-term benefits (CCJ, 2013). Each commercial scale CCS project can cost up to a billion dollars in capture costs alone, although they are capable of abating over a million tonnes of CO₂ per year for several decades. The OECD governments have committed £15-20 billion to help CCS demonstration projects, but grants allocated so far have represented an average of just €15/tCO₂ avoided over the lifetime of each project. In
addition, there is no carbon-price mechanism to enable the recovery of CCS costs: globally, the market price of CO$_2$ averaged £5.5/tCO$_2$ in 2015, while most carbon taxes are set below £18/tCO$_2$.

However, there is still much space for improvement in CCS, which will subsequently attract governments to turn to and invest in this clean energy production technology. Figure 2.2 shows the prediction of CCS large scale projects deployment until 2017, depicting an optimistic point of view about this technology. Moreover, looking beyond 2020, there are circumstantial reasons that support that CCS may accelerate, since more stringent carbon policies will be required to develop CCS beyond upstream oil and gas and at the scale needed to tackle climate change. Growing demand for the beneficial reuse of CO$_2$ for EOR should drive CCS forwards during this decade and help to demonstrate the technology, in conjunction with large government grants. Oil prices above $100/bbl have tended to boost CO$_2$ contract prices above $30/tCO$_2$, greatly improving CCS-EOR economics. China is also rapidly driving down the cost of capture, having openly expressed the ambition to build capture-only coal power plants for its own needs and to export low cost capture technologies.

Figure 2.2: CCS large projects deployment forecast, 2012-2017 (©SBC Energy Institute analysis, based on Bloomberg New Energy Finance database, March 2012)

2.1.1. CO$_2$ capture technologies

Carbon dioxide Capture and Storage (CCS) is a process consisting of the separation of CO$_2$ from energy-related and industrial sources, transport to a storage location and long-
term isolation from the atmosphere (IPCC, 2005). CCS encompasses a range of technologies that may cut CO₂ emissions by up to 90%. It is well known that CO₂ capture can be achieved mainly by three different technologies, presented in Figure 2.3 (Leung et al., 2014):

i. Post-combustion, where CO₂ is separated from exhaust gases after combustion:

Post combustion carbon capture removes CO₂ from the exhaust flue gas after combustion of the fuel. The flue gas is directed through adequate equipment which separates CO₂ from other gases while capturing it, reaching capture efficiencies of over 90% (Herzog et al., 2009). It is the most established technology for CCS nowadays, also used on a commercial scale in SaskPower Boundary Dam power plant in Canada.

ii. Pre-combustion, where CO₂ is removed before combustion (Davidson, 2011):

As the name implies, pre-combustions carbon capture is a process in which CO₂ is captured prior to the fuel combustion. This process is not feasible for pulverized coal (PC) power plants, which is the dominant type of power generation plants across the globe, however it is a competent process for an Integrated Coal Gasification Combined Cycle (IGCC) plant. In this type of plants, coal is initially gasified forming synthesis gas (syngas, a mixture containing mostly CO and H₂). Then, the syngas undergoes the water-gas shift reaction, during which CO reacts with steam to form CO₂ and supplementary H₂. At this point, the CO₂ is separated and captured, whereas the H₂ is diluted with N₂ and directed into a typical gas turbine combined cycle. This process is expected to provide a cost-effective solution compared to post-combustion, however, there are only a few IGCC plants in the current coal to energy process, mainly because IGCC plants themselves are more expensive than PC plants.

iii. Oxy-fuel combustion, where the fuel is burned under oxygen conditions to produce an almost pure CO₂ exhaust (Perrin et al., 2013):

The rationale behind oxy-fuel combustion is simply that if there was no nitrogen, CO₂ capture from flue gas would be considerably simplified. As a result, instead of air, the power plant uses a high purity (≥95%) oxygen stream for coal combustion. The flue gas
that is created from combustion in an O\(_2\)-rich environment comprises of CO\(_2\), water, particulates and SO\(_2\). Particulates and SO\(_2\) can be removed by conventional electrostatic precipitator and flue gas desulphurization methods, respectively. The remaining gases, containing high concentration of CO\(_2\) (80–98% depending on fuel used), can be compressed, transported and stored. The oxygen for combustion is produced on-site in an air separation unit (ASU), a feasible but expensive process, representing the largest cost component during CO\(_2\) capture.

![Diagram of CO\(_2\) capture technologies](image)

Figure 2.3: CO\(_2\) capture technologies (Leung et al., 2014)

It has not been clear yet, which of these technologies is the most suitable to follow; as previously mentioned, it is true that post combustion CO\(_2\) capture is the most mature technology right now, followed by a vast amount of research. Most of the studies, though, are showing that there is no clear winner at present, given the current technology maturity of power generation, according to Martin Oettinger, Principal Manager for the GCCSI (2011). Table 2.1 summarises the advantages and drawbacks of the three CO\(_2\) capture technologies described above. Post-combustion capture technology offers various advantages, the most important being that it can be retrofitted to existing plants. However, retrofitting results in a reduction of the efficiency of the power generation process, as will be discussed later. Moreover, another important advantage of post-combustion CO\(_2\) capture is that it presents great flexibility; considering that the capture plant shuts down, the power plant process is not affected and can still continue operating. The other two capture options are highly integrated
within the power plant, resulting in complete closure of the plant in case of a failure in the capture system. Pre-combustion, the process with the most significant disadvantages, is mostly suitable for coal-gasification plants, whereas post- and oxy-fuel combustion can be successfully applied to both coal and gas fired power plants.

Table 2.1: Advantages and disadvantages of the different CO₂ capture technologies

<table>
<thead>
<tr>
<th>Capture process</th>
<th>Application area</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-combustion</td>
<td>Coal-fired and gas-fired plants</td>
<td>a) Technology more mature than other alternatives b) Can easily be retrofitted into existing plants</td>
<td>a) Low CO₂ concentration affects the capture efficiency b) High parasitic loss, leading to high energy penalties</td>
</tr>
<tr>
<td>Pre-combustion</td>
<td>Coal-gasification plants</td>
<td>a) High CO₂ concentration enhances sorption efficiency b) Fully developed technology, commercially deployed at the required scale in some industrial sectors c) Smaller energy penalty (~20%) than current PCC technology (~30%) at 90% CO₂ capture d) Opportunity for retrofit to existing plant</td>
<td>a) Temperature associated heat transfer problem and efficiency decay issues associated with the use of H₂-rich gas turbine fuel b) High parasitic power requirement for sorbent regeneration c) High capital and operating costs for current sorption systems</td>
</tr>
<tr>
<td>Oxyfuel combustion</td>
<td>Coal-fired and gas-fired plants</td>
<td>a) No CO₂ separation required b) Mature air separation technologies available c) Reduced volume of gas to be treated (hence required smaller boiler and other equipment)</td>
<td>a) High efficiency drop and energy penalty b) Cryogenic O₂ production is costly c) Corrosion problem may arise</td>
</tr>
</tbody>
</table>

Until very recently, it had been widely expected that IGCC power plants with pre-combustion capture would offer the most cost-effective path forward for CCS. In early 2007, for example, there were more than a dozen IGCC project proposals in the US alone, however there has been very slow progress in the commercialization of these plants for power generation applications (Siefert and Litster, 2013). Due in part to dramatic capital cost increases for this technology - total project costs far higher than expected (> €3 billion) - few IGCC proposals survive today (Wolf, 2013). In addition, much of the energy production in the developing world continues to be based on coal combustion technology. As a result, these facts have stimulated a re-examination of the role of post-combustion capture and its proposed technologies, suggesting that it is the only viable way for short-term CCS implementation into power plants.

However, one important drawback for the process of post-combustion is its large parasitic load. Parasitic load is defined as the energy spent used to run the CO₂ capture system, i.e. regeneration of solvents/sorbents, compression of captured CO₂ for
transport and injection, etc. The concentration in the exhaust flue gas of a combustion process is normally relatively low (specifically 12-15% for a coal-fired and 4-5% for a gas-fired power plant), resulting in increased energy penalties and associated costs for the capture unit to reach the required CO\(_2\) concentration (above 95.5%) for transport and storage (de Visser et al., 2008 and Olajire, 2010). The U.S. National Energy Technology Laboratory (NETL) concluded that implementation of a CO\(_2\) post-combustion capture unit would increase the electricity production cost by 70% (Elwell and Grand, 2006). Recent studies estimated that the cost of electricity would increase by 65% and 32% for post-combustion CO\(_2\) capture in coal and gas-fired plants, respectively (Kanniche et al., 2010).

Table 2.2 presents a cost comparison of the three capture processes for both gas and coal-fired plants, according to Gibbins and Chalmers (2008). They stated that the lowest cost per tonne of CO\(_2\) avoided was reported for coal-fired plants using pre-combustion technology, while post-combustion and oxy-fuel processes presented comparable costs. However, it is remarkable that the same report stated that, the cost per tonne of CO\(_2\) avoided for gas-fired plants using post-combustion capture technology was approximately 50% lower than pre- and oxy-fuel combustion technologies. Furthermore, the pre-combustion CO\(_2\) capture is reported to be the least efficient option, with a thermal efficiency penalty of about 13% and 16% for the coal-fired and gas-fired plants, respectively, according to Leung et al. (2014).

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>Parameter</th>
<th>Power plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No capture</td>
<td>Post-</td>
</tr>
<tr>
<td>Coal-fired</td>
<td>Thermal efficiency (% LHV)</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Capital cost ($/kW)</td>
<td>1410</td>
</tr>
<tr>
<td></td>
<td>Electricity cost (c/kWh)</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Cost of CO(_2) avoided ($/t CO(_2))</td>
<td>-</td>
</tr>
<tr>
<td>Gas-fired</td>
<td>Thermal efficiency (% LHV)</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td>Capital cost ($/kW)</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Electricity cost (c/kWh)</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Cost of CO(_2) avoided ($/t CO(_2))</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.2: Cost comparison for different capture processes (IEA, 2006). Costs include CO\(_2\) compression to 110 bar but excluding storage and transportation costs.
2.1.2. Post-combustion CO₂ Capture retrofit options

In order to understand the technical - and the associated economical - considerations with regards to retrofitting a CO₂ capture unit to existing power plants, it is critical to examine the differences between the two most important power generation technologies that post-combustion can be applied, namely PC and Natural Gas Combined Cycle (NGCC) power plants. This section provides a fundamental technical description of those two technologies without including a CO₂ capture unit. An overview of the variations between these configurations, mainly focusing on the differences in their exhaust gas composition, temperature and pressure are presented.

2.1.2.1. Pulverized Coal (PC) power plants

The most common power generation technology is the PC power plant. In this technology, coal is combusted with air in a boiler producing high pressure steam (20-25MPa). The steam then drives a steam turbine, which is coupled to a generator producing electricity, as seen in Figure 2.4. The low pressure steam (6-7MPa) exiting the steam turbine is condensed and pumped back to the boiler for the cyclic operation to start over. This thermodynamic cycle converting the thermal energy of the fuel to electric energy is called the Rankine cycle. The flue gas from the boiler is driven to a gas clean-up process that removes particulates and acid gases. The remaining exhaust gas emitted through the stack to the atmosphere contains typically 70% N₂, 13-15% CO₂, 5-10% H₂O, ~800ppm SOₓ and ~500ppm NOₓ (vol.), cooled at temperatures between 40 and 60°C (Feron, 2016) and at an atmospheric pressure (Herzog, 2001).

![Figure 2.4: Electricity generation in a PC power plant (The national academy press, 2007)](image-url)
2.1.2.2. **Natural Gas Combined Cycle (NGCC) power plants**

NGCC power plants use natural gas as a fuel instead of coal and generate electricity utilising a steam as well as a gas turbine, reaching efficiencies up to 50% of the total thermal energy input, significantly higher compared to PC power plants, which typically present an efficiency of 38-45%. These power plants do not require any of the flue gas clean-up units mentioned for the PC plants, since the natural gas is primarily a clean mixture of hydrocarbons, mostly methane, which contains no sulphur and does not produce any particulates when burning (Berstad, 2012).

Figure 2.5 shows the layout of a typical NGCC plant without post-combustion CO₂ capture. The flue gas composition differs significantly from that of the coal-fired power plants; CO₂ is typically 4-5% (vol.), meaning that CO₂ is more diluted than in the case of PC’s flue gas, thus creating a lower CO₂ partial pressure, resulting in a smaller driving force for successful initiation and completion of the separation process (IEA, 2012). In terms of flue gas conditions, the waste exhaust gas temperature from the gas turbine decreases as it flows into the heat recovery steam generator (HRSG), which consists of a superheater, an evaporator and an economizer, cooling down the temperature to 30°C for typical NGCC exhaust gas conditions (Mohanty, 2014), while the pressure is atmospheric, similar to a PC power plant.

![Figure 2.5: Electricity generation in a NGCC power plant (Ramireddy, 2012)](image-url)
2.1.3. Post-combustion separation technologies

Fossil-fuelled power plants generate the largest amounts of CO₂ emissions among all the industries emitting CO₂ nowadays, responsible for about 33–40% of the total CO₂ emitted in the atmosphere (Carapellucci and Milazzo, 2003; Stewart and Hessami, 2005). CO₂ needs to be separated and captured from the flue gases of these sources before transport and storage. Post-combustion capture can be achieved via various separation technologies, including physical and chemical absorption, cryogenics separation, membranes and adsorption, as seen in Figure 2.6 (Wang et al., 2011). Table 2.3 summarises the advantages and disadvantages of each separation technology.

![Figure 2.6: Options for post-combustion separation technologies (Wang et al., 2011)](image)

i. Absorption

CO₂ is physically absorbed into a solvent according to Henry’s law, while solvent regeneration occurs by applying heat or reducing the pressure or both. Absorption takes place at high CO₂ partial pressures, hence the main energy requirements originate from the flue gas pressurization. As a result, physical absorption is not economically feasible for gas streams with CO₂ partial pressures lower than 15% vol. (Chakravati et al, 2001, IEA, 2004). Typical solvents are Selexol (dimethyl ethers of polyethylene glycol) and Rectisol (methanol).

Apart from physical absorption, chemical absorption has also drawn attention recently. During chemical absorption, CO₂ reacts with a chemical solvent and forms a weakly
bonded intermediate compound. This compound can be regenerated via TSA producing the original solvent and a CO\textsubscript{2} stream (IPCC, 2005). The advantages of this method are that selectivity is comparatively high, producing a relatively pure CO\textsubscript{2} stream. A CO\textsubscript{2}/N\textsubscript{2} selectivity of 276 was reported by Trachtenberg and Bao (2005), when using diethanolamine (DEA) 20% (wt.) solution. As a result, chemical absorption is a well suited application for CO\textsubscript{2} separation and capture from industrial flue gases.

Amine-based regenerative chemical absorption processes using aqueous solutions of amine, such as monoethanolamine (MEA), diethanolamine (DEA), diglycol-amine (DGA), N-methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP) have been widely used for several years for CO\textsubscript{2} capture from gas streams in natural gas, refinery off-gases and synthesis gas processing (Astarita et. al, 1983, Kohl et. al., 1997, Maddox et al, 1998). However, the main problem associated with chemical absorption using amines is degradation through irreversible side reactions, mainly with CO\textsubscript{2} and O\textsubscript{2} but also with NO\textsubscript{x} and SO\textsubscript{x}. These reactions can lead to different problems within the process, such as solvent loss, formation of volatile compounds potentially dangerous for the environment, foaming, fouling and corrosion (Gouedard et al., 2012). As a result, a flue gas desulphurisation unit is also needed in the cases where SO\textsubscript{x} concentration is higher than 10ppm in the exhaust flue gas, leading to an increased cost of the total plant configuration. Another important drawback of chemical absorption is the large parasitic loss that leads to increased energy penalties, resulting in high Cost of Electricity (COE). Specifically, NETL-DOE (2013) baseline case (referred to as case 10) clearly states that CO\textsubscript{2} capture in a subcritical bituminous coal power plant using MEA as the solvent, results in an 89\% increase of Levelised COE (LCOE).

\textit{ii. Adsorption}

Adsorption is typically classified in two main categories, namely physical and chemical adsorption, also known as \textit{physisorption} and \textit{chemisorption} respectively, depending on the bonding between adsorbate and adsorbent. According to Perry’s Chemical Engineers’ Handbook \textit{physisorption} (or \textit{physical adsorption}) is adsorption in which the forces involved are intermolecular (van der Waals forces) of the same kind, whereas \textit{chemisorption} (or \textit{chemical adsorption}) involves chemical bonding.
Current adsorption systems have not become suitable for application in large-scale power plant flue gas treatment yet, due to various reasons. Firstly, most commercially available materials present a low CO\textsubscript{2} adsorption capacity (less than 10% w/w of sorbent), which may lead to significant challenges at such scale. Moreover, they also present a generally low selectivity (less than 100 for CO\textsubscript{2} over N\textsubscript{2}), being able to treat only the flue gas streams with high CO\textsubscript{2} concentrations, >15% (vol.) (IEA 2004, IEA 2007). However, one of the most important disadvantages of adsorption technology is the regeneration energy needed during the desorption step and as a result, this research focuses on technologies that may enable a less energy intensive process.

Nevertheless, utilisation of sorbent materials for CO\textsubscript{2} adsorption processes is seen as a very promising alternative separation technique, an emerging possible pathway that seeks to reduce the costs attributed to the capture step. The success of such an approach also lies in the potential development of novel materials with high adsorption capacity, high CO\textsubscript{2} selectivity over N\textsubscript{2} or H\textsubscript{2}O, durability, relatively fast kinetics of adsorption/desorption and low regeneration energy. This technology is extensively covered in sections 4.2, 5.2.1 and 5.3.1, since it is the focus of this research.

iii. Membrane separation

Membrane separation technology can be used to selectively allow CO\textsubscript{2} to pass through, while blocking other flue gas components, while selectivity depends on the membranes themselves. This technology usually consists of thin polymeric films that separate mixtures based on the relative rates at which composing elements permeate. Permeability differs according to the diffusion coefficients in the membrane material or the relative sizes of the molecules. The difference in partial pressure of the components at both sides of the membrane is the driving force for this permeation. As a result, CO\textsubscript{2} partial pressure is the key factor that is responsible for their separation efficiency. One important advantage of this technology over absorption/adsorption is that membranes are more compact and are not prone to flooding, entrainment, channelling or foaming.

On the other hand, the selectivity of this separation technique is lower compared to other methods, and thus, only a fraction of CO\textsubscript{2} can be efficiently captured, which also leads to a low captured CO\textsubscript{2} purity. Multistage separation can be selected to capture a higher proportion of CO\textsubscript{2} resulting in additional operating and capital cost, according to
Chakravati et al. (2001). However, recent advances in the development of high-efficient membrane technology showed that a CO$_2$ separation efficiency from 82% to 88% is possible, according to Audus (2000) and Gielen (2003). Moreover, ceramic, metallic membranes (Aaron et al., 2005), as well as polymeric membranes (Yave et al., 2009) could produce membranes significantly more efficient for CO$_2$ separation than liquid absorption processes, however they are still on the development stage. Consequently, they are suitable for high CO$_2$ concentration applications (well above 20 vol.%), such as flue gas streams from oxy-fuel and IGCC processes and as a result they are not going to be considered in this research (Favre 2007, IPCC, 2005).

iv. **Cryogenic separation**

Cryogenic separation is a process that uses distillation principles at very low temperature and high pressure, similar to other conventional distillation processes, except that it is used to separate components of gaseous mixture (due to their different boiling points) instead of liquid. It involves the compression and cooling of gas mixtures in multiple stages to induce phase changes in CO$_2$ and other gases which allow them to be separated. As a result, the determining step of CO$_2$ separation from the flue gas stream is condensation. At atmospheric pressure, CO$_2$ condenses at -56.6°C. This physical technique is sufficient for the treatment of flue gas streams that contain high CO$_2$ concentrations (typically >90%), since the main disadvantage of this technology is the amount of energy required to complete the necessary CO$_2$ refrigeration for the process, particularly for dilute gas streams (Consonni et al., 2007). This statement makes cryogenic CO$_2$ separation an excellent candidate for oxy-fuel combustion CO$_2$ capture process. As a result cryogenic technology is not considered in this research.
Table 2.3: Advantages and disadvantages of different gas separation technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>a) High absorption efficiency (90%)</td>
<td>a) Absorption efficiency depends on CO(_2) concentration</td>
</tr>
<tr>
<td></td>
<td>b) Sorbents can be regenerated by heating and/or depressurization</td>
<td>b) Significant amounts of heat for absorbent regeneration are required</td>
</tr>
<tr>
<td></td>
<td>c) Most mature process for CO(_2) separation</td>
<td>c) Environmental impacts related to sorbent degradation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d) Low resistance to impurities</td>
</tr>
<tr>
<td>Adsorption</td>
<td>a) Process is reversible and the solid sorbent can be recycled</td>
<td>a) Require temperature resistant solid sorbents</td>
</tr>
<tr>
<td></td>
<td>b) High adsorption efficiency achievable (>85%)</td>
<td>b) High energy required for CO(_2) desorption process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) Further research with regard to solid sorbents is needed</td>
</tr>
<tr>
<td>Membrane separation</td>
<td>a) No need to add chemicals or regenerate a solvent with membranes</td>
<td>a) Low driving force for separation in the membrane</td>
</tr>
<tr>
<td></td>
<td>b) Low capital costs</td>
<td>b) High CO(_2) selectivity membranes is required</td>
</tr>
<tr>
<td></td>
<td>c) Compact design</td>
<td>c) Operational issues including low fluxes and fouling</td>
</tr>
<tr>
<td></td>
<td>d) High separation efficiency achievable (>80%)</td>
<td>d) Limitation on the suitable operating temperature</td>
</tr>
<tr>
<td>Cryogenic separation</td>
<td>a) Mature technology</td>
<td>a) Only viable for very high CO(_2) concentrations (>90% v/v)</td>
</tr>
<tr>
<td></td>
<td>b) The amount of CO(_2) recovered can reach 90–95% of the flue gas.</td>
<td>b) Should be conducted at very low temperatures</td>
</tr>
<tr>
<td></td>
<td>c) Adopted for many years in industry for CO(_2) recovery</td>
<td>c) Energy intensive process</td>
</tr>
</tbody>
</table>

2.1.4. Solid sorbents and selection criteria

Several reviews on adsorbents for CO\(_2\) capture and their potential applications can be found in the literature (Choi et al., 2009 and 2010, Sayari et al., 2011). Wang et al. (2011) pointed out that solid sorbents can be classified according to the temperature range where adsorption is performed:

- Low-temperature solid adsorbents (<200°C), which include carbon-based, zeolite-based, metal organic framework-based (MOFs), several alkali metal-carbonate-based, and amine based solid adsorbents;
- Intermediate-temperature (200–400°C) solid adsorbents, including hydrotalcite-like compounds or anionic clays;
- High-temperature (> 400°C) solid adsorbents, such as calcium-based adsorbents and several alkali ceramic-based adsorbents.
The selection of the right sorbent for CO$_2$ separation is complex (Samanta et al, 2011), due to the fact that they must satisfy some significant criteria in order to be both economical and operational for CO$_2$ capture from flue gases. These criteria are listed in this section, as described by Yong et al, Zheng et al and Sayari et al. (2002, 2007 and 2011, respectively):

i. **CO$_2$ adsorption capacity:** One of the most important factors in choosing a sorbent material is its equilibrium adsorption capacity which is depicted by its equilibrium adsorption isotherm. The adsorption capacity of the sorbent determines to a great extent the capital cost of the capture system, because it prescribes the amount of adsorbent required, which also dictates the volume of the adsorber vessels. Consequently, high CO$_2$ adsorption capacity (>10%w/w of sorbent) leads to reduction in both sorbent quantity and process equipment size.

ii. **CO$_2$ selectivity:** The selectivity, which is defined as the ratio of CO$_2$ capacity over capacity of another component - for example N$_2$ or other contaminants from flue gas streams - at a given flue gas composition, is proportional to the purity of the captured CO$_2$. CO$_2$ purity can affect transportation and storage; hence it can have an important impact on CO$_2$ storage economics.

iii. **Adsorption/desorption kinetics:** One crucial characteristic is its ability to adsorb and desorb fast under the operating conditions. Adsorption/desorption kinetics indicate the cycle time in a fixed-bed adsorption system, which consequently has an impact on the amount of sorbent required. CO$_2$ adsorption kinetics on a functionalized solid sorbent are influenced by the intrinsic reaction kinetics of CO$_2$ with the functional group present, as well as the mass transfer or diffusional resistance of the gas phase through the sorbent structures (Serna-Guerrero and Sayari, 2010).

iv. **Sorbents regeneration:** The heat of adsorption, which is a measure of the energy required for regeneration, should be substantially low. In physisorption, adsorption heat ranges between 25 and 50 kJ mol$^{-1}$, whereas in chemisorption the amount is higher, namely 60 to 90 kJmol$^{-1}$. The ease of regeneration as well as the preservation of the sorbent material will also help to reduce the cost of capture. One part of this research focuses on an innovative pathway for sorbent regeneration via microwave heating and is discussed later.

v. **Mechanical strength of sorbent particles:** The sorbent must demonstrate microstructure and morphological stability and retain the CO$_2$ capture capacity
after multi-cycling between adsorption and regeneration steps. Microstructure and morphological stability of tailored regenerable sorbents in multi-cycle operation is critical to maintain high kinetics.

vi. Chemical stability/tolerance to impurities: Solid CO$_2$ capture sorbents - in particular, amine-impregnated sorbents - have to be durable in an oxidizing environment of flue gas and be resistant to any flue gas contaminants. It is likely that contaminants such as SO$_x$, NO$_x$ and heavy metals may also require separation from flue gas, because they negatively affect the CO$_2$ adsorption capacity of the sorbent materials, according to Adams (2010).

vii. Sorbent costs: Tarka et al. (2006) have used a baseline of approximately £7/kg for sorbents in their sensitivity analysis for economic performance. According to their research, the best scenario involves sorbents that cost approximately $5/kg, whereas a non-economical sorbent is priced $15/kg sorbent.

viii. Availability: Another important factor for the sorbent selection is its availability in terms of quantity. Abundant raw materials for sorbent production can lead to a positive effect in the adsorption process economics (Olivares-Marin, et al., 2010). For instance, the Kawasaki CO$_2$ Capture system (KCC) bench plant employs a fixed bed column, loaded with one ton of the adsorption material, with a capacity of 10 t$_{CO2}$/day (Okumura et al., 2013).

2.1.5. Cyclic adsorption processes

CO$_2$ adsorption separation technology, similar to absorption, is a cyclic process, meaning that after saturation of the adsorbent with CO$_2$ has been achieved, a desorption step, or regeneration, is required. As a result, this step, which is fundamental for the re-use of the solid sorbent and for the recovery CO$_2$ for storage, is usually a crucial part of the capture chain, being significantly responsible for the efficiency of the entire process. There are two main technologies used to regenerate the adsorbents at a commercial scale nowadays, namely Pressure Swing Adsorption (PSA) and Temperature Swing Adsorption (TSA) and they are discussed in this section.

i. Pressure Swing Adsorption (PSA)

PSA is the most widely used technology applied for gas separation processes, being in practice for more than 60 years (Voss, 2005). It was firstly invented and used by
Skarstrom in 1959, for the separation of N\textsubscript{2} and O\textsubscript{2} from air applying a four step cycle (Skarstrom, 1960). The fundamental theory of the PSA process is simply based on the variations in working capacity presented by an adsorbent-adsorbate system when periodic alterations of the operating pressure are applied. However, the configuration of each PSA application depends on the required process, as a result different steps will be applied for a process aiming at purifying the less adsorbed component, or for a process that intends to concentrate the most adsorbed one. In the first case, the more adsorbed compound is released to the atmosphere, regardless its purity, using rapid PSA or piston-driven PSA systems (Ruthven et al., 1993) that result in cycles that last much shorter (less than 20 sec.) than the conventional systems (120-1200 sec.).

As a rule of thumb, PSA is fully efficient when the concentration of the components to be removed is relatively significant (>10-15% vol.). In this case, saturation of the column with the heavy compound/adsorbate is achieved relatively fast and since the pressure of the system can be changed rapidly, the time between adsorption and desorption is balanced (Grande, 2012). Moreover, the PSA process is preferred to other technologies when the process is carried out at elevated pressures (>20bara). Otherwise, when the concentration of the adsorbate is low (0-15% vol.), or when the process is at low pressure (for example atmospheric), other options like temperature swing adsorption (TSA) may need to be considered. For a low concentration adsorbate, the PSA technology may result in a much longer desorption step, whereas for low pressure processes the installation should also include additional vacuum pumps and compressors, both resulting in a more complicated process, increased capital cost and reduced efficiency (Cherbanski et al., 2009). A solution to the above issues would be to apply Vacuum PSA, known as VPSA; however, this technology is not applicable to post-combustion unless it is combined with a TSA step (Mejdell, 2010). As a result, PSA was not considered in this research, since the exhaust flue gas of PC and NGCC power plants is at atmospheric pressure and the CO\textsubscript{2} concentration is 12-15% and ~5% (vol.) respectively.

ii. Temperature Swing Adsorption (TSA)

Apart from PSA, an alternative technology to achieve efficient desorption of the adsorbent from a solid material is Temperature Swing Adsorption (TSA), where the increase in bed temperature operates as the driving force for the regeneration to take
place. Figure 2.7 shows the differences between TSA and PSA cyclic processes for a given adsorption isotherm. A TSA process consists mainly of three fundamental steps:

✓ Adsorption or production step at low temperature.
✓ Application of heat, breaking the physical or chemical bonds between adsorbent and adsorbate, initiating regeneration. Direct means, such as utilisation of hot steam or indirect means – external heating - including heating jackets, coils or microwave applications can be employed.
✓ Bed cooling back to the adsorption conditions, once desorption process is completed, often by using purge/inert gas.

![Figure 2.7](attachment:figure27.png)

Figure 2.7: Comparison of TSA and PSA for the regeneration of solid adsorbents (Rackley, 2009)

TSA is particularly used when the adsorption step is carried out at a low temperature (Cherbanski et al., 2009), meaning that the desorption process will take place at a higher temperature, as reported in Figure 2.7. This temperature difference between the two steps is the driving force that enables the regeneration to initiate, effectively breaking the bonds between adsorbate and adsorbent. Consequently, the main advantage of TSA over PSA is its ability to separate efficiently strong-bonded adsorbates onto adsorbents (i.e. chemisorption), since a small change in temperature can result in a significant change in the loading amount. Moreover, another advantage is that the pressure of the process does not play a significant role, as in PSA, meaning that TSA can be applied to processes operating at low as well as high pressures. As a result, taking into
consideration the above statements, TSA is usually preferred for absorption/adsorption processes at low temperature (20-60°C) and atmospheric pressure, such as post-combustion CO\(_2\) capture, where the exhaust flue gas temperature is usually between 40 and 50°C and pressure of 1 atm (Cherbanski et al., 2009).

However, a major drawback of the TSA process is the high energy intensity and the relatively long duration of the aforementioned steps, compared to PSA; the significant thermal inertia of the solid sorbent bed as well as the considerably low heat capacity of the gases that are used during regeneration are the most important reasons for the long-lasting desorption step during TSA. As a result, larger sorbent beds are required for TSA for a given throughput, compared to PSA which is a faster process utilising smaller beds, since pressurisation and depressurisation can be achieved more rapidly (Rackley, 2009). It should be mentioned that pressure transients can be rapidly achieved in a fixed bed reactor by switching the valve settings, whereas TSA’s temperature alterations require heating the metallic wall of the reactor at first and then conductively the total adsorbent bulk mass resulting in a long process requiring hours or even days (Bonjour et al., 2002) to complete one cycle, and hence, affecting the cycle productivity. Another disadvantage of the TSA process is that the desorbed compound, in this case CO\(_2\), is considerably diluted with the heating gas stream, resulting in a low purity recovery gas stream (Cherbanski et al., 2009).

2.1.6. Challenges in post-combustion CO\(_2\) capture

Post-combustion CO\(_2\) capture technologies are believed to be the best candidates for short term implementation at fossil fuel fired power plants, since they can be retrofit to existing facilities with the least difficulty, however at the current state of development, they are presented as a costly solution for CCS. Currently, the most mature and commercially available separation technology to be used in post-combustion is chemical absorption with amine scrubbing. However, every post-combustion capture approach still suffers from the same challenge, namely the substantially large parasitic load that is imposed on the power plant, reducing its efficiency while increasing its CAPEX and OPEX. Large volumes of flue gas to be treated mean that large quantities of liquid (or solids for adsorption) are needed for CO\(_2\) separation and capture along with large equipment. Consequently, the energy needed to regenerate the solvent/sorbent poses as the most significant challenge in the CCS chain.
As a result, intensification of the cyclic regeneration processes, such as PSA and TSA, is crucial and is the focus of this research. This can initially be achieved by reducing the cycle time, resulting in more CO₂ captured for a given quantity of sorbent. However, time reduction of a cyclic process could result in a decreased working capacity (the amount of CO₂ that is expected to be captured by a specified amount of adsorbent during one adsorption–desorption cycle) per cycle of the adsorbent. This would mean that CO₂ will be retained in its pores, decreasing CO₂ recovery and sorbent’s CO₂ adsorption capacity in the next cycle, while increasing pressure drop (Rezaey et al., 2010). The second parameter that needs to be investigated is the energy consumption during the cyclic process; energy efficient steps, including waste heat utilisation, reactor optimisation and the use of innovative processes, such as microwave heating need to be considered (Song et al., 2016). Microwave Swing Adsorption (MSA) has not been a field of research for CO₂ capture, although this technology has shown great results for other processes, including removal of water vapor, methyl-ethyl-ketone (MEK) and tetrachloroethylene from contaminated air streams (Vallee, 2006 and Hashisho et al., 2005), as well as NOₓ reduction (Roberts et al., 2005) and wastewater purification (Ohgushi et al., 2001). MSA technology may result in time and energy savings, mainly due to the significantly different heating method applied, compared to TSA as described in the next sections (Section 2.2).

2.2. Microwave Swing Adsorption (MSA)

2.2.1. Process intensification and microwave technology

Process intensification (PI) is widely considered as one of the most promising strategies for the power industries nowadays and one of the most important areas of research for modern chemical engineering. It includes the development of novel apparatuses and techniques that, compared to those commonly used today, are expected to bring dramatic improvements in manufacturing and processing, substantially decreasing equipment-size/production-capacity ratio, energy consumption, or waste production, and ultimately resulting in lower cost, sustainable technologies (Ramshaw, 1995). Moreover, the three most widely cited books about PI (Stankiewicz and Moulijn 2003, Keil 2007, Reay et al. 2013) describe it as a bundle of diverse technologies, while Van Gerven and Stankiewicz (2009) defined four basic principles regarding process research and development (r&d), namely spatial, thermodynamic, functional, and temporal,
which need to be addressed in order to intensify a chemical process. From a pure process engineering perspective, a PI approach is a strategy to enhance mass and energy transfer phenomena across all the plant operations, focusing mostly on the thermodynamic domain of the aforementioned principles.

As a result, the main area of study focuses on how energy can be transferred from the source to the recipient in the required form and amount, at a specific moment and position. The conventional input of energy in chemical processing systems occurs via conductive heating with a steam boiler as a typical heat source. Nonetheless, there is a large variety of other forms of energy that can be applied for PI, including ultrasound (for reactions or crystal nucleation), light (in photocatalysis) and microwaves. Utilisation of microwave energy for heating processes has been known for a long time, and the development of microwave ovens has more than 60 years of history (Clark, 1996).

During recent years, microwaves have been extensively used for carrying out chemical reactions and have become a useful non-conventional energy source for performing chemical-organic synthesis (Agazzi and Pirola, 2000), offering great advantages compared to conventional heating. In particular, lower energy consumption, reduced heating time, volumetric heating, selective and enhanced desorption and separation, are some of the advantages that heating with electromagnetic waves offers (Yuen and Hameed, 2009). In general, microwaves are considered to be an intensified solution to the problem of energy consumption using conventional heating. Microwave assisted operations are recognised as a very promising pathway for intensification of chemical processes with the potential for lowering the cost of the reaction and the efficiency penalty that is imposed on the process (Cherbanski et al., 2009).

Nowadays, microwave heating applications can be found in several sectors of chemical/process industries, such as:

- Food industry (drying, cooking, tempering, pasteurization, sterilization, thawing)
- Rubber and plastic industry (preheating of resins and rubbers, vulcanization, bonding, curing, welding, shrinking)
The most common microwave applications can be found in food industries for food processing, sterilization, pasteurization, drying, etc. Furthermore, microwaves are utilized for other processes as well, namely soil remediation, pyrolysis of biomass and organic waste and heterogeneous catalytic reactions (Menendez et al., 2010). Regeneration of various types of adsorbents via microwave heating has also gained attraction recently, including silica gel (Reuss et al, 2002), zeolites with different silica to alumina ratio (Price et al., 1997 and 1998), activated carbon (Ania et al., 2004, 2005 and 2007, Coss et al., 2000) and polymeric adsorbents (Price et al, 1997 and 1998).

However, the concept of using microwave energy in CO₂ capture applications to replace conventional cyclic TSA and/or PSA processes is quite novel. Accordingly, this research focuses on the optimisation of the desorption process by utilising electromagnetic waves for more efficient heating of the adsorbents and the parameters that affect the regeneration process via MSA and TSA are thoroughly discussed in the next chapters.

2.2.2. Microwave heating process

Microwaves are electromagnetic waves with frequencies between 0.3 and 300 GHz (Meredith, 1998; Pozar 1998) placed in the high frequency range of radio waves (Ultra High Frequency (UHF), Super High Frequency (SHF), Extremely High Frequency (EHF)), with a corresponding wavelength (\(\lambda\)) between 1m and 1mm (Figure 2.8). In order to avoid interference with telecommunication devices, there are only some specific frequencies that have been allocated for industrial and domestic microwave processes. The most commonly used frequency is 2450±50MHz, typically in domestic ovens, while 915±13 MHz is used by industrial microwave systems (Meredith, 1998), which according to the equation

\[
\lambda = \frac{c}{f}
\]

(2.1)
where \(c \) is the light velocity (m/s) and \(f \) is the frequency (Hz), result in the following wavelengths (\(\lambda \)) of 12.24 and 32.75 cm, respectively.

\[
\lambda = \frac{c}{f}
\]

Figure 2.8: The electromagnetic spectrum and corresponding wavelengths (Jewett, 1994)

Generally, materials can be classified into three groups depending on their ability to be heated by microwaves, as seen in Figure 2.9 (Stefanidis et al., 2014):

- conductors, such as metals or graphite, that reflect microwaves from their surface;
- insulators, such as polypropylene or quartz glass, that absorb small amounts of microwave energy, as microwaves penetrate the material; and
- absorbers, or the so-called “dielectric” materials, such as silicon carbide, which absorb the microwaves, resulting in heat generation.

Figure 2.9: Microwave interactions with different types of materials: (A) conductive material, (B) insulating material, and (C) absorbing material (Durka et al., 2009).
However, the amount of microwave energy absorbed by the dielectric materials differs depending on the material properties, particularly the relative permittivity (ϵ'_r) and the relative dielectric loss factor (ϵ''_r) of the material, as discussed below.

2.2.3. Microwave heating mechanisms

There are three types of heating phenomena caused by the application of electromagnetic waves, namely:

- Conduction loss heating
- Dielectric heating and
- Magnetic loss heating.

Combining those three mechanisms, the thermal energy (P_{th}) produced per unit volume due to microwave irradiation can be expressed by equation 2.2:

$$P_{th} = \frac{1}{2} \sigma_{el} |E|^2 + \pi f \epsilon_0 \epsilon''_r |E|^2 + \pi f \mu_0 \mu''_0 |H|^2$$

(2.2)

Where σ_{el} is the electrical conductivity, $|E|$ and $|H|$ represent the strength of the electric and magnetic field of microwaves respectively, ϵ_0 is the permittivity in vacuum, μ_0 is the magnetic permeability in vacuum and μ''_0 is the relative magnetic loss. The first term of the above equation (2.2) describes heating due to conduction losses, while the second and the third terms denote the dielectric and the magnetic loss heating respectively. As a result, microwave heating depends on the electric, dielectric and magnetic properties of the substance to be heated.

2.2.4. Dielectric heating

The inability of partially bound charges to follow the rapid changes in a high frequency electric field gives rise to one mechanism of microwave heating, namely dielectric polarisation (Whittaker et al., 1994). The phenomenon of polarisation appears when a dielectric material is exposed to an electric field. In simple terms, polarisation is defined as the dipole moment per unit volume of the dielectric material. This dipole moment is equal to the product of the charge of the dipole and the distance between the...
two charged partners. As seen in Figure 2.10 (von Hippel, 1954; Smyth, 1955; Metaxas and Meredith, 1983), there are several polarisation mechanisms, depending on the frequency of the applied field and the electrical characteristics of the material. For example, in the case of industrial microwave heating applications, the orientation polarization mechanism lies at frequencies above 1 GHz (Metaxas and Meredith, 1983).

Firstly, electronic polarization can be found in the ultraviolet light frequency regime and is a rapid process, requiring 10^{-15}s. It is the result of the displacement of the negative electrons with respect to the positive atomic nuclei in response to the applied electric field. Hence, an induced dipole moment is formed.

Secondly, atomic polarization stems from the unequal electron distribution between the molecule atoms which results in the displacement of the atomic nuclei, as the electron clouds are forced towards the stronger binding atom (Hashisho, 2007). In the absence of an electric field, the polar material denotes a permanent dipole moment. However, when the electric field is present, the equilibrium area of the atoms changes and an induced dipole moment is created, combined with the permanent one. This process requires about 10^{-14} s, placed within the infrared light frequencies.

Thirdly, in the case of dipole (or orientation) polarization, the electric field component of the microwaves results in induced dipoles to rotate with the alternating field. This molecular movement produces friction among the rotating molecules, and the energy is subsequently dispersed as heat. Non-polar molecules with symmetric charge distributions, such as CO$_2$, have a very small loss factor (ε'') and dipole moment and consequently exhibit limited microwave energy absorption. On the other hand, H$_2$O and a wide range of organic compounds such as MEK comprise of polar molecules as they have charge asymmetry that creates large dipole moments. The time required for the dipole polarization depends on the frictional resistance of the medium to the change of molecular orientation. For gases, the process takes about 10^{-12} s, relating it with infrared light frequencies region. Low-viscosity liquids with small molecules, dipolar polarisation needs about 10^{-11}s to take place, corresponding to the microwave frequencies region, while for viscous liquids or large molecules about 10^{-6} s are needed (radio frequencies region).
Lastly, space charge (interfacial or Maxwell-Wagner) polarization occurs at the boundary of heterogeneous materials with varying dielectric properties, or in dielectric solid materials with charged particles which are free to move in a delimited zone of the material, such as π-electrons in carbon materials, as Zlotorzynski (1995) pointed out. Since the electrons cannot couple with the changes of phase of the electric field, the energy is dispersed in the form of heat, known as the Maxwell-Wagner effect. This accumulation of charge requires flow of current through the components of the material, which may require seconds or minutes, so that it may be witnessed only at very low frequencies. As a result, the main heating mechanism used for the completion of this research was the Maxwell-Wagner effect, as most of the materials used for the experimental work were carbon based. However, the effect of moisture is also discussed and explained, trying to take advantage of a binary mechanism combining dipolar polarisation and Maxwell-Wagner effects for a more efficient microwave heating.

![Diagram of polarization mechanisms at various frequencies](image)

Figure 2.10: Polarization mechanisms at various frequencies (von Hippel, 1954)

2.2.5. Dielectric constant, loss factor

The ability of a material to convert microwave energy into thermal energy can be expressed by the loss tangent, also called the dissipation factor (Weissberger and Rossister, 1972), described in equation 2.3:

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'_r}$$ \hspace{1cm} (2.3)
where, the relative permittivity (ε'_r) provides the polarizing level of a molecule in an electromagnetic field. Moreover, the relative dielectric loss factor ε''_r shows the measure of a material’s ability to convert energy to heat, whereas the loss angle (δ) depends on the phase orientation of the molecules and change in the electric field.

The frequency dependencies of ε'_r and ε''_r are presented in equations 2.4 and 2.5:

$$\varepsilon'_r = \varepsilon'_\infty + \frac{(\varepsilon_0' - \varepsilon'_\infty)}{(1 + \omega^2\tau^2)}$$ \hspace{1cm} (2.4)

$$\varepsilon''_r = \frac{(\varepsilon_0' - \varepsilon'_\infty)\omega\tau}{(1 + \omega^2\tau^2)}$$ \hspace{1cm} (2.5)

where ε'_∞ is the high frequency constant, ω the angular frequency ($\omega = 2\pi f$) and τ is the relaxation time which is the exponential decrease with time of the polarization in a dielectric when the externally applied electric field is removed:

$$\tau = \frac{4\pi r^3 \mu_d}{k_B T}$$ \hspace{1cm} (2.6)

where r is the radius of the dipole, μ_d the dynamic viscosity, k_B the Boltzman’s constant and T the temperature. It can also be defined as the time at which the polarization reaches $1/e$ (e being the Napier’s constant) of its initial value (Smyth, 1955). It can be derived from equations 2.4-2.6 that the efficiency of the energy conversion depends on the dielectric properties of material as well as on the frequency of the applied electric field and the temperature (Cherbanski et al., 2009).

It is notable that the loss factor of a material depends on its physical state; for example, water in its solid form has a low loss factor, however in its liquid form has a high loss factor, as presented in Table 2.4. Moreover, this table also shows that another parameter that affects the ability of a material to absorb microwave energy and convert it into heat is its form; it is evident that coal has the lowest loss tangent value (0.02-0.08), while activated carbons’ values range between 0.22 and 2.95, depending on the temperature of the sample. It is interesting to mention that the loss tangents of most of the carbons, except for coal, are higher than the loss tangent of distilled water, which is
an excellent microwave absorber due to its polar nature \((\tan \delta \text{ of distilled water} = 0.17 \text{ at } 2.45 \text{ GHz and } 298 \text{ K})\).

Table 2.4: Dielectric properties of selected materials, in various states, at 2.45GHz (Hashisho, 2007 and Menéndez et al., 2010)

<table>
<thead>
<tr>
<th>Material</th>
<th>(T (^\circ \text{C}))</th>
<th>(\tan \delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water, ice</td>
<td>-12</td>
<td>0.001</td>
</tr>
<tr>
<td>Water, distilled liquid</td>
<td>25</td>
<td>0.169</td>
</tr>
<tr>
<td>Water, distilled liquid</td>
<td>85</td>
<td>0.05</td>
</tr>
<tr>
<td>Coal</td>
<td>25</td>
<td>0.02-0.08</td>
</tr>
<tr>
<td>Carbon foam</td>
<td>25</td>
<td>0.05-0.2</td>
</tr>
<tr>
<td>Charcoal</td>
<td>25</td>
<td>0.11-0.29</td>
</tr>
<tr>
<td>Carbon black</td>
<td>25</td>
<td>0.35-0.83</td>
</tr>
<tr>
<td>Activated carbon</td>
<td>25</td>
<td>0.57-0.8</td>
</tr>
<tr>
<td>Activated carbon</td>
<td>125</td>
<td>0.22-2.95</td>
</tr>
<tr>
<td>Carbon nanotube</td>
<td>25</td>
<td>0.25-1.14</td>
</tr>
</tbody>
</table>

2.2.6. Penetration depth and heating uniformity

The penetration depth is a characteristic length that describes the gradual absorption of microwave power. This depth can be defined as when incident microwaves lose their power to about 37% of their initial value at the surface. The penetration depth \((D_p)\) can be expressed by equation 2.7, as expressed by Bathen (2003) and Cherbaniki et al. (2009):

\[
D_p = -\frac{1}{im(\beta)} \tag{2.7}
\]

With

\[
\beta = \frac{2\pi f}{c} \sqrt{\varepsilon_r' - j\varepsilon_r''} = \frac{2\pi f}{c} \sqrt{\varepsilon_r' c \sqrt{1 - j\tan \delta}} \tag{2.8}
\]

Hence, for materials with low-to-moderate loss tangents \((\tan \delta < 1)\) one may write the approximate relation

\[
\tan \delta \sim \frac{1}{D_p} \tag{2.9}
\]

meaning that a material’s ability to convert (microwave) electrical energy into heat is approximately inversely proportional to its penetration depth. Consequently, \(D_p\) can be
calculated provided that ε_r' and ε_r'' are known. The thickness of the absorbing material should be less than the penetration depth. Otherwise, more than 37% of the microwave power will be lost and may contribute to overheating (Cherbanski et al., 2009).

The penetration depth could also describe how heat is distributed in the workload, i.e. the target object to be heated. A small D_p value - relatively to the workload dimensions – would suggest that most of the energy is dissipated within the proximity of the object surface and hence non-uniform heating and serious temperature gradient may be expected. This effect can be overcome if the volume of the workload is a very small proportion compared to the microwave cavity (for instance <10%). Depending on the size of the cavity relative to the workload and the location of the microwave source (magnetron), the exponential may extend from more than one face of the workload. For discrete workloads of simple rectangular shape, the sum of exponentials from each face results in addition at the edges, resulting in a high temperature increase at the corners (Meredith, 1998).

For a semi-infinite ideal slab (i.e. with homogeneous ε_r' and ε_r'') targeted by normal waves, the temperature rise at depth z is given by the following equation (Meredith, 1998, Datta and Anantheswaran 2001):

$$T_z = T_0 \exp \left(\frac{-z}{D_p} \right)$$ \hspace{1cm} (2.10)

Where T_z and T_0 are the temperatures at depth z and at the starting point respectively. Particulate workloads packed in beds may also suffer from non-uniform heating due to concentration or displacement current around the contact points between single particles. One of the major drawbacks of the non-uniform heating is the creation of ‘hotspots’. This phenomenon occurs due to the nonlinear relationship between the temperature and the electromagnetic and thermal properties of the material. An uncontrolled microwave heating may produce very high temperatures at various locations within the material - hotspots (Reimbert et al, 1996) - which may lead to the sintering of the adsorbent, which will inevitably reduce its adsorption capacity. The magnitude of this effect, however, depends on the thermal properties of the bed’s material, which significantly influence the way heat is conducted away from the hot spot into the main thermal mass of the particle bed. When this heat flow equals the rate
of heat dissipation at the hotspot, then equilibrium is reached. Local geometry of the bed and thermal diffusivity of the particles are crucial parameters that affect the temperature uniformity of the bulk (Hossan et al., 2010).

In the literature, there has been an extensive effort to understand, model and determine the formation of hot and cold areas during microwave heating. Sakai and Wang (2005) confirmed the influence of dielectric properties of a material on the temperature distribution. Moreover, Gunasekaran and Yang (2004 & 2007) stated that parameters such as size, geometry, pulsating ratio, and microwave processing time are also factors that influence the sample temperature distribution and concluded that the pulsed microwave heating provides a higher level of uniformity compared to continuous microwave heating. Another interesting research by Funawatashi and Suzuki (2003) classified the reasons for non-uniform heating into two categories based on the size of the workload; in smaller objects (smaller than the penetration depth) heating applications, standing wave is dominant as interaction between transmission and reflection waves takes place within the object. On the other hand, for larger size workloads, the rapid decay of incident wave is the primary cause for the non-uniform heating.

Modelling of the hotspot formation has also been a wide field of research; Smyth (1992) developed a model to show the influence of material conductivity and thermal diffusivity on hotspot formation. Moreover, Kriegsmann (1997) developed a model to describe the physical mechanism and mathematical structure of hotspot formation and presented a numerical solution to the problem. The equations of this model describe both the physical mechanism as well as the mathematical structure for the hot-spot formation. Furthermore, Zhang et al. (1999) investigated hotspot formation during H2S decomposition in a metal catalysed bed. This research estimated that hotspots in a metal catalysed bed have a dimension of 90-1000μm and occur at a temperature 100-200°C higher than that of the bulk.

In the case of carbon materials, where delocalized π-electrons are allowed to relocate between relatively broad regions, an additional and very significant phenomenon was observed during microwave heating reported by Menéndez et al. (2010), where the kinetic energy of some electrons increased allowing them to violently abandon the
material, which resulted in the ionization of the surrounding atmosphere. Macroscopically, this abnormality is noticed as sparks or electric arcs formation, however, microscopically, this hot-spot formation can be regarded as formation of plasma. More specifically, these are actually micro-plasmas, since they are restricted to a tiny area inside the sorbent bed and last for just a fraction of a second, depending on the power used for the heating process and the void space inside the packed bed that stems from the materials’ shape. An extensive micro-plasmas’ formation may result in more destructive implications of the workload and/or microwave system, especially if a scaled-up is considered.

2.2.7. Factors Affecting Dielectric Properties

One of the most important parameters about electromagnetic energy is the dielectric properties of the heated material, since microwave heating is controlled by the dielectric loss factor. As a result, characterization of the material’s dielectric properties is essential for the proper design of microwave applicators and for the prediction of the penetration depth. However, dielectric properties are affected by various factors, depending on application:

- Temperature
- Moisture
- Frequency

A research carried out by Liu et al. (2013) proved that moisture content is the major influence factor contributing to the variation of dielectric properties. Dielectric constant, loss factor and loss tangent all increased linearly with increase in moisture content, because water content increased the microwave absorption potential of the medium. The same research showed that the penetration depth was found to decrease with an increase in the moisture content, since the penetration depth is inversely proportional to the dielectric constant. They stated that temperatures between 20 to 100°C were found to have a positive effect on dielectric constant and loss factor.

The frequency of the electromagnetic waves has a significant effect on the dielectric constant and loss factor of most materials. However, this dependence has little
importance from a practical point of view; as explained previously, industrial applications of microwaves are set to two specific frequencies – 915 and 2450 MHz – selected carefully to avoid interferences with other frequencies used for telecommunications and defence applications. Moreover, frequency is not a parameter in this research, as all the experiments are conducted at a fixed value of 2.45GHz.

2.2.7.1 Effect of temperature

The dielectric properties of a material are temperature dependant; nonetheless, this dependence is a function of the dominant relaxation mechanism for each operating frequency (Metaxas and Meredith, 1983). An increase in temperature results in a decrease of the relaxation time and a shift of the peak of the loss factor at higher frequencies.

In the relaxation regime, the dielectric constant increases proportionally with increasing temperature; however, the loss factor may increase or decrease depending on whether the operating frequency is higher or lower than the relaxation frequency. Outside the relaxation regime, the dielectric constant decreases when the temperature increases. However, in the case of an increasing loss factor with temperature, the ‘runaway effect’ may appear. This effect is responsible for the uncontrolled increase of the workload temperature derived from the positive slope of the loss factor versus temperature response (Metaxas and Meredith, 1983, Datta and Anantheswaran, 2001).

2.2.7.2 Effect of moisture

Water is considered a great microwave absorber due to its strong polarity. It can effectively absorb microwaves either as a bulk liquid or when it is coupled with a solid material. In wet materials, water can be ‘free’ (residing in capillaries and cavities), ‘bound’ (chemically combined to other molecules) or ‘adsorbed’ (physically adsorbed to the surface of a solid material). As a result, the presence of water as moisture can generally increase the effective loss factor of a material and thus promotes efficient microwave heating. However, the amount that the dielectric properties are affected from moisture depends on the state of the water; ‘Bound’ water molecules in the first uni-molecular layer along the surface of a material are less rotationally free than ‘free’ water in capillaries or cavities (Hashisho, 2007). As a result, the loss factor for ‘free’
water is higher than in the case of ‘bound’ water molecules (Metaxas and Meredith, 1983). For the same amount of water, the loss factor in the ‘free’ bulk state is usually > 10% compared to the value in the ‘bound’ or ‘adsorbed’ state (Meredith, 1998). Practically, for a given frequency, the change of the loss factor against the moisture content in a wet solid creates two regions related to ‘bound’ and ‘free’ water (Figure 2.11). For a low moisture content (<20%), water found in the “bound” state undergoes a slow increase of the loss factor with increasing moisture content until it reaches the critical moisture content. Then, for high moisture content (>40%), ‘free’ water is predominant and shows a faster increase in the loss factor with increasing moisture content.

Figure 2.11: Variation of effective loss factor with moisture content (Metaxas and Meredith, 1983)

2.2.8. Basic microwave equipment

The microwave equipment - also frequently called ‘applicators’ - used in heating processing can be divided into two main categories: the multimode, being the most widespread ones, known for its flexibility to be used in various applications from domestic use to large scale industrial reactors, and the mono (or single)-mode applicators. A multimode applicator consists of a rectangular-shaped closed metal box, referred to as ‘cavity’ (Figure 2.12), with at least two dimensions of the box relatively longer than half of the free space wavelength of the radiation, 122 mm at 2450 MHz (Bradshaw et al., 1998). A waveguide, or a transmission line, carries the microwave energy into the cavity which consequently is absorbed from a high-loss material, placed within (Mehdizadeh, 2009).
Inside the cavity, the microwaves get reflected from the cavity metal walls, which, even though it reduces the energy losses since the waves do not escape the box, results in wave interference. Consequently the main drawback of multimode cavities is that the microwave field that heats the workload, is highly non-uniform even if a mode stirrer or a rotating disk is used. On the other hand, the most important advantage of these applicators is that they can be constructed in any size to accommodate various volumes of materials for processing. Nowadays, multimode applicators are mainly used for power applications for material heating and plasma activation. However, multimode cavities seem to gain attraction recently regarding alternative applications, such as microwave-enhanced chemistry (Singh, 2014), where microwave energy is utilized for enhancing chemical reactions, or materials’ sintering, particularly ceramics (Katz, 1992).

Contrary to the multimode systems, the single (mono)-mode applicator, generates a relatively more stable single-standing wave inside the cavity. The target material is directly positioned at one of the maxima of the electromagnetic field, as seen in Figure 2.13 (Stefanidis et al., 2014). This distinguishing feature of the mono-mode cavity results in higher heating rates compared to the multimode cavity since higher electromagnetic field densities can be created inside the cavity (Ondruschka et al. 2012). However, it also dictates that their volume and the material workload are strictly limited.
in terms of size. Therefore, their main limitation is the process volume of the workload that cannot exceed 200 ml and as a result it is not applied for large-scale material heating processes.

![Diagram](image)

Figure 2.13: Monomode microwave applicator (Stefanidis et al., 2014)

For the purposes of this study, a multimode cavity has been utilised, mainly due to the flexibility it offers with regards to accommodating different reactors in various sizes and shapes. An extensive description of the cavity can be found in Section 3.2.2.

2.2.9. Microwave swing Adsorption (MSA)

Conventional CO$_2$ capture processes are expensive and would result in an 80-85% increase in the COE, as mentioned in Section 2.1.3. The major contributor to the cost, accounting about 60%, comes from the intensive energy use during desorption that results in a parasitic power loss by about 30% in the power plant (Lu et al., 2010). As a result, reducing the energy consumption in the desorption process is the key to lowering the CO$_2$ capture cost. Two desorption methods are typically applied in laboratory and/or industrial applications nowadays, namely PSA and TSA, as explained in Section 2.1.5. In particular, PSA is the most common technique, very well established, developed and described in the literature (Ruthven, 1984, 1997 and Suzuki, 1990). However, PSA approach is fully effective only for processes carried out at pressures higher that atmospheric pressure. Otherwise, the installation should be additionally equipped with compressors and/or vacuum pumps, which complicates the process and reduces its efficiency. Application of PSA process is also restricted to fixed-bed reactors (Cherbanski et al., 2009). Furthermore, TSA cycles have the disadvantage of the time restriction and of the massive amount of hot steam needed for the heating of the sorbents, which can be up to 400kg/hr, resulting in a heat duty of 900MJ/hr.
(Yokoyama, 2012); the time needed to swing adsorbent beds over a temperature range can be relatively long, as the vessel and the adsorbent bed need to be heated. Moreover, this excess of hot purge gas used implies an increased energy penalty for the power plant (Ania et al. 2005).

Since the microwave process is not limited by the thermal conductivity of the reactor column, the result is an instantaneous localized superheating of any substance. Specifically for CO\textsubscript{2} desorption, the direct absorption of energy, in contrast to the indirect supply of heat by thermal conduction, by the adsorbent may enable a much faster process with a lower purge gas flow rate and lower process temperature. Consequently this may result in energy savings and faster desorption kinetics, making the desorption process more efficient and cost-effective. Microwave regeneration of a saturated adsorbent can happen by one, or a combination, of the three following mechanisms:

- only the adsorbent couples with the microwaves or
- both adsorbent and sorbate couple or
- only the sorbate couples.

From the perspective of energy efficiency, as Atwater et al. (1997) pointed out, the last mechanism offers the greatest potential savings compared to conventional heating since the energy required for regeneration is transferred directly to the sorption site. A good example of the third mechanism is H\textsubscript{2}O bound on silica gel. A fourth mechanism for MSA can be possible by mixing the sorbent material with a microwave susceptible material such as silicon carbide (SiC). This mechanism may apply to sorbents based on lithium (Li\textsubscript{4}SiO\textsubscript{4}) or silver oxide (Ag\textsubscript{2}O) in which the adsorbate, in this case CO\textsubscript{2}, is chemisorbed, producing lithium carbonate (Li\textsubscript{2}CO\textsubscript{3}) and silver carbonate (Ag\textsubscript{2}CO\textsubscript{3}) respectively (Atwater et al., 1997). Sorbent materials that chemisorb CO\textsubscript{2} will generally need higher temperature and/or longer regeneration times, compared to physisorbents. Nevertheless, microwave heating provides the possibility of reaching high temperatures much faster than conventional heating and this can be a particular advantage when electromagnetic energy is applied to composite mixtures of these sorbents, making the regeneration possible, which otherwise would not be practical.
Price and Schmidt (1998) focused on Volatile Organic Compounds (VOC) abatement and recovery of the condensed organic solvents, conducting various experiments using several process configurations applicable to fixed-bed microwave regeneration systems. They clearly stated that microwave desorption performance depends on various parameters, such as adsorbent selection, column flow configuration, purge method and system pressure. A computer model was developed in order to investigate all the studied configurations. The result of this research suggested that low dielectric loss factor polymeric adsorbents, operating under low-pressure conditions (about 5 mmHg) in horizontal fixed bed columns, and adsorbent regeneration to near-zero coverage is the most favourable with regards to process and cost efficiency. Furthermore, studies in the possibility of enhancing the adsorption capacity of the sorbent via microwave regeneration have been shown very promising. Specifically, Liu et al. (2004) proved that the adsorption capacity of the GAC was higher after microwave regeneration. This can be explained after investigation of the surface area and the total pore volume, which showed an increase of 10% and 5%, respectively, compared to the initial GAC characteristics. Similarly, Cha et al. (1995) published a report proving a rise in NO\textsubscript{x} adsorption capacity after 9 cycles from 10 to 30 g NO\textsubscript{x} per 100 g of char.

Ania et al. (2005) observed changes in the porous structure of the TSA regenerated samples that were due to a two-fold effect; firstly, thermal heating resulted in partial collapse of porosity, and secondly, the decomposition of any molecules that did not leave the sorbent formed coke deposits within the pore network of the material. On the other hand, when MSA was performed, a temperature gradient was observed in the sorbents, which decreased from the inside towards the material’s surface. As a result, all the desorbed molecules migrated expeditiously to the surface of the sorbent, the latter showing lower temperature than the core of the sample. Consequently, the formation of coke deposits inside the porous structure of the sorbents is prevented, resulting in a better preservation of the textural characteristics of the sorbent. Whereas in conventional heating, the desorbed molecules near the core decomposed inside the porous network of the material, before they could completely leave the sorbent surface. Hence, coke residues may block the pore structure of the sorbent, resulting in a greater decrease of the apparent BET surface areas and micropore volumes. Consequently, adsorptive capacities after material regeneration were found to be much higher when regeneration was carried out with the MSA technique compared to the TSA, even after various cycles of regeneration (Ania et al., 2005). Specifically, this study suggested that
the cyclic microwave process can preserve the sorbent’s phenol adsorption capacity, however after the fourth cycle a decrease was reported. After 6 cycles, the decrease in phenol adsorption capacity, compared to the capacity of the original sample, was 70% when using microwaves for the regeneration process, versus an 82% decrease for conventional heating desorption. As a result, the study concluded that utilisation of microwave energy in the sorbent’s regeneration process can contribute to the preservation of the sample – increasing its lifespan - and to an increase in the efficiency of its regeneration. Chang et al. (2012) concluded that the surface of the sorbent – in that case activated carbon with NO$_x$ as sorbate - was uneven and displayed microporosity without any cracks and breaks after regeneration.

The effects of microwave regeneration of sorbent materials can vary depending on various process parameters, such as applied power, mass of saturated adsorbent, purge gas flow rate, and irradiation. Chen et al. (2009) performed microwave regeneration of activated carbon loaded with toluene, focusing on the different results that were obtained after various parameters’ combinations. It was stated that the optimal conditions for the maximum regeneration ratio (77.2%) were 500 W microwave power, 60 ml/min carrier gas flow rate, and 180 s irradiation time for saturated activated carbon mass of 5.01 g. Their conclusion was that the amount of activated carbon and the packing density affect the heat transfer and temperature distribution in the vessel. It was also clear that high purge gas flow rates decrease the adsorbent bed temperature, whereas no purge gas leads to self-burning of the carbon.

Han et al. (2009) studied the effect of microwave irradiation on desorption of malachite green from natural zeolite aiming at proving a connection between applied microwave power and regeneration yield. Their results showed that the usage of different power levels, ranging from 160 to 800 W, had an effect on the thermal conditions in the loaded bed, considerably influencing the regeneration yield of zeolite. More specifically, after 10 mins of microwave heating the yield reached 85.8%, whereas in the case of conventional thermal treatment, the yield reached 78.6, 78.2, and 81.7% after 30 mins of heating at temperatures of 300, 500, and 700 C, respectively. Furthermore, they stated that the particle and the pore size of the zeolite had an effect on the regeneration yield as well; after three successive regeneration cycles, the yield decreased from 85.8 to ~80% due to the reduced microporosity of the zeolite.
Polaert et al. (2010) published an experimental study on microwave desorption, where several types of adsorbents with different dielectric properties and porosity were tested, such as activated alumina, silica, NaX, and NaY zeolites. This study reached to the conclusion that desorption is dictated by the absorbed power over the duration of the process. Moreover, it was stated that the dielectric properties of both adsorber and adsorbate, as well as the temperature variations are more important than the porous structure of the solid adsorbent and the molecular structure of the adsorbate. They concluded that the polarity of the adsorbate is also a factor of huge importance, as it works as the initial reference of the level of electromagnetic conversion. On the other hand, Hashisho et al. (2005) claimed that the adsorbate polarity does not affect the desorption potential and it is only the heating ability of the sorbent that is important, a theory on which the present study is based on. They also suggested that microwave regeneration can be effective for both polar and nonpolar adsorbates. It was concluded that in case of low adsorbate loading, microwave heating is governed by the loss factor of the activated carbon fibre cloth.

Another interesting research on MSA technology was reported by Wang et al. (2010), focusing on desorption of dye reactive red 3BS from carbon nanotubes under microwave irradiation, heating for 15 mins by applying 500 W in a domestic multimode oven. They observed a significant decrease in the adsorption capacity to 92.8% of the original value after 4 microwave regeneration cycles, which may be due to coke formation from the decomposition of organic residues and changes in the pore structure; the surface area and pore volume of the solid sorbent were also reduced by 74% and 72%, respectively.

Liu et al. (2012) studied the application of microwave irradiation on the regeneration of activated carbon for the treatment of industrial waste-water from a chemical plant. Specifically, the regeneration of the exhausted GAC under microwave heating was investigated, reporting that a microwave power of 400 W under a radiation time of 3 min for 10g of GAC are the optimal conditions for this process. Under these conditions the regenerated GAC recovered 97.6% of its original adsorption capacity, whereas multi-cycle regeneration tests showed that it was possible to maintain a stable performance during the first cycles. However, a performance decrease was observed
after further repetitions, resulting in a GAC weight loss of about 10% after the sixth cycle, while a decrease in the surface area was also apparent.

Ondon et al. (2013) explored the microwave regeneration of modified activated carbons, previously saturated with phenol, under nitrogen conditions. In contrast to Liu et al. (2012), they reported that the optimum conditions for the regeneration were at 700W for a 3 minutes irradiation. Under these conditions, the regeneration efficiency of the modified activated carbons reached 98% even after 10 regenerations cycles. They also concluded that the time and the power of microwave irradiation plays a significant role on increasing the regenerations efficiency. Another study by Caliskan et al. (2012) studied the regeneration of activated carbons previously loaded with promethazine comparing microwave and conventional heating. In contrast with the above studies, the authors concluded that the adsorption capacity of the activated carbon decreased after successive adsorption-desorption cycles. This was due to the thermal cracking of the adsorbate, which was more affected under MSA compared to TSA (Caliskan et al. 2012). The above prove that not only the adsorbent, but also the adsorbate plays an important role to the optimum conditions of the microwave regeneration process, as well as the operating conditions (Stefanidis et al., 2014).

Recently, Webley et al. (2014) examined the use of microwave assisted vacuum in the CO₂ capture process as a way to direct thermal energy straight to the adsorbent surface in order to release water and CO₂, under both wet and dry gas conditions. The addition of microwave radiation to the existing vacuum swing regeneration system improved the rapid desorption of CO₂ and water. Under dry gas conditions, the enhancement was due to microwave heating of the 13X zeolite adsorbent, facilitated by the high cation density in the faujasite structure. On the other hand, under wet gas conditions, the temperature rise of the adsorbent upon microwave heating was much lower than that predicted by simple heating suggesting that the microwave radiation is absorbed primarily by the adsorbed water.

In terms of industrial MSA processes, according to Cherbanski et al. (2009) only five industrial-scale processes have been commissioned. The first pilot plant was built by Canada Ontario Hydro Technologies for the regeneration of activated carbon from fluidized washing applications in gold ore. Then, Arrow Pneumatics in the US,
developed a small scale adsorber for the drying/cleaning of air and simultaneously Plinke GmbH & Co created a fluidized bed adsorption coupled with a moving bed desorption for VOC recovery. Another industrial scale MSA was developed, being ready for commercial presentation in 2000, in the process of purification of contaminated air from VOCs by adsorption on GAC and subsequent regeneration of the spent carbon by microwave irradiation, presented by Cha (2000). Moreover, Opperman and Brown (1999) presented a system for continuous capturing of a broad range of VOCs on polymeric adsorbent together with a very efficient low-temperature microwave desorption under vacuum and recovery of the vapors as condensed liquids.

2.3. Summary

In recent years, there has been an increasing global interest in CCS as an important technology for climate change mitigation. However, improved technologies for the CO₂ capture process, that could possibly lead CCS to be highly competitive against the renewable energy market, are necessary. The economic evaluation of a CO₂ capture system is often driven by the energy penalties imposed in the process where CCS is applied and, in adsorption technology this energy is particularly required for the desorption step. Two desorption methods are typically applied in industrial applications nowadays, namely PSA and TSA. However, they are not considered to be the optimum pathways for CO₂ adsorption technology. As a result, efficient regeneration systems, ensuring multiple re-use of adsorbent materials, while consuming the least possible energy, are required.

The aim of this research is to intensify the CO₂ desorption using solid sorbents, trying to replace the conventional TSA with a technology that could result in an optimised regeneration process in terms of efficiency, kinetics and energy consumption. One technology that can possibly offer the above results is microwave heating, which nowadays is seen as a promising and efficient technique to intensify various types of applications. The growing interest in microwave heating regeneration processes is related to its unique features, offering reduction in heating time due to volumetric and rapid heating, high energy efficiency and better recovery of volatile elements and compounds.
As a result, the effectiveness of applying microwave heating technology to regenerate various solid sorbents previously saturated with CO\textsubscript{2} is the main focus of this research. The main difference between MSA and TSA heating applications lies in the way heat is generated. In TSA, thermal regeneration usually takes place in rotary kilns or vertical furnaces, the heat source is located outside the sorbent bed, and the bed is heated by conduction and/or convection. This heating process results in a significant temperature gradient inside the sorbent bed until conditions of steady state are reached. On the other hand, microwave irradiation enables a direct energy supply to the sorbent bed, since energy transfer does not happen by conduction or convection as in TSA, but is rapidly transformed into heat inside the particles by dielectric polarisation. As a result, microwave regeneration offers possible advantages over TSA, including the rapid and precise control of the sorbent bed temperature, shorter regeneration time and energy savings. Previous studies have also stated that MSA may also result in a better performance of the solid sorbent in terms of total adsorption capacity of a compound and rate of adsorption compared to conventional heating.

However, there are significant drawbacks in microwave heating applications as well. The performance of the desorption via MSA depends on the adsorbent and the adsorbate used for each process, as well as on the process parameters, i.e. power, temperature, dry/wet gas streams, flow rates etc. Moreover, the lack of uniformity in material heating, which is also dictated by the adsorbent’s and adsorbate’s characteristics (dielectric properties) is another disadvantage in the field of MSA applications. In addition, the high investment costs and the lack of fundamental knowledge regarding the dielectric properties or equipment design are also reasons for the delay in radical progress in the field of large scale industrial MSA processes. Consequently, much more dedicated work and further exploration are needed to improve the performance of MSA before trying to scale-up microwave technology in the area of CCS. In other words, the parameters that significantly affect microwave heating in the field of CO\textsubscript{2} capture need to be addressed and extensively studied. As a result, this research focuses on studying the effects of process parameters (Chapter 4) and material structure (Chapter 5) on the performance of microwave heating, aiming at intensifying the desorption process.
References

SGR Newsletter (2011) ‘Shale gas: will it undermine progress on tackling climate change?’, Issue 40, Autumn

Chapter 3: Experimental methodology

This chapter describes the guiding principles for designing an integrated MSA system as well as the experimental procedure followed for the completion of this research. Initially, the adsorption step was taken into consideration and as a result the principles that influence an adsorption system are discussed first (Section 3.1.1). Next, the basic criteria for designing the desorption process and selecting the MSA components are presented (Section 3.1.2), followed by a detailed description of the experimental setup (Section 3.2). Furthermore, the materials’ characterisation techniques and experimental parameters that were examined throughout this research are introduced (Sections 3.3 to 3.5), followed by a description of the experimental procedure (Section 3.6).

3.1. Key principles for designing the MSA system

The primary principles that influence the successful operation of an MSA/TSA system in a continuous CO₂ capture process are mainly related with the adsorption and regeneration steps. Therefore, the most important principles that control these two processes are discussed in this section.

3.1.1. Adsorption step principles

Adsorption properties that need to be taken into consideration for adsorber design processes, include isotherms, kinetics, and fixed bed dynamics. Moreover, textural properties, such as shape, porosity, density and void fractions of the solid material, need to be addressed as well. In addition, though not strictly a property, cost is involved in every design decision.

Adsorption isotherms: Adsorption equilibrium data are usually obtained at a fixed temperature and are plotted as capacity or loading versus the sorbate concentration (or partial pressure for gases and vapors) in order to generate the so-called adsorption isotherms (Knaebel, 1990). As discussed in the previous chapter (Section 2.1.4), the adsorption capacity of the sorbent significantly affects the capital cost of the whole process, since it helps to estimate the amount of sorbent needed, which in turn fixes the volume of the adsorption columns/vessels. This adsorption capacity depends on (i) the
concentration of the solute in the feed (Section 4.2.1), (ii) the temperature of the gas stream, (iii) the total flow rate of the feed (Section 4.2.2), (iv) the impurities found inside the feed, including moisture content (Section 4.2.3), (v) the sorbent material and (vi) the interactions between sorbent and sorbate (Jana et al., 2015, Kazachkin et al., 2009).

Adsorption kinetics: Adsorption kinetics are directly associated with intraparticle mass transfer resistance and can dictate the overall time of a cyclic fixed bed adsorption process (Balsamo et al., 2014). As expected, fast kinetics could lead to sharp breakthrough curves with high throughput ratio, resulting in a more effective use of the sorbent, whereas slow kinetics leads to a broader breakthrough curve. The throughput ratio is defined as the ratio of elapsed run time to stoichiometric time, or the ratio of actual effluent volume to the feed volume that ideally could saturate the column. Thus, the throughput ratio (or throughput parameter) measures the stoichiometry of a system (McKetta et al., 1978). One solution to the issue of slow kinetics is to increase either the amount of adsorbent used, or the time of the cycle, which would result in an increase of the throughput per unit of adsorbent. Unfortunately, both of these solutions would lead to an increase in the amount of adsorbent needed. Another way to overcome a slow diffusion is to use small adsorption particles; however, this would in turn lead to an increased pressure drop (Ling et al., 2014).

Pressure drop: This is a very important parameter for the dynamics of the bed during adsorption, since a high pressure drop inside the bed could result in the need of installing large pumps which consequently would lead to increased power consumption. As a result, this can significantly affect the operating and overall cost of the adsorption system (Richardson et al., 2002). Most adsorption columns are designed to work at a relatively low pressure drop (ΔP), because the velocity is typically low to enhance equilibration of the fluid with the adsorbent and also because large particles are commonly used (granules or pellets). Moreover, a small bed length to diameter ratio (L/d_b) results in low pressure drop, while a large L/d_b ratio could result in a good flow distribution and low dead volume in the adsorption column. The most applicable equation that describes the pressure drop in a fixed bed reactor is the Ergun equation:

$$\frac{\Delta P}{L} = \left(150 \frac{1-\varepsilon_B}{Re} + 1.75\right) \left(\frac{\rho u_s^2}{g_c d_p} \frac{1-\varepsilon_B}{\varepsilon_B^3}\right)$$ (3.1)
Where ε_B is the bed void fraction and g_c the gravitational constant. Re represents the Reynolds number, a dimensionless parameter that determines the behaviour of viscous flow patterns and is determined by the following equation:

$$Re = \frac{\rho \nu_s d_p}{\mu d}$$ \hspace{1cm} (3.2)

where ρ and ν_s are the density and the superficial linear velocity of the fluid, respectively, whereas d_p is the effective particle diameter. In general, the pressure drop in the adsorbent bed is also equivalent to the flow restrictions that are also evident in the pipes, valves, and fittings.

Adsorbent purity: The purity of the adsorbent could affect the safety and the efficiency of the adsorption and regeneration cycles. For instance, impurities such as metallic micro-particles could lead to arcs and sparks during the regeneration with microwaves, seriously affecting the MSA system and the desorption process.

3.1.2. Regeneration step principles

There are various parameters that need to be taken into consideration when designing a desorption system, such as adsorbent properties, shape and desorption kinetics and are described in this section.

Thermal and dielectric properties of the adsorbent: The thermal conductivity and diffusivity of the adsorbent dictate the uniformity of the heating in the adsorption column as well as the pace at which the energy flows through the adsorbent. Moreover, in the case of MSA, the dielectric constant of the sorbent is closely related to its ability to convert the electromagnetic energy to heat. For example, a sorbent’s low thermal conductivity – such as aluminium oxide with a thermal conductivity of $30 \, W/mK$ – could result in temperature gradients through the bed, whereas non-favourable dielectric properties could lead to high energy consumption and possible damage of the MSA system due to overheating of the magnetron (Gaal et al., 1999).

Adsorbent shape: The shape of the adsorbent particles affects directly the packing of the bed, as it determines the void space between the adsorbent particles (Rousseau, 1987). This parameter also affects the heating uniformity of the bed as it will be shown later.
In the case of microwave heating, the shape of the adsorbent has an impact on the formation of micro-plasmas as well (Menendez et al., 2010). In general, the bigger the void space between the particles, the bigger the sparks inside the bed.

Desorption kinetics: The kinetics of desorption affect the rate at which the adsorbent releases the adsorbate under the effect of the desorption driving force, which in this case is the temperature difference (Cherbanski et al., 2009). As a result, fast desorption kinetics correspond to a shorter desorption step, resulting in a time- and energy-effective process.

3.1.3. MSA design principles and equipment

In addition to the general design principles of a continuous adsorption/desorption system, specific guidelines for designing an MSA system need to be addressed as well. Five important parameters should be taken into account when designing a microwave regeneration process, including the nature of the propagation of the electromagnetic waves in the adsorbent/adsorbate system, the microwave cavity selection and design, the reactor design, the temperature monitoring and the heat distribution inside the cavity and the bed. Moreover, equipment for data analysis, is also discussed here. The safe performance and the efficiency of the MSA system is influenced by all the aforementioned parameters and reciprocal sacrifices may be needed in order to ensure an effective regeneration process.

Process principles of the MSA system: The relation between the sorbate and the adsorbent with regards to the electromagnetic energy is a very important parameter for the working principles of an MSA system, since it affects the efficiency of the heating process (Hashisho, 2007). As briefly described in Chapter 2 (Section 2.2.9), four different scenarios can be distinguished:

- **Microwave transparent adsorbent-microwave absorbing adsorbate:** This is the ideal case for operating the MSA system from an energy point of view, as the microwaves heat selectively only the sorbate, which is immediately desorbed. One example of this case is the regeneration of polar adsorbates (for example water) from microwave transparent adsorbents. In this case,
the polar adsorbate would absorb the microwave energy and directly convert it to heat, while the adsorbent would be indirectly heated through conductive transfer of heat from the adsorbate.

- **Microwave absorbing adsorbent-microwave absorbing adsorbate:** This scenario provides excellent and fast heating of the bed; however, selective heating of either the adsorbate or adsorbent is not feasible.

- **Microwave absorbing adsorbent-microwave transparent adsorbate:** Here, the adsorbent is directly heated by the electromagnetic waves, while the adsorbate is indirectly heated through thermal conduction.

- **Microwave transparent adsorbent-microwave transparent adsorbate:** In this case, neither the adsorbate nor the adsorbent are able to absorb microwave energy, and as a result direct microwave heating is not possible. However, solutions that involve mixing the adsorbent with a highly dielectric material, such as SiC, could help to overcome this hurdle, as it is investigated in Chapter 5 (Section 5.4) for silica based materials.

The case that is examined in this research is microwave absorbing adsorbent-microwave transparent adsorbate, as CO₂, is a non-polar molecule and as such it cannot be directly heated by microwaves. However, most of the sorbents selected for this work are excellent microwave absorbents, resulting in fast and efficient heating of the bed and their dielectric properties are discussed in the next chapters (Sections 4.1 and 5.1).

3.2. MSA equipment

When a microwave system is utilised for chemical processes, it usually comprises of a microwave source – known as magnetron or, more recently, solid state generators – connected to a power supply and a control system that transmits the electromagnetic waves into a metallic cavity, where the actual process takes place (Stefanidis et al., 2014). Hence, the first part to be examined is the reactor that is placed inside the microwave cavity. Moreover, other important factors include the microwave cavity and the temperature monitoring system. Furthermore, a proper gas detection system is important to be added after the microwave reactor, in order to monitor the gases that
come out of the system continuously. The following sections describe the main components of the lab-scale MSA system developed for this research.

3.2.1. Reactor design

The selection of the material of the reactor column is crucial, as it needs to be a microwave transparent material in order to allow the transfer of electromagnetic energy. Moreover, it should possess high chemical, heat and pressure resistance. Common materials for such applications include borosilicate or quartz glass, depending on the application and the temperatures that need to be reached. For low temperature applications (less than 250°C), glass borosilicate (Pyrex) is preferred, since it is cheaper than other types of glass. However, when temperatures exceed 250°C, for example in pyrolysis applications where temperatures may reach ~800°C, reactors made from quartz are generally preferred (Wharton, 2012). In other cases, the reactor can be made from a microwave-absorptive material (such as SiC), in order to supply additional heat contribution to the load, via thermal conduction. These materials are commonly known also as susceptors (Leonelli and Veronesi, 2015).

![Figure 3.1: Photo of the glass reactor used for the experimental work during MSA and TSA processes](image-url)
For the purposes of this research, glass borosilicate (Pyrex) was used as a raw material for the construction of the reactor, as seen in Figure 3.1. Figure 3.2 illustrates how the fluid moves inside the reactor, as well as where the feed and the exit are positioned and also depicts the place that the material is placed in order to be heated. This material is held inside the reactor by a grade 1 (90–150 µm) porous disk.

![Figure 3.2: Schematic representation of the glass reactor, depicting the inlet/outlet, the fluid flow (arrows) and the position of the sample](image)

3.2.2. Microwave cavity

An initial investigation for the suitability of several available microwave systems was undertaken, mostly exploring the differences between a single and a multimode cavity system. As explained in Chapter 2 (Section 2.2.8), the biggest advantage of a mono-mode application is that higher electromagnetic field densities can be created inside the cavity resulting in higher heating rates, which in turn contributes to the issue of non-uniform heating across the heated object. However, the main limitation of a single mode cavity is the process volume (<200ml) of the workload, which would critically limit the flexibility of the amount of sorbent used during the MSA process.
Considering the above limitations, a multimode microwave system, purchased from Sharp (R28STM) and modified by Tan-Delta as explained below, was used. This system was also equipped with an external Proportional Integral Derivative (PID) controller provided from Eurotherm (3405) that was needed in order to regulate the output temperature or power, as seen in Figure 3.3. This system was selected for the following characteristics: the cavity itself was a robust, stainless steel box of a relatively large size able to accommodate different reactors in various sizes and shapes. Moreover it was equipped with an 800-W magnetron, sufficient for the scope of this research, since the temperature of the desorption experiments did not exceed 150°C, while it also included overheat protection via an effective cooling system of the magnetron.

![Figure 3.3: The multimode microwave system; the stainless steel cavity on the left and the Eurotherm 3504 controller on the right](image)

Regarding the Eurotherm PID controller, its easy programming of various heating steps (time vs temperature/power rates) and the exceptional power control - allowing power levels to be adjusted in 1% increments, while temperature levels could be adjusted in 0.1°C increments - were the main advantages that could give enough flexibility for the purposes of this research. Another interesting fact about this PID controller is that it provides the flexibility to choose from two different modes: either use a fixed
temperature value as an output, making the magnetron to operate in pulses until the object reaches the required temperature, or use a desired power percentage output signal resulting in a continuous operation at that specific power. However, for the purposes of this work, the pulse mode with a fixed output-target temperature was used, since the fixed parameter in this research was the desorption temperature.

The microwave cavity was modified in order for the reactor to pass through the cavity walls; two stainless-steel chambers (41.3 mm i.d., 130 mm long) were fitted to the cavity by bolting double flanges on its left and right sides and then the cavity was turned vertically on its side (visible in Figure 3.4). The modifications were performed from Tan-Delta Microwaves Limited; the dimensions of the chambers were estimated from the diameter and the length of the reactor as well as from the wavelength of the microwave radiation in terms of safety, in order to prevent any microwave leakages. In general, ports of ~40mm of diameter are completely safe providing that less than the equivalent of 1.5 cm diameter of dielectric material with a relative permittivity of 2 is inserted through them. The glass reactor, which is a microwave insulator leaving the microwaves to penetrate through material (Section 2.2.2), used in this research has the equivalent diameter of ~4mm, which according to the above, makes the process safe. As mentioned in Section 2.2.2, the wavelength (λ) can be calculated by equation 2.1 and

\[\lambda = \frac{c}{f} \]

Figure 3.4: Photo of the microwave chamber/port that allows the reactor to penetrate into the cavity
as a result, it can be calculated that the wavelength in standard frequency microwave applications is almost equal to \(\lambda \approx 12\text{cm} \), which is very large, compared to the size of the ports.

Another important factor is the position of the reactor inside the cavity; since there was no flexibility in terms of the position of the metallic chambers/ports, the height in which the best microwave performance can occur, was investigated. This would also affect the length of the reactor.

In order to investigate which height is the optimum position inside the cavity, tests with water were conducted as follows: A 500ml beaker filled with water was placed in 7 different positions, with an increment of 5cm, with the \(h = 0\text{cm} \) being the position where the door opens (Figure 3.3). The water was then heated using the temperature mode of the PID controller, meaning that an output temperature of 100°C was set and the magnetron was operating in pulse mode, providing different percentages of power whenever needed. The time needed for the water to reach 100°C was monitored and the results can be seen in Figure 3.5. It is quite evident that, the optimum positions inside the microwave cavity are on the top (30cm), bottom (0cm) and in the centre (15cm), with the result being in agreement with previous studies (Requena-Pérez et al., 2005). More interestingly, it should be noted that, when the water was placed in the centre, the performance of the magnetron was the highest, being able to heat to 100°C in less than 20 seconds. As a result, in this research, it was decided that the material bed should be placed in the centre of the cavity (15cm).

![Figure 3.5: Time needed to heat a 500ml beaker filled with water at different positions inside the microwave cavity](image)
3.2.3. Temperature monitoring

A reliable system of measuring and/or controlling the temperature of an object while heated in an electromagnetic field is of great importance for the efficient application of the process. Apart from the temperature control, power feedback control systems that are operated in parallel in most microwave reactors, could also be of help, enable a heating process to be carried out without knowing the exact dielectric properties and/or conductive properties of the material heated. However, temperature control is by far the most common technology followed for microwave assisted applications, but does not come without its own disadvantages. For example, inaccuracies in temperature measurements could result in erroneous indications and misleading interpretations of the final outcome. Moreover, a possible thermal runaway could lead to severe damage of the microwave system and/or reactor. In general, temperature in a microwave cavity can be measured by one of the following instruments:

- Shielded thermocouple
- Fiber-optic thermocouple
- Infrared optical pyrometer (IRP)

Application of conventional metallic thermocouples may not provide an accurate measurement, mostly due to the metallic nature of the instrument; electromagnetic interference is possible to occur, which could lead to arcing between the thermocouple shield and the cavity walls, resulting in failure of thermocouple and system performance. Moreover, a metallic thermocouple inserted into the aforementioned ports while the microwave is in operation would form a coaxial line and the microwaves would transmit very efficiently through the port, leading to significant microwave leakage (Menendez et al., 1999).

On the other hand, optical fibre sensors, known for their glass-based nature, are not affected by electromagnetic fields and can maintain a high level of accuracy in temperature measurement (Ong and Akbarnezhad, 2014). However, fibre-optic thermocouples can only be applied up to 300°C and are too fragile for real industrial-scale applications. Last but not least, the most important disadvantage of both conventional and optical fibre thermocouples is that they require contact with the
material, which would mean that further modifications in the reactor or in the microwave chamber should take place.

A third way of measuring the temperature of an object inside the microwave cavity is by inserting a metallic thermocouple into the hot material immediately after switching off microwave power, in order to avoid the aforementioned disadvantages. This rather simplistic approach may sometimes help in the cases that temperature control is not required and large and bulky items are to be measured while no modifications in the cavity are possible. However, it should be pointed out that the temperature of some materials can drop instantaneously as soon as microwave power is turned off, resulting in a substantial error (>20% temperature decrease after 5 seconds) in the measurement (Bogdal, 2005).

Consequently, in this work an infrared pyrometer was used as it provides contactless and fast (response time: 6 ms) temperature measurements with a high level of precision (accuracy of thermocouple output: ±1%). Infrared thermometers are easy to use, by simply pointing the instrument at the object to be measured and the temperature is digitally shown on the PC. Temperature monitoring was performed by an IRP, purchased from Optris (Optris CTfast CT LT 25F), which was assembled to the PID controller (Figure 3.6), and its operating principles are described in the next section. Unfortunately, infrared pyrometers measure only the temperature of the surface of the sample, which in some cases could be substantially lower than the bulk temperature during desorption processes due to non-uniform heating, as shown in the next chapters. As a result, the geometry of the adsorbent bed, which depends on the shape and density of the adsorbent particles, affects the temperature distribution and consequently the precision in temperature measurement. Hence, detailed heat maps investigating the differences between surface and bulk temperature are presented for each different geometry in the following chapters (Sections 4.5 and 5.3.2.5).
3.2.3.1. Infrared radiation

Every object that has a temperature above absolute zero (0K or -273.15°C) emits a specific infrared radiation. This radiation is part of the electro-magnetic spectrum, with the primary source being heat or thermal radiation. It is produced by the motion of atoms and molecules of the object in such a way that the higher the temperature, the more the atoms and molecules move and consequently the more infrared radiation they produce. When the object is not hot enough to produce detectable light, it will emit most of its energy in the form of infrared. Hot charcoal, for instance, may not produce light, however it still emits infrared radiation which from a human perspective can be understood as heat (Nutter, 1988).

In principle, the wavelength of infrared radiation lies between a fraction of a micron up to several hundred microns. As such, infrared pyrometers use a wavelength of between 4 and 14 microns for accurate temperature measurement. However, since the infrared radiation of an object is emitted from its surface, the IRP is not able to measure its internal (bulk) temperature. Another disadvantage when using the IRP is that it cannot accurately measure the temperature of an object through any covering material; this
means that since the reactor is made from glass, an optical window – transparent to infrared radiation is needed in order for the IRP to be able to ‘meet’ the object’s surface. As a result, in this research an optical polished window made from a chemically deposited material, zinc selenide (ZnSe), was used, with thickness of 1mm and diameter of 22mm, purchased from Crystan, which can be seen in Figure 3.7. Moreover, air temperature cannot be measured by an IRP, so the void space between the window and the material plays no important role on the IRP temperature measurement.

Figure 3.7: Photo of the zinc selenide window (ZnSe)

ZnSe windows are an excellent choice for a broad range of infrared applications including thermal imaging, Forward Looking infrared (FLIR) cameras, medical systems, as well as high power CO₂ laser systems because of their low absorption coefficient and high resistance to thermal shock. ZnSe is a relatively soft material that scratches easily and it is not recommended in harsh environments, since its Knoop Hardness is only 120. It can be found in various diameters and thicknesses, which affects the % of signal transmittance through the window. However, as mentioned above, for the temperature measurement application, the IRP works at a wavelength between 8 and 14µm, for which the signal transmittance is ~72% for every thickness, as seen in Figure 3.8.
Another important parameter for the proper handling of infrared measurements, including measurements with an IRP, is the emissivity of the object investigated. Emissivity is defined as the ratio of radiation emitted by a surface or blackbody and its theoretical radiation predicted from Planck’s law:

\[B_\lambda(T) = \frac{c_1}{\lambda^5(e^{c_2/\lambda T} - 1)} \]

(3.3)

where \(c_1 = 1.19 \times 10^8 \text{W m}^{-2} \text{\mu m}^4 \), \(c_2 = 1.44 \times 10^4 \text{\mu m K} \) and \(T \) is the object’s temperature. Emissivity, in other words, is a measure of the efficiency in which a surface emits thermal energy (He et al., 2009). The emissivity value of the black body is 1, since it is a perfect emitter of heat energy, as such the emissivity value of most objects lies between 0 and 1. Emissivity value of 0 would indicate that the material is a perfect thermal mirror. However, in reality there are no perfect "black bodies" and very few perfect infrared mirrors (The pyrometer handbook, 2004).

Table 3.1 presents the emissivity values of the materials used in this research. A material's surface emissivity is measured by the amount of energy emitted when the surface is directly observed. However, the accuracy of those numbers can be
questioned, since the emissivity factor strongly depends on the surface texture and colour as well as on wavelength of interest and the material’s temperature at the time of measurement. Taking that into consideration, each material was specifically calibrated for the temperature ranges needed, using a conventional thermocouple and adjusting the IRP’s emissivity factor until the reading of the IRP matched the temperature measured by the thermocouple.

Table 3.1: Emissivity factor of some specific materials at 25°C and 1 bar (Scigene Corp., ‘Infrared Thermometer Emissivity tables’)

<table>
<thead>
<tr>
<th>Material</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated carbon (<100µm)</td>
<td>0.95</td>
</tr>
<tr>
<td>Activated carbon (100-300µm)</td>
<td>0.9</td>
</tr>
<tr>
<td>Activated carbon (1-3mm)</td>
<td>0.75</td>
</tr>
<tr>
<td>Activated carbon (300-700µm)</td>
<td>0.8</td>
</tr>
<tr>
<td>Carbon (graphite)</td>
<td>0.98</td>
</tr>
<tr>
<td>Glass</td>
<td>0.92</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.93</td>
</tr>
<tr>
<td>Silicon Dioxide (SiO₂)</td>
<td>0.55</td>
</tr>
<tr>
<td>Water</td>
<td>0.95</td>
</tr>
</tbody>
</table>

3.2.3.3. Infrared pyrometer sensing head

Figure 3.9 presents how the diameter of the measuring spot changes with regards to the distance between measuring object and sensing head and is described as D:S ratio, where D is the distance from front of the sensing head to the object and S corresponds to spot size. The distance is measured from the front edge of the sensing head, whereas the spot size refers to 90% of the radiation energy emitted. As a result, the size and the diameter of the measuring object, as well as the optical resolution of the IRP regulate the maximum distance between heated object and sensing head. In order to avoid significant measuring errors, it is usually preferred the object to fill out the optics’ field of view completely. Hence, the spot should at all times have the same (or smaller) size as the target object.

In this research, the diameter of the inner tube of the reactor is 10mm, as explained above (Figure 3.2). Moreover, the distance from the sensing head to the sample’s surface is 200mm (Figure 3.2), which results in a ratio of 200:10, i.e. 20:1. As a result,
the IRP sensor head that was selected was the one with a D:S ratio of 25:1, which means that at 200mm distance from the head, the measuring spot would be 8mm, as seen in Figure 3.9. Hence, it is clear that, this is well inside the limits and restrictions posed from the IRP measurements.

![Figure 3.9: D:S ratio for the selected IRP for this research](image)

3.2.4. Time-of-Flight Mass Spectrometer (TOF-MS)

A TOF-MS was used for the detection of the gases exiting the reactor during the MSA and TSA experiments. In general, a mass spectrometer – or analyser - takes advantage of the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules in order to separate them. Hence, mass spectroscopy is used for atom (or molecule) quantification while providing important structural information by the identification of distinctive fragmentation patterns.

In theory, mass analysers can separate ions of different masses in various, well developed, ways. There are systems that work in an electric or magnetic field and use the mass dependent deflection of a beam of analyte ions, to ensure that only ions of a finite range pass through a slit and are identified. Another common technology of mass spectroscopy is the production of static and radio frequency electric fields so that only a small amount of ion masses have constant trajectories and are able reach a detector. As the name implies, a time-of-flight mass spectrometer measures masses by recording the ion flight time.

Figure 3.10 shows in a simplistic way the governing principle of the TOF-MS. The two ions, in red and green colours, in the above schematic have slightly different masses and they start simultaneously from the extraction region, which initially is field free,
possessing little velocity at that time. The extraction operates under a more positive
potential than the rest of the spectrometer regions. Suddenly, an extraction field is
applied and the ions are abruptly accelerated out of the extraction region, through the
acceleration region, falling into the field-free drift tube operating at the lower potential.
In principle, both ions obtain roughly the same kinetic energy \((E_{\text{kin}})\) during this ‘flight’
which can be determined by the potential difference between the extraction and drift
regions. However, the ions do not reach the detector at the same time, indicating that
their velocities are different. As expected, the lighter ion ‘flies’ faster and reaches the
detector quicker than the heavier ion. Two pulses are recorded at the detector, one for
each ion at the moment of arrival.

![Diagram](image)

Figure 3.10: TOF-MS ions analysis: the red and green ions start simultaneously from the accelerator, but reach the
detector in different times

The velocity \((u)\) of the ions is simply calculated by the following equation:

\[
u = \sqrt{\frac{2E_{\text{kin}}}{m_i}}
\]

(3.4)

Where \(m_i\) is the mass of each ion.

Flight-times \((t_n)\) are measured with respect to the start of the extraction pulse. It is
fairly easy to conclude that \(t_n\) is proportional to the square-root of the mass in the drift
region:

\[
t_{fl} = \frac{l_{dr}}{v} = l_{dr} * \sqrt{\frac{m}{2E_{\text{kin}}}}
\]

(3.5)
Where \(l_{dr} \) is the length of the drift.

There are various advantages that come with the use of TOS-MS, including excellent sensitivity, high ion transmission and high mass range as well as high-speed analysis (Hart-Smith and Stephen J. Blanksby, 2012). This made TOF-MS an excellent instrument for the purposes of the continuous monitoring of CO\(_2\) separation from a mixture of CO\(_2\) and N\(_2\), even at low concentrations, being also able to detect possible impurities along with the simulated gas mixture. Figure 3.12 shows the TOF-MS used during this research. It was supplied by KORE Technology along with two software packages, one for spectra analysis and one functioning as a gas chromatographer, enabling a continuous monitoring of the signal, which would result in breakthrough curves and desorption profiles, as described in Chapter 4.

3.2.5. Flow controllers

Two flow-controllers were used for the completion of the MSA and TSA experiments. The first was purchased from Omega (FL-6GP-45ST-41SA-41C) and was a simple analogue bubble flow controller, used to regulate the inlet flow of the gas mixture. The second one was purchased from Bronkhorst (Coriflow TM-13) and was only used as a flow-meter, in order to obtain an accurate value of the flow at the exit of the reactor, prior reaching the TOF-MS. The Coriflow TM-13 is a precise and compact mass flow controller, based on the Coriolis measuring principle. The so called “Coriolis effect” started to find application in 1970’s, named after the French scientist Gaspard-Gustave Coriolis, who in 1835 examined the effect that moving objects deflect from a straight path when they are viewed from a rotating frame of reference. With regards to the Coriolis flow controller, the above statement can be related to the change in frequency, phase shift or amplitude, caused by the flow of a fluid through a vibrating tube and is proportional to the mass flow through the tube, giving the density of the fluid as secondary output.

The Coriflow TM-13 consists of single loop sensor tube, creating part of an oscillating system. As seen in Figure 3.11, when the fluid – in this case the gas mixture - flows through this tube, the Coriolis effect takes place causing a variable phase shift, which is detected by the flow-controller’s sensors and is transmitted into the pc-board. The
resulting digital output signal is proportional to the real mass flow rate of the fluid, while as secondary output there is the option to choose from fluid density or temperature.

Figure 3.11: Schematic of a Coriolis flow sensor

The use of the Coriolis measuring principle has many advantages over conventional thermal mass flow devices, especially when applied on gases, including:

- no conversion factors are needed (if scaled in units of weight);
- it is possible to measure unknown fluids or variable mixtures;
- (super-) critical gases can also be measured;
- superior accuracy and response time are provided.

Figure 3.12 shows the setup of the Coriflow TM-13 (accuracy <±0.5%), connected to the TOF-MS.

Figure 3.12: The Coriflow TM-13 and the TOF-MS

94
3.3. Analytical characterisation techniques

This section describes the analytical techniques applied for characterisation of the solid materials that were used throughout this research. Focus was concentrated on textural, chemical and dielectric properties of the sorbents, aiming at evaluating their CO₂ adsorption and desorption performance. As a result, the properties that directly affect the TSA and MSA processes were chosen to be investigated. Initially, CO₂ adsorption capacity using thermo-gravimetric analysis (TGA) was conducted in order to examine if the selected sorbent was a good candidate for the CO₂ capture process (Section 3.3.1). In addition, Brunauer, Emmett and Teller (BET) analysis, examining the surface area and the porosity of the materials, was also undertaken, providing information on the porous network and CO₂ adsorption mechanism (Section 3.3.2). Moreover, the chemical texture of each material was also of interest and as a result, elemental analysis (CHN analysis) was conducted (Section 3.3.3). Lastly, dielectric properties of each material were calculated, since accurate evaluation of these properties provides with valuable information to properly incorporate the material into the MSA heating process (Section 3.3.5). Each aforementioned property was investigated before and after the TSA and MSA experiments, in order to examine the effect of the cyclic heating processes to the materials, which would help to predict the life span of each sorbent.

3.3.1. Thermogravimetric analysis (TGA)

TGA is a characterisation method during which the amount and rate of weight change in a material is monitored, either as a function of increasing temperature, or isothermally as a function of time. A TGA instrument usually consists of a sample pan that is placed in a furnace, supported by a precision balance. During the heating or cooling of the pan, depending on the experiment, the sample’s mass is recorded while a purge gas flow creates and controls the sample environment. This gas is either an inert or a reactive gas that passes through the sample and is responsible for its weight change (Perkin Elmer, 2010).

CO₂ adsorption capacity analyses were conducted using a TA Instruments Q500 Thermogravimetric Analyser (TGA) in a controlled gas flowing environment, in order to validate that the selected sorbents are good candidates for CO₂ capture. This instrument has a weight precision of ±0.01% and a temperature precision of ±0.1°C.
The weight increase observed in the samples is attributed to the adsorption of the CO\(_2\) onto each sample. The initial weight of the sample was \(~20\text{mg}\). Prior to CO\(_2\) adsorption experiment, the samples were preconditioned and dried at 100°C using a purge gas flow of N\(_2\) at 5 ml/min for 30 minutes. Then, the adsorption temperature was elevated and stabilised at the target temperature, namely 35°C for 30 minutes at atmospheric pressure, followed by a switch of the flowing gas to 90% CO\(_2\) at 100 ml/min (balanced with N\(_2\)), in order to investigate the samples’ CO\(_2\) adsorption capacity. The weight increase related to CO\(_2\) adsorption was monitored as a function of time at constant temperature (35°C) and concentration of CO\(_2\) at atmospheric pressure. The adsorption step lasted for 2 hours to allow sufficient time for the capture process to equilibrate. Subsequently, the temperature was increased to 70°C and the gas was shifted back to a N\(_2\) flow of 5ml/min for 1 hour, in order to allow CO\(_2\) desorption to occur. It is worth mentioning that this CO\(_2\) desorption procedure does not simulate the actual technology used at an industrial scale application, however, it is considered an established practice in a laboratory-scaled analysis, as reported in published work (Essaki et al., 2005; Olivares-Marin et al., 2010).

3.3.2. BET surface area and DFT pore size analysis

The amount adsorbed is mainly affected by the surface area and porosity of the solid adsorbent, influencing the quality and utility of the sorbent and as a result those physical properties need to be extensively investigated. Knowledge of surface area and especially porosity is often an important key in understanding the formation, structure, and potential application of the sorbent material. In order to examine the surface area and the porosity of the sample material, gas adsorption analysis is commonly used. This analysis takes place by exposing the solid sample to gases or vapors within a range of conditions and evaluating either the sample’s volume or its weight change, measuring the so-called material’s adsorption isotherm. In theory, depending on the type of adsorbent/absorbate and intermolecular interactions between material’s surface and the gas, different-shaped of isotherms can be formed. Figure 3.13 shows the modern IUPAC classification of adsorption isotherms, also known as Brunauer, Deming, Deming and Teller (BDDT) classification, identifying six different broad categories:

- Type I: Steep initial region due to very strong adsorption forces, indicating strong adsorbent microporosity (monolayer adsorption only). Moreover, a
limiting value (plateau) is also evident, due to filled pores, essentially implying that there are relatively small – or no - external surfaces.

- Type II: At first, the rounded knee indicates approximate location of monolayer formation, whereas the low slope region in the middle of isotherm indicates the existence of some multilayers. Lastly, absence of hysteresis indicates adsorption on and desorption from a non-porous or macroporous adsorbent with strong adsorbate-adsorbent interactions (unrestricted monolayer-multilayer adsorption).
- Type III: The lack of knee represents a non-porous or macroporous adsorbent with extremely weak adsorbate-adsorbent interaction.
- Type IV: At first, the rounded knee indicates approximate location of monolayer formation, whereas the low slope region in the middle of isotherm indicates the existence of some multilayers. Moreover, hysteresis indicates capillary condensation in meso and macropores.
- Type V: Adsorption isotherm with hysteresis, while pores are evident in the mesopore range. The lack of knee represents extremely weak adsorbate-adsorbent interaction.
- Type VI: Stepped isotherm, rarely encountered

![Image of IUPAC classification of adsorption isotherms](image)

Figure 3.13: IUPAC classification of adsorption isotherms (Balbuena et al., 1993)

Adsorption isotherms (Figure 3.13) help to extract important information about the sorbent material, such as surface area and pore size distribution. Isotherm models, such
as Langmuir, Brunauer, Emmett and Teller (BET), Dubinin Radushkevich method (DR), Temkin adsorption isotherm and Freundlich models, are used to interpret the adsorption isotherms. In this work, the BET model was used, since it is the most accepted model for analysis of the physical adsorption of gases on porous carbons. From the above categories, BET can only be applied to type I, II, IV and VI. BET equation can be expressed as:

\[
\frac{P}{V(P_0 - P)} = \frac{1}{V_m c} + \frac{(c-1) P}{V_m c P_0}
\]

(3.6)

Where \(V\) is the volume of gas adsorbed at pressure \(P\), \(P_0\) is the saturated pressure of adsorbing gas at a particular temperature, \(V_m\) is the volume of gas adsorbed to form a monolayer on the surface, known as the monolayer volume. Moreover \(c\) is expressed by the following equation:

\[
c = \exp\left[\frac{H_a - H_L}{RT}\right]
\]

(3.7)

where \(H_a\) is the enthalpy of adsorption of the gas on the solid, \(H_L\) is the heat produced on forming the second and higher layers, \(R\) is the ideal gas constant and \(T\) is the temperature (Brunauer et al., 1938).

In addition, adsorption isotherms can also be utilised for pore size analyses. Density Functional Theory (DFT) method was used in this research since it is a common model for microporous materials (Shaw, 1998). DFT describes the gas adsorption process at the fluid-solid interface. Applying DFT to the experimental adsorption isotherms (Figure 3.13), both micro- and meso-porosity can be determined as a continuous distribution of pore volume with respect to pore size. Seaton et al. (1989) were the first to propose that the DFT model provides a more reasoned and versatile approach in order to calculate the pore structure parameters, compared to methods that were used until then. Unlike conventional methods, DFT provides a continuous distribution, with smooth transition between regions and all data are used. Although DFT is not preferred for complex disordered pore structures, it has computational advantage over molecular simulation for simple fluids and pore shapes like slits, spheres, or cylinders (Ogbuka, 2013).
The amount of sample used for the above analyses was approximately 0.5g. Sample preparation involved degassing the samples overnight (15 hours) at 100°C. For both analyses, the sample under investigation was exposed to N₂ at its liquid state (77 K). The BET equation applies at a relative pressure range (P/P_0) of $0.05 < P/P_0 < 0.3$ and the samples were subjected to a 90-point BET surface area analysis, and full adsorption isotherms were collected for all samples. BET surface area and DFT pore size analyses were conducted for all the materials used in this research, using the Gemini VII 2390, provided by Micromeritics, with an accuracy $\pm 0.5\%$ (measured by the manufacturer).

As seen in Figure 3.14, the Gemini instrument consists of two gas reservoirs (A), filled with equal amount of the desired adsorptive (usually N₂), which is dosed into the sample and balance tubes. During gas adsorption from the sample, the pressure tends to decrease in the sample tube. Consequently, a transducer (B) is used to monitor the desired pressure, while causing a fast response servo valve (C) to hold the pressure constant. A second pressure transducer (D) detects any pressure difference between the two tubes and causes another servo valve (E) to equilibrate the pressure in both tubes. Another transducer (F) monitors the pressure between the two reservoirs to determine the amount of gas adsorbed on the sample.

Figure 3.14: The Gemini instrument used for the BET and DFT analysis (Micromeritics Gemini VII brochure, 2014)
3.3.3. Elemental analysis

Elemental analysis is used to determine the amount of an element in a compound, usually expressed as a weight percentage. This analysis offers the possibility to determine the empirical formula of a compound, which is the formula that presents the proportions of the elements found in it (Etherington et al., 2001). There are various experimental ways to determine elemental compositions, however, the most frequent type of elemental analysis is the carbon, hydrogen, and nitrogen (CHN) analysis (Thompson, 2008). CHN analysis was conducted by the department of Engineering and Physical Sciences (EPS) of Heriot-Watt University using the Exeter CE-440 Elemental Analyser. The accuracy of the instrument is ±0.15%, while the sample size is typically 1-5mg.

At first, the sample is weighed to one millionth of a gram inside a small tin capsule, which is placed into the analyser's furnace (combustion tube) at 950°C. At this temperature, tin oxide is formed after combustion at an oxygen-rich environment, resulting in a temperature increase to well above 1800°C. Under those conditions, vaporization of the sample takes place, followed by complete combustion forming CO₂, N₂, N₂O₅, H₂O and other by-products. Halogens, sulfur, phosphorus, and other undesirable by-products are removed using chemicals inside the combustion tube. Subsequently, the sample gases flow through a reduction tube, removing any unused oxygen and converting NOₓ to N₂. Then these gases are homogeneously mixed in a mixing chamber under constant pressure and temperature. Lastly, a small amount of this mixture flows through a series of high-precision thermal conductivity detectors, each containing a pair of thermal conductivity cells, where the quantity of CO₂, H₂O, N₂ and He carrier gas, is recorded. Combining these readings and the weight of sample used, %C, %H, %N are calculated.

3.3.4. Dielectric properties

In microwave processes, the main parameter that affects the heating efficiency of a material is its dielectric properties, as mentioned in Section 2.2.2. There are various ways to measure those properties, namely capacitor, transmission line, cavity resonator and open cavity methods, with the cavity resonator method (resonant measurements) being the most frequently used.
Two types of resonant measurements are commonly in practice, namely perturbation and low loss measurement methods. The first method is applicable for all permittivity, medium to high loss and magnetic materials measurements, whereas the second is applied to low loss materials using larger samples. However, the perturbation method is widely used, utilizing a TM cavity geometry, presented in Figure 3.15. Attention is centered on the TM$_{010}$ mode, since it is the most useful mode for dielectric properties measurement. The tests were completed by the Centre for High Frequency Engineering, in Cardiff University, using the TM$_{010}$ Mode at 2.50 GHz.

![Coupling Loop](image)

Figure 3.15: The TM cavity geometry

In this method, the first step for estimating the dielectric properties of a material is to measure the quality factor (Q-factor) - the frequency to bandwidth ratio of the resonator - and the resonant frequency (f_0) of the empty cavity, here referred to as ‘blank’ (Figure 3.16).

Then, the measurement is repeated after filling the cavity with the tested material, which as seen in Figure 3.15, is positioned at the centre of the cavity (the rod-shaped solid sample). The samples were placed in standard Eppendorf tubes and placed on-axis in a 2.5 GHz TM010 cylindrical cavity (Figure 3.17). Three samples were prepared for each material, each of nominal volume of approximately 200 μl and the results were normalised as per mg of sorbent. Placing the sample in the cavity results in changes in the field, shifting the ‘blank’ resonant frequency or Q-factor (Q).
The tested materials’ properties can be calculated from the changes in resonant frequency and Q-factor compared to the ‘blank’ measurements, determining the relative permittivity (ε'_r) and the loss factor (ε''_r) from the following equations:

$$\varepsilon'_r - 1 \approx 2 \frac{V_{eff}}{V_s} \frac{\Delta f_0}{f_0}$$ \hspace{1cm} (3.8)

$$\varepsilon''_r \approx \frac{V_{eff}}{V_s} \frac{\Delta f_B}{f_0}$$ \hspace{1cm} (3.9)

$$Q = \frac{f_0}{f_B}$$ \hspace{1cm} (3.10)

Where Δf_0 is the change in resonant frequency, f_B is the bandwidth, Δf_B is the change in bandwidth, V_{eff} is the effective cavity volume and V_s is the sample volume.

In addition, according to Pointing’s Theorem, the average microwave absorbed power P_{abs} per unit volume (W/m3) is proportionally related with the dielectric properties of the material and the magnitude of the internal electric field ($|E|$ in V/m) and can be expressed by:

$$P_{abs} = \frac{\sigma |E|^2}{2 \varepsilon_0}$$
\[P_{abs} = 2\pi f \varepsilon_0 \varepsilon_r'' |E|^2 \] (3.11)

where \(f \) is the microwave frequency (Hz). Here, it should be mentioned that it has been assumed that the power is uniform throughout the volume and that thermal equilibrium has been reached (Hill, 2000).

3.4. MSA/TSA process

All the CO\(_2\) adsorption/desorption experiments were conducted using the lab-scale setup shown in Figures 3.18 and 3.19. The setup includes all the equipment and instrumentation presented in this chapter, namely a fixed-packed bed column (length \(l_r = 250 \text{ mm}, \) outside diameter \(\text{OD}_r = 30 \text{ mm}, \) inner diameter \(\text{ID}_r = 10 \text{ mm}, \) packed bed diameter \(d_b = 20 \text{ mm} \)) fabricated from Pyrex glass, equipped with a grade 1 (90–150 \(\mu \text{m} \)) sintered disk. The microwave system consisted of an 800W microwave source, equipped with a 2.45GHz magnetron and a modified cavity (Sharp), as shown in Figure 3.19. The fixed-bed temperature was determined by an IRP (Optris CTfast CT LT 25F) which measured the AC bed temperature from the top of the reactor through a zinc selenide (ZnSe) window. The IR pyrometer was also connected to a PID controller (Eurotherm 3504) during microwave heating (MW), in order to control the power needed to reach the specific target temperature. Experiments for examination of the
conventional heating (CH) desorption were conducted using a 144W heating tape, provided by Omega, with total length of 60cm and width of 2cm, placed in such a way to completely cover the AC bed reactor externally, while the temperature was monitored using the IRP once again. Energy consumption measurements were determined using a plug-in device that was constantly measuring the power consumed by each individual electrical instrument, provided by Eco-Eye. Moreover, a full monitor equipped with a 13mm split CT Clamp, display and Transmitter, MMC Card and a USB cable was assembled to log live electricity usage from the display and save it to the PC.

Gas volumetric flow rate variations, occurring in the fixed bed as a consequence of CO₂ adsorption/desorption, were monitored by a mass flow controller, El Flow Bronkhorst 201-CV, placed at the exit of the adsorption column, and digitally interfaced with the PC unit. Moreover, CO₂ and N₂ concentrations were continuously measured by the TOF-MS and the data were acquired and analysed using Hiden QGA Pro software.

A gas mixture containing CO₂ and N₂ in various partial pressures was produced using an Omega FL-6GP-41ST-41ST-41ST gas mixer, generating a constant total flow of 100 ml/min or 150ml/min (parameter 1). The second parameter examined was the CO₂ concentration in the feed gas, namely 5%, 15%, 40% (vol.) CO₂ balanced with N₂.
These three different concentrations were chosen as they simulate real exhaust gas streams from a gas fired power plant, a coal-fired power plant and a cement industry respectively.

![Photo of the experimental rig](image)

Figure 3.19: Photo of the experimental rig

The next parameter that was investigated was the effect of the moisture for the adsorption/desorption steps, since the high water levels present in the exhaust flue gas of any of the above processes result in additional implications in the adsorption and desorption processes (Webley and Zhang, 2014). As a result, for the purposes of the wet conditions experiments, the method of the dew-point generation was followed during the adsorption step. In order to generate high relative humidity in a gas mixture, the gas stream is passed over a heated water bath, from which the water evaporates into the stream. For this purpose, a Pyrex glass bubbler filled with 1L of water was used. The bubbler was placed on an electric heater, controlling the temperature of the water at around 55°C, thus creating a moisture content of ~10%. The last parameter that was reported was the desorption temperature; a comparison between MSA and TSA took place at two different temperatures, namely 70°C and 130°C, taking into consideration
that a higher temperature than 130°C may have resulted in decomposition of some samples’ impregnation.

3.5. Sorbent materials and experimental nomenclature

3.5.1. Solid sorbents

This section presents the materials used in this study, according to the sorbents selection criteria discussed in Section 2.1.4. This research focuses solely on low-temperature solid adsorbents (<200°C), since the temperature of the flue gas to be treated lies between 40 and 80°C (Drage et al., 2006). Six different materials were used, five of them being carbon-based and one being a silica-based material. The first aim of using these sorbents was to investigate various process parameters and decide on the critical conditions that could result in an intensified MSA process, compared to TSA. As a result, a well-characterised microporous granular activated carbon (GAC) was used as the reference material, since it was reported to present high CO\textsubscript{2} adsorption potential, has not undergone any treatment, can be found in abundance and has desirable dielectric properties. After deciding on the critical conditions and important parameters for MSA (Chapter 4), a material investigation took place studying the importance of raw material, adsorbent shape and surface modifications (Chapter 5). Five materials were chosen for this investigation - four of which are carbon based with the last one being silica-based - in order to compare with the performance of GAC. Those sorbent materials present different properties in terms of functionalities (NH\textsubscript{3} impregnation) and forms - powder, granular and pellets - for the carbon-based ones, while the silica combines form and surface modifications, since it is a powdered form amine impregnated (TEPA) material.

The materials used in this research include:

a. Carbon based sorbent materials:

 • Microporous granular activated carbon (GAC) from palm shell, obtained by NORIT, used as the reference sample.

 • Activated carbon, obtained by Desotec:

 i. Pellet form, from coconut shell, with product name Organosorb 10-CO (Org).
ii. Powder form, obtained after grinding the original Organosorb (OrgP)

- Granular AC from almond shells (AS), obtained from Instituto Nacional del Carbón (INCAR, Oviedo, Spain):

iii. Parent sample, referred to as GKAS;

iv. GKAS – N800, treated with ammonia, introducing basic functionalities on the parent sample’s surface, resulting in better CO₂ adsorption capacities as reported at INCAR.

b. Silica-based sorbent materials, obtained from Rey Juan Carlos University, Madrid, Spain

- SBA-15-TEPA (30): Mesoporous silica, impregnated with tetraethylenepentamine (TEPA), resulting in considerable CO₂ uptake, previously examined at Rey Juan Carlos University. However, slow desorption rates as well as a slow but steady loss of adsorption capacity were reported with continuous-cyclic use due to TEPA evaporation.

3.5.2. Experimental nomenclature

Here, it should be noted that the experiments reported in the adsorption figures described in Chapters 4 and 5, follow a MaterialCO₂Dry/WetFlow nomenclature; for example, in the case of GAC, with a total volumetric flow rate of 100ml/min at wet gas conditions and 40% CO₂ (vol.), the name of the experiment would equivalently be written as GAC40W100.

Similarly for the desorption experiments, the pattern followed was CO₂Dry/WetFlowCH/MWT_{des}. For example, in the case of regenerating the material with microwave heating, using a purge gas flow rate of 100ml/min, previously (during adsorption) mixed with 40% CO₂ (vol.), at dry conditions and at \(T_{des} = 70°C \), the name of the experiment would accordingly be: 40D100MW70.
3.6. Fixed-bed dynamic adsorption/desorption experiments

The experimental work in the fixed bed reactor aimed at evaluating (i) the CO$_2$ dynamic adsorption capacity of the studied samples and how it is affected under wet gas conditions and total flow rate, (ii) the differences between MSA and TSA with regards to regeneration efficiency, desorption kinetics and energy consumption, and (iii) the effect of consecutive adsorption/desorption cycles, on the textural properties of the AC. In this regard, continuous adsorption/desorption tests were conducted as described in the next sections.

For both experimental procedures (MSA and TSA), the reactor was packed with 5g of material, previously heated overnight at 100°C to remove any moisture content. The overall experimental cycle consisted of 6 steps, as described below.

Step 1 - Purging: Prior to adsorption, a purge step was flown for 30mins, using 200ml/min of N$_2$, in order to create a N$_2$-rich atmosphere conditions without impurities, as determined by the TOF-MS.

Step 2a - Adsorption: Adsorption runs were performed by feeding the fixed bed reactor with a gas mixture of CO$_2$ and N$_2$ at ambient conditions (T=25°C and P=1atm), simulating each time a different scenario; a combination matrix of three different CO$_2$ concentrations in the gas mixture (5%, 15%, 40% vol.), two flow rates (100ml/min and 150ml/min) both in the presence and absence of moisture resulted in 12 distinct experiments that were conducted for the adsorption process. The breakthrough curves, presented in the next chapters, were obtained from this step using the TOF-MS (Section 3.2.4) and are used to calculate the equilibrium CO$_2$ adsorbed amount q_{eq} ($g_{CO_2, ads.}/g_{sorb}$). The CO$_2$ loading in the bed can be determined by a dynamic mass balance, which requires numerical integration of the data:

$$q_{eq} = \frac{F_{CO_2} ln \rho_{CO_2}}{m} \int_0^{t_{eq}} (1 - \frac{c_{CO_2, out}(t)}{c_{CO_2, in}}) \, dt$$ \hspace{1cm} (3.12)
Where $\rho_{CO_2} = 1.842 \text{ kg/m}^3$ represents CO$_2$ density, evaluated at 20°C and 1bar, while m is the total mass of the AC used (g). Moreover, $\frac{C_{CO_2}^{out}(t)}{C_{CO_2}^{in}}$ represents the time evolution of CO$_2$ in terms of the ratio of the volumetric flow rate of CO$_2$ at the bed outlet relative to that in the feed and $F_{CO_2}^{in}$ the total volumetric flow rate of CO$_2$ in the reactor feed.

Equation 3.12 estimates the total number of moles of CO$_2$ retained by the column during the adsorption step and can be calculated using a graphical method explained below, that makes use of the outlet CO$_2$ concentration and the feed flow-rate. This method avoids the need to examine the variation of the molar CO$_2$ flow-rate at the exit of the bed; it simply calculates the total mass retained by the column as a percentage (ratio of the adsorbed area to the total area on a graph of CO$_2$ concentration, % v/v, versus time, min) of the total mass that enters the system (Garcia et al., 2011).

Figure 3.20 shows the area that needs to be integrated in order to calculate the amount of CO$_2$ adsorbed by the sorbent. This area is divided in two sub-areas, namely A and B that need to be added in order to integrate from t_0 to t_{eq}. Calculating the sub-area A (A_A) is simple since it is rectangular in shape, with length equal to t_1-t_0 and height equal to 100%:

$$A_A = (t_1 - t_0) \times 100\% \quad (3.13)$$

However, sub-area B (A_B) was calculated using the trapezoidal rule, a numerical method developed to simplify the integral. The trapezoidal rule is based on the Newton-Cotes formula that if one approximates the integrand by an n^{th} order polynomial, then the integral of the function is approximated by the integral of that n^{th} order polynomial (Kaw et al., 2012). Integrating polynomials is simple and is based on the calculus formula:

$$\int_a^b x^n dx = \left(\frac{b^{n+1} - a^{n+1}}{n+1} \right), n \neq 1 \quad (3.14)$$
So approximating the integral

\[I = \int_a^b f(x)dx \]

(3.15)

to find the value of the above integral, one assumes

\[f(x) \approx f_n(x) \]

(3.16)

where

\[f_n(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + a_n x^n \]

(3.17)

where \(f_n(x) \) is a \(n^{th} \) order polynomial. The trapezoidal rule assumes \(n = 1 \), that is, approximating the integral by a linear polynomial (straight line),

\[\int_a^b f(x)dx \approx \int_a^b f_1(x)dx \]

(3.18)

Assuming \((a, f(a))\) and \((b, f(b))\) as the two points to approximate \(f(x) \) by a straight line from a to b,

\[f(a) = f_1(a) = a_0 + a_1 a \]

(3.19)

\[f(b) = f_1(b) = a_0 + a_1 b \]

(3.20)
Solving the above two equations for a_1 and a_0.

\[
a_1 = \frac{f(b) - f(a)}{b-a}
\]

\[
a_0 = \frac{f(a)b - f(b)a}{b-a}
\]

Hence from Equation (3.18) it can be derived

\[
\int_a^b f(x)dx \approx \frac{f(a)b - f(b)a}{b-a} (b - a) + \frac{f(b) - f(a) b^2 - a^2}{2}
\]

\[
= (b - a)\left(\frac{f(a) + f(b)}{2}\right)
\]

Applying the above generic example to the sub-area B (Figure 3.21), the integral can be approximated by using n trapezoids added together according to the equation:

\[
A_B = \sum (C_{n+1} - C_n) \left(\frac{t_n + t_{n+1}}{2}\right)
\]

Figure 3.21: Calculation of the sub-area B using the trapezoidal model for integration

Consequently, using equations 3.13 and 3.24, the total area of the breakthrough curve can be calculated from equation 3.25:
\[A = A_A + A_B = (t_1 - t_0) \times 100\% + \sum (C_{n+1} - C_n) \left(\frac{t_{n+1} + t_n}{2} \right) \]

(3.25)

Step 2b - Blank experiments: The behavior of the separation system without the sorbent material (blank experiments) was also tested. The corrections due to the late response of the TOF-MS were obtained with a blank experiment carried out using an empty reactor for each experiment. Therefore, corrected adsorption capacity of the solid adsorbents \(A' \) can be calculated by subtracting the adsorption capacity between the adsorption experiment \(A \) and the blank experiment \(A_{bl} \), as seen in Figure 3.22.

![Figure 3.22](image)

Figure 3.22: Example of a blank experiment during the adsorption step using 40% (vol.) CO\(_2\) and 100ml/min (balance N\(_2\)).

As a result, the corrected area can be determined from equation 3.26:

\[A' = A - A_{bl} \]

(3.26)

Step 3 - Purging: After the completion of the adsorption step, another purge step takes place using high N\(_2\) flow (>250ml/min), aiming at cleaning the TOF-MS capillary line from any residual CO\(_2\). The gas stream does not go through the reactor, to avoid initialisation of CO\(_2\) desorption.
Step 4a - Desorption: Regeneration of the sorbent bed takes place, either using the multimode microwave system for MSA, or the heating tape for TSA, taking into consideration three variables, namely the volumetric total flow rate and the gas condition, according to the adsorption step, and the desorption temperature, as explained above. Similarly to the adsorption step, the total specific amount of CO$_2$ desorbed from the studied solid sorbents (q_{des}) was obtained for both heating processes from the desorption profiles, applying a simple material balance, calculating the area under the desorption curve:

$$ q_{des} = \int_0^{t_{0.5}} F_{tot}^{out}(t) \times \rho_{CO_2} \frac{C_{CO_2}^{out}(t)}{m} \, dt $$

(3.27)

Where $t_{0.5}$ represents the time required to complete the desorption process, based upon the fact that the lowest detectable limit of the TOF-MS is 0.5% CO$_2$ (vol.). Moreover, F_{tot}^{out} is the total volumetric flow, measured from the mini-coriolis flow controller at the exit of the reactor.

![Figure 3.23: Calculation of the area under the desorption curve, A_D, using the trapezoidal model for integration](image)

Similarly to the adsorption step, the area under the curve (A_D) was integrated using the trapezoidal rule (Figure 3.23) as follows:
\[A_D = \sum (t_n - t_{n+1}) \cdot \left(\frac{c_n + c_{n+1}}{2} \right) \]

(3.28)

Step 4b - Blank experiments: Once again, the need to subtract the area that is created due to the late response of the TOF-MS is important. CO\(_2\) flow was switched off, creating a desorption curve until the CO\(_2\) was flushed out of the reactor due to the continuous N\(_2\) flow. The final amount of CO\(_2\) desorbed \((A_D')\) can be calculated by the following equation:

\[A_D' = A_D - A_{D, bl} \]

(3.29)

Where, \(A_{D, bl}\) is the amount of CO\(_2\) calculated from the blank experiment using the trapezoidal rule, as seen in Figure 3.24.

![Figure 3.24: Example of a blank experiment during the desorption step using 40% (vol.) CO\(_2\) and 100ml/min (balance N\(_2\))](image)

Step 5 – cool down: After the end of the desorption step, another purge step under N\(_2\) conditions was followed for 30mins, in order to cool down the reactor and remove any residual CO\(_2\) from the gas lines. Then, in the case of materials’ cycle-ability investigation, the complete procedure is repeated, starting from step 1.
References

Leonelli, C. and Veronesi, P. (2015) ‘Microwave Reactors for Chemical Synthesis and Biofuels Preparation’ Production of Biofuels and Chemicals with Microwave, Biofuels and Biorefineries 3, DOI 10.1007/978-94-017-9612-5_2

Chapter 4 – Process parameters in MSA/TSA

This chapter discusses the results obtained from a series of experiments using a granular activated carbon (GAC), provided from Norit (GAC NORIT GCN3070). Initially, characterisation studies of the parent material are discussed, followed by a detailed comparison of MSA and TSA in terms of desorption efficiency, kinetics and energy consumption, according to the parameters explained in Section 3.4. GAC was used as a reference material against the materials that will be presented in Chapter 5. As a result, a full study, covering and combining all the parameters produced from a total of 48 experiments, is presented, aiming at identifying the best experimental conditions for an efficient regeneration process in terms of CO₂ recovery amount, time required and energy spent during regeneration. Lastly, the possibility to re-use the specific material in a recurring process without damaging its properties is examined, studying its changes in textural characteristics, CO₂ adsorption capacity and dielectric properties after 25 consecutive adsorption/desorption cycles.

4.1. Characterisation of GAC

Prior to the commencement of the experimental work, a complete characterisation study of the GAC material was undertaken, focusing on textural, chemical and dielectric properties. Textural properties included surface area (BET), total pore volume and size (DFT) and CO₂ adsorption capacity (TGA); chemical properties included elemental analysis regarding CHN content, while dielectric properties included resonant measurements using a TM₀₁₀ mode, as explained in Section 3.3. Moreover, the penetration depth and the absorbed power potential were also calculated, using equations from Section 2.2.6. The results are presented in Table 4.1 and are discussed in this section.
Table 4.1: Textural, chemical and dielectric properties of parent GAC

<table>
<thead>
<tr>
<th>Material</th>
<th>Textural</th>
<th>Chemical</th>
<th>Dielectric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_{BET} m2/g</td>
<td>Total Pore Vol. (V$_p$) cm3/g</td>
<td>TGA CO$_2$ uptake (% w/w) at 25°C</td>
</tr>
<tr>
<td>GAC</td>
<td>946.7</td>
<td>0.62</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Figure 4.1 shows the weight change of the GAC monitored by the TGA. It is evident that during the drying step the weight of the sample was reduced by 8%, allowing enough time to degasify the sample, making sure that all the moisture has evaporated prior to the CO$_2$ adsorption step. After switching from N$_2$ flow to a gas mixture of 90% (vol.) CO$_2$ flow and 10% N$_2$, an increase in terms of weight change was observed, for which the weight of the GAC was increased by 10.7% from its initial 91.8%. This actually means that a total of 11.7% (w/w) increase, in other words 2.65 mmol CO$_2$ per gram of sorbent, was observed for the GAC at 35°C.

![Figure 4.1: TGA CO$_2$ adsorption/desorption test using the parent GAC at 35°C](image)

Next, a study on the surface area and porous characteristics took place. Figure 4.2 shows the typical adsorption (red line)/desorption (blue line) isotherm of N$_2$ at 77 K for GAC, which corresponds to the type I isotherm according to the IUPAC classification (IUPAC, 1985) described in Section 3.3.1. These isotherms are typically associated...
with a microporous structure, with their exposed surface residing almost entirely inside those micropores. Once the micropores are filled with adsorbate, little or no external surface is left for further adsorption. The particle size of the GAC was 210-595µm (30-70 mesh, 93%), the BET surface area was 953 m²/g, while the total pore volume (V_p) was 0.62 cm³/g. Furthermore, CHN analysis showed an expectedly high amount of carbon (C) inside the GAC, namely 90.9%.

![Figure 4.2: N₂ adsorption/desorption isotherm of the granular AC](image)

Lastly, the dielectric properties of the GAC sorbent were assessed. Figure 4.3 presents the difference in resonant frequency (Δf_0) and transmitted power (Δf_B) for the parent sample at 2.45GHz (f_0), compared to the blank measurement, described in Section 3.3.5. Comparing Figures 3.16 and 4.3, Δf_0 and Δf_B can be calculated. Moreover, equations 3.8, 3.9 and 2.3 were used to calculate the loss tangent. The effective cavity volume V_{eff} and the sample volume used in those equations were: $V_{eff} = 71ml$ and $V_s = 0.2ml$. Tan δ value was calculated to be tan δ=0.44, while the penetration depth was 2.2cm, both being typical values for activated carbon (Menéndez et al., 2009). The P_{abs} reported in Table 4.1 represents the heating efficiency calibrated per mg of GAC and was equal to 89%, indicating an excellent transformation of microwave energy to heat.
Figure 4.3: Difference in resonant frequency and transmitted power for the parent GAC at 2.45GHz

4.2. CO\textsubscript{2} adsorption studies

Prior to investigating and comparing the two desorption methods, namely MSA and TSA, it is necessary to calculate the amount of CO\textsubscript{2} adsorbed in the GAC. Moreover, examining the effect of (a) CO\textsubscript{2} concentration in the gas mixture, (b) total flow rate of the feed gas and (c) existence or absence of moisture in the feed gas, are of high importance, since these parameters will directly affect the desorption performance as well. As a result, CO\textsubscript{2} capture experiments were conducted as the first step to test the GAC using the lab-scale rig presented in Chapter 3 (Section 3.4).

Table 4.2: CO\textsubscript{2} adsorbed from GAC for various conditions

<table>
<thead>
<tr>
<th>CO\textsubscript{2} Concentration (vol. %)</th>
<th>Gas condition</th>
<th>(P_{tot}^{in}) (ml/min)</th>
<th>(q_{ads}) (g)</th>
<th>(g_{CO2ads}/g_{sorb})</th>
<th>(% (g_{CO2ads}/g_{sorb}))</th>
<th>mmol\textsubscript{CO2}/g\textsubscript{sorb}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.39</td>
<td>0.078</td>
<td>7.8</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.44</td>
<td>0.088</td>
<td>8.8</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td>100</td>
<td>0.44</td>
<td>0.088</td>
<td>8.8</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.51</td>
<td>0.102</td>
<td>10.2</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>100</td>
<td>0.44</td>
<td>0.088</td>
<td>8.8</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.51</td>
<td>0.102</td>
<td>10.2</td>
<td>2.32</td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td>100</td>
<td>0.15</td>
<td>0.030</td>
<td>3.0</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.21</td>
<td>0.042</td>
<td>4.2</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>100</td>
<td>0.19</td>
<td>0.038</td>
<td>3.8</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.24</td>
<td>0.048</td>
<td>4.8</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>100</td>
<td>0.19</td>
<td>0.038</td>
<td>3.8</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.24</td>
<td>0.048</td>
<td>4.8</td>
<td>1.11</td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td>100</td>
<td>0.11</td>
<td>0.022</td>
<td>2.2</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.13</td>
<td>0.025</td>
<td>2.5</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Dry</td>
<td>100</td>
<td>0.11</td>
<td>0.022</td>
<td>2.2</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.13</td>
<td>0.025</td>
<td>2.5</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>100</td>
<td>0.14</td>
<td>0.027</td>
<td>2.7</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.17</td>
<td>0.033</td>
<td>3.3</td>
<td>0.75</td>
</tr>
</tbody>
</table>
The dynamic response of the gas–solid adsorption system was followed by recording the CO$_2$ outlet concentration at the exit of the reactor as a function of time by using the TOF-MS (Section 3.2.4), in order to obtain the so-called breakthrough curves (Figures 4.5, 4.7 and 4.9). Specifically, the time-dependent CO$_2$ amount adsorbed was expressed in terms of the ratio of the CO$_2$ concentration at the bed outlet relative to that in the feed (\(\frac{C_{\text{CO}_2}^{\text{out}}(t)}{C_{\text{CO}_2}^{\text{in}}}\)). In addition, N$_2$ concentration was almost constant during all adsorption tests (\(\frac{C_{\text{N}_2}^{\text{out}}(t)}{C_{\text{N}_2}^{\text{in}}} = 1\)), indicating that N$_2$ adsorption on the AC can be considered negligible, under the investigated experimental conditions. Finally, all the adsorption experiments were conducted four times and an average of each measurement was considered. Consequently, the error estimation of the results was calculated to be on the range of ±2%, as shown by the error bars in the following figures (Figures 4.4, 4.6 and 4.8). Table 4.2 summarises the results that will be discussed in Section 4.2.1-4.2.3.

4.2.1. Effect of CO$_2$ concentration in the CO$_2$/N$_2$ binary mixture

Figures 4.5, 4.7 and 4.9 present the breakthrough curves obtained for GAC at ambient temperature and pressure using three different CO$_2$ concentrations, at the inlet of the reactor (\(C_{\text{CO}_2}^{\text{in}} = 40\%\), 15\% and 5\% vol. respectively), as a function of total volumetric flow rate and wet/dry condition of feed gas. It is noticeable that while CO$_2$ is being adsorbed on the carbon, during the first moments of the adsorption step, it is not detected at the reactor outlet from the TOF-MS and only when the breakthrough time, \(t_b\), (which is the time needed for \(\frac{C_{\text{CO}_2}^{\text{out}}(t)}{C_{\text{CO}_2}^{\text{in}}} = 0.05\)) is reached, CO$_2$ becomes detectable in the outlet gas stream (Plaza et al., 2010). Moreover, for each flow rate and feed gas condition, the curves become steeper as the \(C_{\text{CO}_2}^{\text{in}}\) increases, likely due to an increase in the mass transfer rate (Balsamo et al., 2010). Furthermore, the characteristic breakthrough time and the equilibrium time (\(t_{eq}\)) decrease as \(C_{\text{CO}_2}^{\text{in}}\) increases regardless the flow rate and the moisture presence, even if the differences reduce in the case of the wet feed gas.

Figures 4.4, 4.6 and 4.8 present the total amount of CO$_2$ adsorbed from GAC during the adsorption step. It is evident that as the CO$_2$ concentration in the feed gas increases, the
total CO$_2$ amount adsorbed increases as well; the highest adsorbed amount was observed for the case of 40% (vol.) CO$_2$ in the gas feed and was calculated to increase from 0.39 to 0.51g per 5g of GAC. This means that for this specific feed concentration mixture, the amount calculated was close to the one predicted and reported from the TGA experiments (~11%), namely 8-10% per gram of GAC. This result was expected, since the GAC experiments were conducted with a 90% (vol.) CO$_2$ concentration (balanced with N$_2$), as reported in Section 3.3.1. However, in the cases of low CO$_2$ concentration in the mixture, the amount adsorbed decreased significantly, showing an important deviation from the expected saturation values; it is notable that in the case of 15% (vol.) CO$_2$ in the inlet, only 0.15-0.24g, or in other words 3%-5% per gram of GAC, were adsorbed, while in the case of 5% (vol.) CO$_2$ the decrease was even more obvious, concluding to only 0.1-0.16g, or 2%-3% (wt.) per gram of GAC to be adsorbed from the bed. This can be explained by Henry’s law according to which, adsorption is proportional to the partial pressure of CO$_2$ (P_{CO_2}), expressed by the following equation:

$$X = K_H P_{CO_2}$$ \hspace{1cm} (4.1)

where X is the surface coverage and K_H is Henry’s adsorption constant (Smit et al., 2014).

![Figure 4.4: Amount of CO$_2$ adsorbed onto the GAC from a 40/60 CO$_2$/N$_2$ binary mixture at 25°C and 1bar, for 4 different parameters](image)

124
However, one important factor to be taken into consideration is that a continuous CO$_2$ adsorption/desorption system measures the dynamic adsorption, instead of the static adsorption capacity. The dynamic adsorption capacity takes into account that only a part of the bed, namely the equilibrium zone (EZ) is saturated, whereas the mass transfer zone (MTZ) is only moderately saturated (Qu et al., 2009). In addition, another zone with fresh solid sorbent may be present, completely adsorbate-free, if the unit works under a fixed adsorption time. In contrast, the static adsorption capacity values derive from the weight change of the adsorbent, leaving it for several hours (or days) under controlled conditions in terms of partial pressure or relative humidity and at a certain temperature.

The static adsorption capacity can be a great indication for the maximum saturation perspectives of a sorbent; however, when dealing with industrial applications, the dynamic adsorption capacity should be taken into consideration (Wu, 2004). As a result, this research will only report the static adsorption capacity for characterisation purposes, while the dynamic capacity will be used to compare samples and conditions throughout.

![Figure 4.5: Breakthrough curves obtained from a 40/60 CO$_2$/N$_2$ binary mixture at 25°C and 1bar, comparing flow rates and dry/wet gas conditions](image)
4.2.2. Effect of total flow rate

The next parameter that was investigated is the effect of the total flow rate of the binary mixture in the inlet of the reactor. This is a very important parameter, since it directly affects the dimensions, especially the diameter, of the reactor vessel, playing a crucial role to the total cost of the process. Moreover, it also affects the pressure drop inside the reactor in a proportional relation, meaning that as the total flow rate increases, the pressure drop increases as well. For the purposes of this research, two different flows were used, namely $F_{tot}^1 = 100 \text{ml/min}$ and $F_{tot}^2 = 150 \text{ml/min}$. F_{tot}^1 was selected considering that the lowest detection values for the Coriflow TM-13 instrument (instrument range for N$_2$ flow: 70ml/min to 700ml/min). Furthermore, F_{tot}^2 was selected taking into consideration that initial testing of the rig showed that during MSA desorption, the flow was possible to reach $>600\text{ml/min}$ for an inert flow of N$_2$ $>150\text{ml/min}$. As a result, considering that the maximum detectable flow of the Coriflow TM-13 instrument is 700ml/min, the total flow rate was limited to 150ml/min. These two flow rates can be converted to gas velocities, since the diameter of the bed is known ($d_b=10\text{mm}$) and correspond to 1.27m/min and 2m/min respectively.

A flow rate increase is systematically accompanied by a slight increase of the amount adsorbed (Gritti et al., 2005). This can be proven by the mass transfer correlation introduced by Sherwood, Pigford and Wilke (McGraw-Hill, 1974), which can be applied to adsorbates of both gaseous and liquid form. The correlation employs the Colburn-Chilton j-Factor and the Reynolds number (equation 3.2). The j-factor is determined by equation 4.2:

$$j_d = \left(\frac{K}{v_x} \right) \cdot Sc^{0.667}$$ \hspace{1cm} (4.2)

Where Sc is the Schmidt number, a dimensionless number used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes and is defined by:

$$Sc = \frac{\mu_d}{\rho D_{AB}}$$ \hspace{1cm} (4.3)
Where D_{AB} is the diffusion coefficient of A to B. As a result, the mass transfer correlation can be determined by:

$$j_d = 1.17 \times Re^{-0.415}$$

(4.4)

Combining equations 3.2, 4.2, 4.3 and 4.4 and solving for the mass transfer coefficient (k):

$$k = \frac{1.17 \nu_s \frac{D_{AB} \mu}{\rho}^{-0.415}}{(\nu_s \rho D_{AB})^{0.667}}$$

(4.5)

It can be seen from equation 4.5 that $k \sim u_s^{0.585}$, which means that a 10-fold velocity increase would lead to a 4-fold increase of the mass transfer coefficient. Consequently, an increase from 1.27 m/min to 2 m/min would lead to an increase of 64% of the mass transfer coefficient.

Figure 4.6: Amount of CO$_2$ adsorbed onto the GAC from a 15/85 CO$_2$/N$_2$ binary mixture at 25°C and 1 bar, for 4 different parameters

It is evident that, for every CO$_2$ concentration in the inlet, the characteristic breakthrough time t_b decreases as the total volumetric flow rate (F_{in}^{tot}) increases, even if the differences reduce when comparing wet flue gas conditions. As expected, it can be
observed that there is a monotonic shift of the whole breakthrough curve towards lower times as the total flow rate increases, meaning that the CO$_2$ adsorption rates increase proportionally with the increase of the flow. Moreover, the equilibrium time (t_{eq}), defined as when CO$_2$ concentrations at the bed inlet and outlet are practically equal, is reached 3.5mins faster in the case of the dry gas, whereas in wet gas conditions, the t_{eq} is reached ~8mins faster. However, it is notable that the CO$_2$ adsorption capacity increases in all cases (Figures 4.4, 4.6 and 4.8); for a dry 40/60 CO$_2$/N$_2$ gas mixture, the CO$_2$ adsorption capacity increased from 0.39 to 0.44 g_{CO_2} (from 8% to 9% per g of GAC), whereas for a dry 15/85 CO$_2$/N$_2$ mixture, the CO$_2$ adsorption capacity was 0.21g_{CO_2} (4.1% w/w ratio) at 150ml/min, being significantly increased compared to 0.15g_{CO_2} at 100ml/min (3% w/w ratio) representing a rise of 40%. Furthermore, when 5% CO$_2$ were introduced inside the gas mixture, a rise in CO$_2$ adsorption capacity was observed as well, from 0.1 to 0.12g per g of GAC.

![Figure 4.7: Breakthrough curves obtained from a 15/85 CO$_2$/N$_2$ binary mixture at 25°C and 1bar, comparing flow rates and dry/wet gas conditions](image)

Considering the case of the wet binary gas mixture, the same trend was observed; the CO$_2$ adsorption capacity was increased in every case that the total volumetric flow rate was increased; 0.51g_{CO_2} (10.2% w/w ratio) from 0.44g_{CO_2} (8.8% w/w ratio), equal to a 16% increase in the case of 40% CO$_2$ in the feed gas as seen in Figure 4.4, 0.24g_{CO_2} (4.8% w/w ratio) from 0.19g_{CO_2} (3.9% w/w ratio) representing a rise of 23% in the case...
of 15% CO$_2$ (Figure 4.6). The same increase rate was also observed for the case of 5% CO$_2$ where, from $0.135g_{co_2}$ it increased to a maximum of $0.165g_{co_2}$, representing a 22% rise of CO$_2$ adsorbed (Figure 4.8).

4.2.3. Effect of moisture content

In general, activated carbon is known for its hydrophobic character and as such, the presence of moisture does not affect its CO$_2$ adsorption capacity (de Ridder, 2012). One reason for that is that the separation principle of carbon sorbents is based on kinetic separation, and as a result, a fast adsorption gas like CO$_2$ is hardly affected by a slow adsorption gas, such as water vapour (Dong et al., 2011). Interestingly enough, a ~10% of moisture in a binary gas mixture of CO$_2$ and N$_2$ seems to enhance the CO$_2$ adsorption capacity on that particular GAC. The CO$_2$ adsorption capacity in the case of 40/60 gas mixture (Figure 4.4) was increased by as much as 16% when 150ml/min were used (from $0.44g_{co_2}$ to $0.51g_{co_2}$), while for 100ml/min there was an increase of 13%, from $0.39g_{co_2}$ to $0.44g_{co_2}$. It is notable that, the highest increase was once again observed for the case of 15% CO$_2$ in the gas mixture (Figure 4.6); $0.19g_{co_2}$ (3.9% w/w ratio) from $0.15g_{co_2}$ (3% w/w ratio) for 100ml/min, resulting in a significant 25% rise. However, when a higher total flow rate of 150ml/min was introduced into the reactor, the increase was smaller, from $0.21g_{co_2}$ (4.1% w/w ratio) to $0.24g_{co_2}$ (4.8% w/w ratio) - namely 17%. For the case of 5% CO$_2$ into the gas mixture (Figure 4.8), the increase was also quite significant, since a 23% rise of CO$_2$ amount adsorbed onto the GAC for a total flow of 100ml/min was detected (~$0.13g_{co_2}$ from 0.107), whereas for 150ml/min the rise was 22% ($0.165g_{co_2}$ from $0.135g_{co_2}$).
This rise of the CO$_2$ adsorption capacity when introducing water vapour inside the binary gas mixture, when using GAC as an adsorbent, does not follow any of the previous literature studies suggesting that activated carbon is not influenced by the presence of moisture (Songolzadeh et al., 2012). This may be attributed to the fact that the total flow rate of the feed increased due to the vapour created during the moisture formation and as it was shown in the previous section, an increase in the total flow rate enhances the total amount of CO$_2$ adsorbed.
4.3. Comparison of MSA/TSA heating rates

Prior to the desorption experiments, the GAC heating rates were examined, comparing microwave (MW) and conventional (CH) heating in the presence of 100ml/min N₂ flow. Figures 4.10 and 4.11 show those rates, comparing MW with CH heating at 70°C and 130°C. It is clear that MW heating offers a faster process for the specific material compared to CH. In the case of MW the desired temperature is reached relatively fast, since only 40 seconds are needed for the bed to reach 70°C, whereas 3.5 minutes is the required time for 130°C MW heating. On the other hand, in the case of CH, a linear heating process is observed; the heating tape heats the Pyrex glass wall of the reactor, which passes the heat to the AC bed via conduction. This results in a long heating process (7 min for heating at 70°C and 15 min for 130°C) and more heat losses without the advantage of the rapid initial heating step.

![Graph showing heating rates comparison of MW and CH for 70°C](image)

Figure 4.10: Heating rates process comparison of MW and CH for 70°C
Moreover, the rate of change in GAC temperature was compared for MW heating, as shown in Figure 4.12. The MW heating response demonstrates that the temperature increase rate declines as the temperature increases. This thermal response of the dry GAC during the MSA process is very promising because it indicates that the loss factor (ε'') of the adsorbent material does not increase with temperature. This means that a potential ‘runaway effect’, - in other words, the uncontrollable increase of the adsorbent’s temperature, described in Section 2.2.7.1 - can be avoided when using GAC. The runaway effect would derive from a positive slope of the material’s loss factor versus temperature (Metaxas and Meredith, 1983), which is not the case for this adsorbent. As a result, the rate of temperature change versus temperature of the sorbent is used here as an indicator for possible thermal runaway (Hashisho, 2007) and these rates are reported in Figure 4.12. It is clear that the temperature change rate is decreasing as the sorbent bed is heated, meaning that the loss factor of the GAC does not increase with temperature and as such, the runaway effect is avoided.

Figure 4.11: Heating rates process comparison of MW and CH for 130°C
As explained in Section 3.3.5, the average absorption of microwave power (also known as heating potential), P_{abs}, is associated with the frequency used during the application, the dielectric properties of the material and the strength of the electric field of the microwave energy, described from equation 3.11 (Metaxas and Meredith, 1983). This equation, combined with the rate of change of the sorbent’s temperature and differentiated it with respect to temperature, provides an estimation of the loss factor change with temperature:

$$\frac{d\varepsilon'_r}{dT} = \frac{\rho C_p \frac{d}{dT} (\frac{\Delta T}{\Delta t})}{\omega \varepsilon_0 |E|^2 dT^2}$$ (4.6)

From the above equation, it is expected the loss factor of the GAC to decrease with increasing temperature. As a result, the effect of thermal runaway is unlikely in this occasion, being in agreement with other studies in the field of MSA processes (Hashisho, 2007).

Another important observation was that at the end of the microwave application, while the temperature of the GAC bed was 70°C, the temperature of the glass reactor wall was 40°C, or 80°C in the case of heating to 130°C. This can be attributed to the fact that glass is a microwave transparent material that cannot be heated under microwave irradiation, since it lets the waves pass through it, as discussed in Section 3.2.1.
However, the temperature of the reactor continued to increase to 60°C - 65°C (and 110°C - 120°C respectively) even after stopping the MW heating, presumably due to conductive heating from the hot bed to the reactor’s walls.

4.4. CO₂ Desorption studies

The main focus of this research is the regeneration process that follows the CO₂ adsorption step. As explained in Chapter 2, two desorption technologies are typically applied in laboratory and/or industrial CCS applications nowadays, namely PSA and TSA. However, they are not considered to be the optimum pathways for CO₂ adsorption technology for reasons mentioned in Section 2.1.5. Accordingly, research towards the development of rapid thermal processes avoiding the disadvantages that PSA and TSA present is required. This study presents and analyses a relatively new approach for CO₂ capture, namely Microwave Swing Adsorption (MSA) technology, a process that is proposed in order to decrease the overall energy penalty by faster, more efficient and less energy intensive heating of the sorbents.

Utilisation of microwave energy for heating processes has been known for a long time, and the development of microwave ovens has more than 60 years of history. Previous studies on microwave assisted desorption applications showed that electromagnetic energy may be an appropriate alternative to conventional thermal heating, minimising energy losses and process time, as discussed in Section 2.2.9. However, the concept of using microwave energy in CCS applications to replace the conventional TSA and/or PSA processes is quite new and has not been studied before. As a result, further investigation is needed in order to prove that MSA can intensify CO₂ desorption process, since the post-combustion capture and regeneration process utilises larger CO₂ concentrations and lower temperatures (50-150°C) than the ones previously studied.

The effects of microwave regeneration of sorbent materials can vary depending on various process parameters, such as applied power, mass of saturated adsorbent, purge gas flow rate, irradiation and gas impurities such as moisture content. In this chapter, experimental studies of GAC CO₂ desorption comparing MSA and TSA technologies have been conducted. In order to intensify the regeneration process, the MSA process should primarily ensure that:
(a) The highest possible degree of desorption of the adsorbed compound is achieved (regeneration efficiency). Therefore, the regeneration of the solid sorbent is the first parameter investigated, comparing the amount of CO$_2$ desorbed against the previously adsorbed amount (4.4.2).

(b) A straightforward and efficient separation step of the adsorbed compound from the solid sorbent is possible, leading to a time and energy effective process (Shah et al., 2013). Thus, CO$_2$ desorption rates and energy consumption during the process are examined (Sections 4.4.3 and 4.4.4).

(c) The least possible textural erosion and mechanical destruction of adsorbent takes place, contributing to re-utilisation of the specific material. As a result, the possibility to re-use the GAC sample even after 25 consecutive MSA/TSA cycles is also investigated, as shown in this chapter (Section 4.6).

Furthermore, examination of the moisture impact during microwave heating is also important, since water vapour is also present in the flue gas mixture. Here, it should be noted that all the desorption experiments were conducted four times and an average of each measurement was considered. Consequently, the error estimation of the results was calculated to be on the range of ±2%, as shown by the error bars in the following figures.

4.4.1. Desorption profiles

Figures 4.13a-d to 4.15a-d present the CO$_2$ outlet concentration ([CO$_2$]) profiles during CO$_2$ desorption via MSA and TSA as a function of time (seconds) using two different temperatures, namely 70°C and 130°C. It is clear that there are two different outlet concentration patterns; MSA follows the *log-normal distribution*, while TSA results fits in the *Rayleigh distribution*. The log-normal distribution, sometimes also known as Galton distribution, is a probability distribution whose logarithm has a normal distribution. It is only applicable when the quantity of interest (in this case CO$_2$ outlet concentration) is positive, since log(x) exists only when x is positive. The following equation can be applied to the MSA profiles, according to the log-normal distribution:

\[
[CO_2]_{MSA} = \frac{1}{\sigma \sqrt{2\pi}} e^{-\left(\ln t - \mu\right)^2 / 2\sigma^2}
\]

(4.7)

where σ is the scale parameter ($\sigma=0.25$) and μ is location parameter ($\mu=0$).
Similarly, the Rayleigh distribution, named after William Strutt, Lord Rayleigh, is the distribution of the magnitude of a two-dimensional random vector whose coordinates are independent, identically distributed, mean 0 normal variables (Kundu and Raqab, 2004). The equation that describes the Rayleigh distribution and can be applied to the TSA desorption profiles is the following:

\[
[CO_2]_{TSA} = \frac{t}{\sigma^2} e^{-t^2/(2\sigma^2)}
\]

(4.8)

Where \(\sigma\) is again the scale parameter (\(\sigma\) lies between 2 and 3 for the TSA profiles).

All the MSA profiles show that the maximum \([CO_2]\) is reached relatively fast, meaning that most of the adsorbed CO\(_2\) is quickly desorbed, due to the rapid heating of the sorbent, breaking the van der Waals bonds between adsorbent and adsorbate within seconds from the beginning of the application. However, it is quite noticeable that there are differences between the profiles depending on the CO\(_2\) concentration during the adsorption step. These differences can be explained taking into consideration that the amount of CO\(_2\) inside the pores of the GAC to be desorbed varies for each case, as shown in Section 4.2. The characteristic peak of the \([CO_2]_{out}\) during the MSA process is almost equal (in the case of 40% CO\(_2\)) or higher (in the cases of 15 and 5%) to the concentration of CO\(_2\) in the binary mixture during the adsorption step. On the other hand, it is important to note that during the TSA process, this peak does not reach the \([CO_2]_{in}\) for the cases of \([CO_2]_{in} = 40\%\) and 15\% and as a matter of fact it is notably lower than half compared to the MSA process. However, in the case of \([CO_2]_{in} = 5\%\), the peak during TSA exceeds \([CO_2]_{out} = 5\%\), which is a very important result when dealing with low CO\(_2\) concentration, as in the case of a gas-fired power plant (Section 2.1.2.2). MSA, though, achieves an even greater \([CO_2]_{out}\) peak, between 10\% and 18\% depending on the parameters examined.
Figure 4.13a-d: Time dependent CO2 outlet concentration profiles during GAC regeneration at 70°C and 130°C via MSA and TSA
Another significant difference is that the maximum $[CO_2]_{out}$ (curves’ peaks) is reached much faster for the cases of MSA compared to TSA; in the case of $[CO_2]_{in} = 40\%$, the desorption peak was reached after 40-50 seconds in the MSA mode, whereas almost 3 minutes were needed for the TSA mode (Figure 4.13). The same trend is noticeable for the cases of $[CO_2]_{in} = 15\%$ and 5%, where the peak during MSA is reached significantly faster compared to TSA (Figures 4.14 and 4.15). As a result, combining the facts that the peak of $[CO_2]_{out}$ is double in the case of MSA while it is reached clearly faster (1/3 of the time needed) compared to the TSA mode, it is clear that microwaves have the ability to intensify the process in terms of CO$_2$ desorption kinetics. Another important point is that in the case of TSA, there is a proportional relation between desorption time and CO$_2$ amount previously adsorbed. This was expected since the rate of desorption of an adsorbate (R_{des}) is proportional to the concentration of the adsorbed species (N), as seen in equation 4.9:

$$R_{des} = k_{des}N^x$$ \hspace{1cm} (4.9)

Where x is the kinetic order of desorption (in this case $x = 1$) and k_{des} is the rate constant for the desorption process expressed in an Arrhenius form:

$$k_{des} = Aexp\left(-\frac{E_{a des}}{RT}\right)$$ \hspace{1cm} (4.10)

Where A is the pre-exponential factor, $E_{a des}$ is the desorption activation energy, R is the ideal gas constant and T is the desorption temperature.

Comparing the TSA desorption profiles for the different $[CO_2]_{in}$, it can be seen that the $[CO_2]_{out}$ peak is reached after ~150 seconds when 40% of CO$_2$ was previously introduced, while in the case of 15% CO$_2$ this time increased to ~180-200 seconds. An even higher rise was noticed for the 5% CO$_2$, where the desorption peak was reached after almost 250 seconds. This is extremely important for the cases of low CO$_2$ concentrations in the exhaust gas mixtures, since it actually means that the desorption process takes longer time to start when operated with TSA technology.
15% CO₂

Figure 4.14a-d: Time dependent CO₂ outlet concentration profiles during AC regeneration at 70°C and 130°C via MSA and TSA
However, this is not the case for the MSA process, where the amount of energy needed for the desorption to initiate is supplied directly into the material, due to the nature of microwave heating discussed in section 2.2.9. As a result, the desorption peak during the MSA process lies between 60 and 90s for all $[CO_2]_{in}$.

It is worth mentioning that the wet conditions seem to affect the desorption process as well. In the case of a wet binary mixture of $[CO_2]_{in} = 40\%$ during adsorption, the desorption profiles were different for both flow rates; specifically, the peaks were considerably lower and they were not clearly formed, slightly deviating from the expected distribution (Figure 4.13b). This abnormality was mostly evident during the MSA heating process and can be attributed to the fact that the dielectric properties of the material changed significantly when introducing moisture into the gas mixture, resulting in a higher amount of power absorbed during the regeneration process, due to the polar nature of H$_2$O as seen in section 2.2.4. This resulted in the presence of two adjacent $[CO_2]_{out}$ maxima, resulting from the pulse operation mode of the microwave, as explained in section 3.2.2.

However, this abnormality is not visible in the cases of smaller CO$_2$ amounts adsorbed. This was expected, since the amount of moisture inside the GAC is proportional to the amount of CO$_2$ adsorbed, and hence, when using a smaller concentration of CO$_2$ during the adsorption step, the amount of water held from the GAC did not create any irregularity in the desorption profiles.

Another clear difference between the two distribution patterns is the long tail that can be observed in the TSA process for every case. This tail suggests that the residual CO$_2$ desorption takes place slowly, due to a driving force reduction (in this case ΔT) (Balsamo et al., 2013), while in the case of MSA, the curve reaches an asymptote more rapidly, indicating that almost all the CO$_2$ is desorbed immediately after irradiating the AC bed with electromagnetic energy.
Figure 4.15a-d: Time dependent CO₂ outlet concentration profiles during AC regeneration at 70°C and 130°C via MSA and TSA

5% CO₂
Furthermore, CO\textsubscript{2} desorption profiles were also quantitatively examined in order to investigate the best experimental conditions for an intensified regeneration process. Attention was mainly paid to CO\textsubscript{2} recovery amount, time required for the desorption process for a given regeneration level and energy consumed per kg of sorbent, the latter being a critical factor for the feasibility of a CO\textsubscript{2} capture plant. As a result, in the next Sections (4.4.2-4.4.4), the effects of heating method, heating temperature, flow rate, gas condition and [\text{CO}_2]_{in} on the regeneration efficiency, desorption kinetics and energy consumption are discussed. Moreover, a thermal distribution map of the bed reactor is presented (Section 4.5) followed by an investigation of the possibility of re-using the GAC for 25 consecutive cycles (Section 4.6).

4.4.2. Regeneration efficiency

For the purposes of this study, desorption efficiency was the first parameter selected to evaluate the regeneration performance of GAC when comparing the two different heating technologies, MSA and TSA. Desorption efficiency (n_{des}) is defined by the ratio of amount of CO\textsubscript{2} released during regeneration to total CO\textsubscript{2} amount previously adsorbed by the GAC bed and can be calculated by the following equation:

$$n_{des} = \frac{Q_{des}}{Q_{ads}} \times 100\%$$ \hspace{1cm} (4.11)

Initially, the case of [CO\textsubscript{2}]_{in}=40\% was examined and the results are presented in Figures 4.16 and 4.17. It is obvious that MSA intensified the desorption process in terms of GAC regeneration efficiency, since n_{des} is higher for every case that microwaves were utilised. The temperature increase does not seem to play an important role in the desorbed amount, since similar trends are reported for both 70\^\circ C and 130\^\circ C. However, it can be concluded that when using a higher temperature, the regeneration efficiency increased. This increment, though, is not large enough to justify a heating process at a higher temperature, which would lead to higher cost due to the increased energy consumption, as discussed in Section 4.4.4.

On the other hand, it is clear that the most influential factor was the gas condition during the adsorption step; both TSA and MSA processes report lower regeneration efficiencies in the cases of wet gas previously adsorbed. This could be associated with
the fact that CO₂ is faster adsorbed than H₂O, which comes second, blocking the pores on the surface, as mentioned in Section 4.2.3. As a result, H₂O acts as a superficial cover, not allowing the CO₂ molecules to diffuse to the outside of the pores when a heating process is applied. As can be seen from Figures 4.16 and 4.17 there is a huge decrease in the nₐₐ, especially when TSA is used; at 70°C desorption, nₐₐ decreases from 66% to 32% for 100ml/min N₂ (carrier gas) flow rate and from 68% to 52% for 150ml/min. Furthermore, even when the GAC was heated at 130°C, the same trend was evident; a radical decrease from 79% to 38% for 100ml/min N₂ and from 70% to 40% for 150ml/min. These values are well below the desirable values for a large scale process, where desorption efficiencies of >80% are needed in order for the capture process to be economically feasible (Su et al., 2014).

MSA was expected to present better results, since water is very well known for its excellent dielectric properties due to its polar nature. A more efficient heating process was forecasted, which would consequently lead to higher amounts of CO₂ released from the sorbent. The experiments conducted proved the above point but not in a desirable level; regeneration efficiency is clearly improved when MSA is applied, as seen in Figures 4.16 and 4.17. When heating at 70°C, an increase from TSA’s 32% to 53% for 100ml/min N₂ flow and from 52% to 66% for 150ml/min N₂ flow was evident. Moreover, in the case of 130°C, MSA managed to enhance nₐₐ from 38% to 55% and from 40% to 64%, respectively. However, it is quite clear that these numbers are still well below the target of 80% of a real scale process, which in fact was reached using MSA under dry gas conditions at 70°C and 130°C and 100ml/min N₂ flow.

Lastly, the increase in the N₂ carrier gas flow rate does not significantly affect the regeneration efficiency, however an interesting trend is reported; when increasing from 100ml/min to 150ml/min, there is a small improvement in the efficiency in the case of TSA, whereas this change seems to affect negatively the MSA process for the dry gas, contrary to the wet gas conditions, where a positive effect is reported. The CO₂ molecules are detached from the solid sorbent due to the temperature increase; however, they are blocked under the superficial H₂O adsorbed and as a result an additional driving force is needed, which in this case is the increased velocity of the carrier gas.
Similar trends were reported in the case of \([CO_2]_{in} = 15\%\); however, each case individually resulted in better regeneration efficiencies compared to the previous outcomes. The results presented in Figures 4.18 and 4.19 demonstrate that the regeneration efficiency increased in all cases when MW was applied, as a consequence of the fast heating of the sorbent, as explained in Section 4.4.1. It is also evident that lower flow rates and dry gas conditions result in higher desorption efficiencies, whereas the increase in temperature from 70°C to 130°C did not seem to play an important role. Specifically, the highest desorption efficiency during TSA, when heating either at 70°C or 130°C, was observed when 100ml/min and dry gas conditions were used, namely
80%. MW improved this value to a maximum of 91% (~13% increase) in the case of 70°C and to 88% for 130°C desorption, which were also the highest values of all cases.

It is also worth mentioning, that the lowest desorption efficiencies were once again calculated for the wet gas conditions, namely 70%-73% at 70°C and 71% at 130°C for TSA. However, experimental tests under the MSA process showed an improvement in those efficiencies as well, resulting in much higher amount of CO₂ desorbed from the GAC. When heating at 70°C, using 100ml/min a 83% efficiency was reached, while this amount decreased for a higher purge flow rate (150ml/min) to 77%. Accordingly, when heating at 130°C, using 100ml/min the desorption efficiency improved from 71% to 82%, while for 150ml/min the rise was smaller, from 71% to 76%. It can be concluded that for $[CO_2]_{in}=15\%$, MSA managed to increase the regeneration efficiency of the GAC over the acceptable limits of 80%; considering all parameters reported, while TSA reports an average of ~74%, MSA intensified the desorption process leading to an increase regarding n_{des} to an average of 84%.

![Figure 4.18: Comparison of the regeneration efficiency for MSA and TSA at 70°C](image-url)

Figure 4.18: $([CO_2]_{in}=15\%)$ Comparison of the regeneration efficiency for MSA and TSA at 70°C
Lastly, \([\text{CO}_2]_{in}=5\%\) (simulating the CO\(_2\) partial pressure in the flue gas of a gas-fired power plant) was examined, which also showed similar trends with the previous outcomes for each individual case (Figures 4.20 and 4.21). However, comparing the regeneration efficiency for each CO\(_2\) concentration, the trend was not as expected; \(n_{des}\) using TSA process for \([\text{CO}_2]_{in}=40\%\) averaged \(\approx 55\%\) for 70°C and \(\approx 58\%\) for 130°C, which increased vastly for \([\text{CO}_2]_{in}=15\%\), namely \(\approx 74\%\) for both temperatures. Same trend was followed for the MSA process, where from 68% and 70%, \(n_{des}\) reached an average of 84% for both temperatures. This trend was expected to continue when decreasing the amount of CO\(_2\) in the gas binary mixture during the adsorption step, namely \([\text{CO}_2]_{in}=5\%\). Nonetheless, TSA resulted in an average of 61% for 70°C and 70% for 130°C, while MSA reported an average of 74% for both temperatures. This means that the optimum concentration of CO\(_2\) lies between 5% and 40%, for which the regeneration efficiency can practically be close or over the limits of 80%, is 15%.

As expected, the lowest desorption efficiencies were reported for the wet gas conditions, namely 57%-60% (for 100ml/min and 150ml/min, respectively) at 70°C and 62%-67% at 130°C for TSA. MSA process managed to increase those efficiencies as well; when heating at 70°C, using 100ml/min a 66% was possible, while this amount increased for a higher purge flow rate (150ml/min) to 68%.
Accordingly, when heating at 130°C, using 100ml/min the desorption efficiency improved to 70%, while for 150ml/min the rise was smaller, reaching 75%.

Interestingly enough, the temperature increase played a more important role than in the previous cases, since when the GAC was heated at 130°C it showed a greater regeneration efficiency compared to 70°C. This can be explained taking into consideration that in the case of \([CO_2]_{in}=5\%\), the adsorbed amount was much lower than in the other cases, as shown in Section 4.2 (2.5 g\(_{CO2}/g_{sorbent}\) compared to 9.2 and 4.5 g\(_{CO2}/g_{sorbent}\) for 40 and 15% vol. CO\(_2\) in the gas mixture, respectively). This would mean that CO\(_2\) needed a higher driving force (temperature difference) in order to be detached and diffused from the pores of the GAC and as such better regeneration efficiencies are reported for 130°C compared to 70°C. An efficiency average of ~61% was calculated for TSA at 70°C, which was increased to 70% at 130°C. Similarly, when MSA was applied, the average regeneration efficiency increased from ~70% to 76%.

![Figure 4.20](image-url)
Figure 4.20: ([CO\(_2\)]_{in}=5\%) Comparison of the regeneration efficiency for MSA and TSA at 70°C
It can be concluded that MSA improved the regeneration efficiency of the studied GAC, compared to TSA. However, the values obtained were not as high as expected, especially in the case of wet gas conditions, and only some of them were equal or higher than 80%, which is the lowest acceptable limit for the feasibility of a real scale CO\textsubscript{2} capture unit. This result was not expected, taking into consideration the excellent dielectric nature of H\textsubscript{2}O. One possible reason that could explain the above statement is that, MSA has the disadvantage of temperature non-uniformity inside the target object, in this case sorbent bed. This non-uniformity can be influenced by various parameters, such as material characteristics, frequency used and bed geometry. The latter can vastly affect the temperature distribution inside the reactor, contributing to a highly non-uniform heating of the total bed. As a result, temperature distribution profiles (heat maps) are shown and discussed in Section 4.5.

4.4.3. Desorption kinetics

One crucial parameter for the economics of the CO\textsubscript{2} capture process is the desorption kinetics, in other words how fast CO\textsubscript{2} is desorbed from the GAC. As previously explained, TSA is favourable compared to PSA in terms of regeneration efficiency of the solid sorbent, however it presents disadvantages with regards to the time needed for the desorption to be completed. MSA can lead to intensified desorption kinetics taking advantage of the fast heating rates that occur during the process. In this sub-section, a comparison between TSA and MSA, using the experimental data is presented.
Here it should be noted that considering the shape of desorbing profiles (Figures 4.13-4.15), it can be predicted that a higher desorption time contributes to a more effective GAC regeneration resulting in a higher CO\(_2\) percentage recovery, but this would possibly lead to higher energy consumption and larger desorption times. For this reason, four different desorption times (t\(_{50}\), t\(_{70}\), t\(_{90}\), t\(_{95}\)) were examined, trying to find a balance between the above statements, in order to create an integrated desorption process. Each desorption time describes a different CO\(_2\) percentage of the total desorbed amount, e.g. t\(_{70}\) corresponds to a 70% of total CO\(_2\) recovered by desorption.

Regarding the effect of the regeneration method followed, as clearly seen from Figures 4.13-4.15, the desorption profiles become narrower and higher for MSA compared to TSA, and thus denoting a faster desorption process. Figures 4.22 to 4.27 express this time decrease (%) for MSA technology compared to TSA, providing some interesting results. Initially, it is evident that for every case the regeneration is highly intensified for the case of 50% desorption. It is interesting that as the desorption process continues, the time difference between TSA and MSA becomes smaller. This effect can also be proven by the desorption profiles (4.14-4.16), where in the case of MSA the peak of [CO\(_2\)]\(_{out}\) is reached significantly faster (1/3 of the time needed) compared to TSA. Moreover, this maximum amount of [CO\(_2\)]\(_{out}\) is also 2 times higher than in the case of TSA, meaning that during the initial step of the desorption process (from [CO\(_2\)]\(_{out}\) = 0 to [CO\(_2\)]\(_{out}\) = [CO\(_2\)]\(_{out,max}\)) MSA is significantly favoured compared to TSA. However, the long tails presented in the MSA profiles denote that the rest of the desorption process is slow and does not significantly change when changing regeneration technology, since the tails are also present for TSA. As a result, the larger amount of CO\(_2\) is desorbed from the GAC, the smaller differences in desorption rates between MSA and TSA are observed.
Figures 4.22 and 4.23 demonstrate the case of $[CO_2]_{in}=40\%$, for which a huge decline in the regeneration time for 50% desorption was observed, since the MSA is reported to be 2-5 times faster compared to TSA. Interestingly enough, the highest decrease was observed for the wet gas conditions, namely a 79% and 70% decrease was attainable when heating at 70°C using 100 and 150ml/min of N₂ flow, respectively. This supports
the statement that the moisture content inside the gas favours the MSA process. As previously reported (Section 2.2.7.2), the presence of moisture enhances the heating of the sorbent, since microwaves are not only absorbed from the GAC, but also from the water molecules attached on the surface of the material.

Looking at the larger CO$_2$ amounts desorbed (t_{70} to t_{95}), it is clear that for both heating temperatures the trend remains the same. MSA improves the desorption kinetics, decreasing the amount of time needed, while the highest decline is reported for wet gas conditions at 100ml/min of N$_2$ flow. However, t_{95} decreases when using MSA only for an average of ~30% for 70°C and almost 23% for 130°C. It is evident that the larger the regeneration time, the higher the regeneration efficiency. However, rapid regeneration processes are usually preferred, resulting in an equilibrium between adsorption and desorption rates and lower amount of energy consumed as well. In continuous large scale industrial applications, adsorption is usually considered complete after reaching the breakthrough time, which in the case of GAC lies between 4 and 7 mins (Figures 4.5, 4.7 and 4.9). As a result, a desorption process that does not exceed a total of 7 min – ideally <4min - is preferred in this case, leading to compromises against the amount of CO$_2$ desorbed; 50% of CO$_2$ desorbed is on the other hand not the optimum solution since this would mean that the GAC pores would remain half full with CO$_2$ after regeneration, which would lead to a decrease in the sorbent’s CO$_2$ adsorption capacity in the next cycle. As a result it is believed that a good compromise between time and desorbed amount would be a 70% desorption. This is in agreement with other studies reported by Balsamo (2013) and Webley (2014), where they examined t_{50}, t_{70}, t_{80} and t_{90} with regards to CO$_2$ recovery amount, time required for the desorption process (at a fixed regeneration level) and CO$_2$ mean concentration in the desorbing flow, concluding that a 70-80% desorption level provides optimum results via TSA and microwave-assisted PSA respectively.
Figures 4.24 and 4.25 present a direct comparison of the 70% CO$_2$ desorbed in terms of time between MSA and TSA for two different temperatures, 70°C and 130°C. It is clear that TSA is a more time-consuming process, needing an average of 4.3 minutes to reach t_{70} when heating at 70°C, while the increase in temperature to 130°C did not seem to play an important role. More importantly, in the case of wet gas at 100ml/min N$_2$ flow, t_{70} increases to ~7.2 minutes for 70°C and to ~7 minutes for 130°C, which denotes an
extremely slow desorption process due to the influence of the water adsorbed as discussed in Section 4.4.2. Nevertheless, MSA intensified the CO₂ desorption kinetics for the wet gas conditions, by managing to decrease the time needed by as much as 70%, resulting in a t₇₀ process that took an average of 2 minutes to be accomplished. The above figures also show an inversely proportional relation between desorption rate and purge gas flow rate, meaning that as the N₂ flow rate increases, t₇₀ decreases. However, this decrease in time was proportionally evident for both TSA and MSA cases and as a result they cannot be associated with the desorption technology used; an increase in the gas velocity through the AC bed is seemingly associated to larger mass transfer coefficients, due to driving force increase.

Figure 4.26: Desorption time % decrease for [CO₂]ᵢ=15% at 70°C
Figures 4.26 and 4.27 show the decrease in desorption time (%) in the case of $[CO_2]_{in}=15\%$ in relation with the amount of CO$_2$ desorbed for 70°C and 130°C respectively. Similar to the case of $[CO_2]_{in}=40\%$, the desorption kinetics tend to be similar as the regeneration amount increases, especially for the case of wet gas conditions where MSA managed to intensify the process by only 9% for 70°C and 18% for 130°C. However, it is clear that once again t_{70} could work as a good compromise between amount desorbed and time consumed, with the MSA process being able to significantly decrease t_{70} as well.

Figure 4.27: Desorption time % decrease for $[CO_2]_{in}=15\%$ at 130°C

Figure 4.28: Comparison of t_{70} for MSA and TSA when heating at 70°C for $[CO_2]_{in}=15\%$
Figure 4.29: Comparison of t_{70} for MSA and TSA when heating at 130°C for $[\text{CO}_2]_{in} = 15\%$

In all cases, the time needed to obtain the desired CO$_2$ recovery percentage (t_{70}) monotonically decreases when using MW, being also further decreased with both desorption temperature and N$_2$ purge flow rate increase, as observed in Figures 4.28 and 4.29. More specifically, TSA process lies between 4 and 6 minutes, while MSA reduces this time to 2-3.5 minutes, representing a reduction of 40-60%. This becomes even clearer in the case of heating up to 130°C; t_{70} was reduced by as much as 60% for the dry conditions, whereas for the wet conditions the decrease was equal to ~45%. It is also worth mentioning that for every wet gas experiment, the t_{70} was significantly lower than in the case of dry gas conditions; this could be attributed to the fact that, as reported in Section 4.4.2, the desorption efficiency of the wet gas simulation was lower, meaning that less amount of CO$_2$ was desorbed. As a result, it is reasonable to expect a faster desorption process when less amount of CO$_2$ is desorbed.
The last case examined was for the $[CO_2]_{in} = 5\%$, which provided the same trends as before (Figures 4.30 and 4.31). In this case, only t_{70} is presented, since it was already proven that a 70% desorption is a good compromise between CO$_2$ amount recovered and time needed. Once again, MSA was able to intensify the regeneration process, resulting in a desorption time decrease of approximately 40% for both 70°C and 130°C heating. More specifically, the TSA process for 70% desorption in the dry conditions is completed after 4.8-5.8 minutes, whereas in the case of MSA, only 2.2 to 3.2 minutes are needed, depending on the regeneration temperature. Moreover, wet conditions
experiments showed the same trends, with a decrease from an average of 5.2 to 2.9 minutes, corresponding to a 45% decrease.

This section investigated the effect of TSA and MSA on the CO₂ desorption kinetics. Initially, 4 different desorption times were reported, each indicating a different desorption percentage of CO₂. This evaluation helped to determine the best regeneration conditions, deciding on a suitable compromise between CO₂ amount recovery and desorption time. As a result, 70% recovery was selected as the optimum choice, for which a comparison between MSA and TSA was presented. It was proven that MSA managed to reduce the time needed for 70% desorption to take place by as much as 45%, which, as seen in the next section (Section 4.4.4), is an important factor for the economics of the CO₂ capture process.

4.4.4. Energy consumption

Another important parameter to take into consideration for the intensification of the GAC regeneration is the energy consumption during the desorption step, as it is directly associated with the energy penalties that are imposed to the power plants. In general, it is clear that the energy consumption is proportional to the regeneration temperature and the amount of sorbent needed, as can be seen by equation 4.12:

\[P = \frac{m \cdot C_p \cdot \Delta T}{t} \]

(4.12)

Where \(\Delta T \) (\(\Delta T = T_{\text{des}} - T_{\text{amb}} \)) is the temperature difference between desorption (\(T_{\text{des}} \)) and ambient temperature (\(T_{\text{amb}} \)), \(C_p \) is the thermal conductivity of the sorbent material and \(t \) is the time needed for the desired desorption to take place. However, considering that in MW the energy is transferred from the inside to the outside of the material as microwaves propagate through molecular interactions between the material and the electromagnetic field, resulting in a much more efficient heating process, it is reasonable to expect a much lower energy consumption for MSA. In this case, only \(t = \tau_{70} \) is considered, which accounts for a 70% CO₂ desorption as explained in Section 4.4.3, as the energy consumed is directly associated with the desorption time. As a result, in order to keep consistency regarding the parameters compared, the \(E_{70} \) is examined, accounting for the energy needed to achieve a 70% desorption.
Figures 4.32 and 4.33 present the E_{70} consumed during the regeneration process of GAC that was previously saturated using $\left[CO_2\right]_{in} = 40\%$ heating to 70°C and 130°C, respectively. As expected, MSA achieved an important decrease in the energy consumed during the desorption step. It is clear that, for every set of experiments E_{70} was reduced by at least 70%, with the best result deriving from the wet gas conditions. Specifically, when the dry conditions were applied, a decrease from 0.68 to 0.37 and from 0.55 to ~0.26 kWh/kg$_{sorb}$ during desorption at 70°C for 100ml/min and 150ml/min N$_2$ flow respectively, was reported. This decline was also evident for the wet gas case, where instead of 0.65 and 0.53 kWh/kg$_{sorb}$, only ~0.25 kWh/kg$_{sorb}$ were consumed. A similar trend is evident when heating to 130°C; however, greater amounts of energy were recorded for both MSA and TSA, as expected. An average of 0.67 kWh/kg$_{sorb}$ was recorded for 70°C desorption, whereas this amount reached 1.01 kWh/kg$_{sorb}$ when heating at 130°C for the TSA process. Similarly during MSA, the E_{70} increased from ~0.3 kWh/kg$_{sorb}$ to 0.35 kWh/kg$_{sorb}$.

Another interesting trend derives from the relation between E_{70} and carrier gas (N$_2$) volumetric flow rate; for both processes, an inverse proportionality between those factors was evident. Precisely, an increase from 100ml/min to 150ml/min resulted in ~15% decrease in the energy consumed during regeneration. This decrease was even higher in the case of wet gas, where for the TSA application reached a 25% decrease, a similar decrease was recorded for MSA as well. This trend was to be expected, since as described in Section 4.4.3, the increase of the flow reduces the desorption time.
Similar conclusions were observed for $[\text{CO}_2]_{\text{in}} = 15\%$. As reported in Figure 4.34 in the case of 70°C desorption, an average of ~0.6 kWh/kg$_{\text{sorb}}$ were needed to regenerate 70% of the total desorbed amount (E_{70}) for TSA technology. On the other hand, when MSA was applied, a significant reduction of ~40% was possible, reducing the amount of energy needed to an average of 0.38 kWh/kg$_{\text{sorb}}$. The same trend was observed when the desorption took place at 130°C (Figure 4.35), where the reduction was even greater; an average of ~1.05 kWh/kg$_{\text{sorb}}$ was needed for TSA, whereas the consumption during MSA decreased to only ~0.42 kWh/kg$_{\text{sorb}}$, resulting in a ~60% reduction. However, it is quite interesting to point out that the E_{70} for $[\text{CO}_2]_{\text{in}} = 15\%$ was higher for both TSA and MSA for every case examined, compared to $[\text{CO}_2]_{\text{in}} = 40\%$. This can be explained by taking into consideration that in the case of $[\text{CO}_2]_{\text{in}} = 40\%$, the CO$_2$ molecules are desorbed faster as seen in Section 4.4.3, compared to $[\text{CO}_2]_{\text{in}} = 15\%$, reducing the amount of energy needed as well.
Lastly, the E_{70} for the case of $[CO_2]_{in}=5\%$ was examined. Once again, the MSA process clearly achieved an important reduction in the energy spent for the regeneration of the GAC. Figures 4.36 and 4.37 report the comparison between the two modes for 70°C and 130°C, respectively. It is clear that in the case of 70°C desorption, an average of ~0.76 kWh/kg$_{sorb}$ were needed to regenerate 70% of the total CO$_2$ previously adsorbed (E_{70}) for TSA technology. On the other hand, during MSA application, a vast reduction of ~55% was possible, reducing the amount of energy needed to an average of 0.35 kWh/kg$_{sorb}$. The same trend was observed when heating up to 130°C; an average of ~1.1 kWh/kg$_{sorb}$ was needed for TSA, whereas the consumption during MSA decreased to only ~0.47 kWh/kg$_{sorb}$, resulting in a 60% reduction. However, once again, the E_{70} for $[CO_2]_{in}=5\%$ was higher for both TSA and MSA for every case examined, compared
to $[CO_2]_{in}=40\%$ and $[CO_2]_{in}=15\%$. This was also expected, since the desorption times for $[CO_2]_{in}=5\%$ for each case were higher compared to $[CO_2]_{in}=40\%$ and $[CO_2]_{in}=15\%$ (Section 4.4.3).

![Figure 4.36: Energy consumption during GAC regeneration at 70°C for $[CO_2]_{in}=5\%$](image1)

![Figure 4.37: Energy consumption during GAC regeneration at 130°C for $[CO_2]_{in}=5\%$](image2)

The above results were to be expected since, as discussed in Chapter 2 (Section 2.2.9), the main difference between TSA and MSA is the way in which heat is generated and consequently absorbed from the solid sorbent inside the bed. In TSA, the heat source (in this case the heating tape discussed in Section 3.4) is located outside the GAC bed and the bed is heated by conduction and convection, resulting in increased heat losses.
Moreover, a significant temperature gradient is established in the GAC bed, until conditions of steady state are reached. On the other hand, during MSA, energy is transferred through the material electro-magnetically, not as a thermal heat flux. Therefore, the rate of heating is not limited and the uniformity of heat distribution is generally improved. Microwave energy is supplied directly to the carbon particles that convert this energy to heat, according to the following approximation:

$$P_D = 55.61 \times 10^{-14} E^2 \varepsilon' \tan\delta$$

(4.13)

Where P_D is the power dissipation. Microwave desorption process is not limited by the thermal conductivity of the vessel, resulting in an instantaneous localized heating of the GAC bed. Specifically for CO$_2$ desorption, the direct absorption of energy, in contrast to the indirect supply of heat by thermal conduction, by the adsorbent enables a much faster process (as seen in Section 4.4.3) resulting in sufficient regeneration at lower process temperatures (Section 4.4.2). Consequently this results in energy savings, as seen above, making the desorption process more efficient and cost-effective.

In this section, the energy consumed during MSA and TSA processes was compared. Initially, a relation between flow rate and energy consumption was proven, since for every case, the E_{70} was decreased with increasing carrier gas flow rate (N$_2$). Furthermore, it is also clear that there is a relation between E_{70} and amount adsorbed during the adsorption step; when comparing the above three different cases, a decline in amount of energy consumed per kg of sorbent was evident with increasing [CO$_2$]$_{in}$. This trend was expected, since as examined in Section 4.4.3, the desorption time was also decreasing with increasing [CO$_2$]$_{in}$. Most importantly, it was proven that MSA is a more energy efficient process, compared to TSA. It was reported that an average of only ~15-25% of the energy consumed during TSA is needed for MSA for the same conditions and regeneration temperature. Same trends appeared for 70°C and 130°C, however $E_{70}^{70°C}$ was considerably lower compared to $E_{70}^{130°C}$. As a result, taking into consideration that the regeneration efficiency and the desorption kinetics were not considerably improved by a temperature increase, combining it with the fact that a higher energy consumption is reported, it can be concluded that 130°C desorption may be classified as more energy intensive compared to 70°C, making it unfavourable for the GAC desorption process.
4.5. Temperature Distribution

Until now, this research has proven that microwave irradiation was able to enhance the CO\textsubscript{2} desorption process from the GAC, by increasing its regeneration efficiency and desorption rates as well as decreasing the amount of energy needed for this step, compared to TSA application. However, some unexpected trends were reported, especially in the case of the regeneration efficiency, which for some cases was expected to be higher. One reason for not achieving the expected amount of CO\textsubscript{2} desorbed could possibly be attributed to the most significant drawback of a microwave application, known as the non-uniform temperature distribution inside the target object. This non-uniformity has also been observed by many researchers for various microwave processes as well (Ho et al., 1992, Vadivambal et al., 2010). This non-uniform heating is created from the possible presence of standing waves originated from transmission and reflection from interfaces, resulting in a non-uniform distribution of microwave energy. Factors that affect this non-uniformity can be the dielectric properties of the material (dielectric loss and penetration depth), as well as bed thickness, shape and size (Kelen et al., 2006). A previous research from Sakai and Wang (2004) confirmed that the dielectric properties play an important role in the temperature distribution. Moreover, parameters such as bed shape and size were studied by Gunasekaran and Yang (2007) reaching to the conclusion that it is not only the material itself that influences the heating uniformity but also its formed geometry. Furthermore, they reported that other important factors regarding temperature distribution include pulsating ratio and microwave processing time and concluded that a pulsed operation of microwave heating, which is the case in this research, results in a more uniform heating compared to continuous mode microwave heating. Lastly, Funawatashi and Suzuki (2003) divided the factors affecting non-uniform heating into two categories with regards to the object’s size. It was concluded that for smaller size objects (<500cm3), standing wave is dominant as interaction between transmission and reflection waves takes place within the object. In contrast, in the case of larger objects in terms of size the rapid decay of incident wave is the primary cause for the non-uniform heating (Hossan et al., 2010).

In order to estimate the importance of this effect, a temperature distribution (heat map) of the material bed is necessary. However, a precise temperature measurement inside a microwave oven has been identified as a very difficult task; the IRP used throughout the
experimental work is not able to provide accurate data for this objective, as it only measures the temperature of the surface of the bed. Moreover, other temperature measurement tools (e.g. thermocouples) were not possible to be used for reasons explained in Section 3.2.3. As a result, an optical sensor was used during microwave heating, which was placed in various heights (y-axis) inside the reactor bed with an increment of 1cm. Regarding the measurements in the x-axis (diameter), 3 measurements were recorded, namely 2 on each boundary (walls) and one in the centre. This creates a 2 dimensional matrix of 18 measurements that were repeated 5 times in order to minimise the human error and average values are presented below. All the measurements were taken after the PID controller reached a steady state – equilibrium condition, meaning that the microwave system was not further heating the sample, providing enough power only to maintain the output temperature.

Figures 4.38 and 4.39 show the temperature distribution maps of the GAC bed when MW was applied at 70°C and 130°C, respectively. In both cases, the highest temperature is recorded at the centre line of the reactor; in the case of 70°C, the GAC bed reached a maximum of 78°C in the centre of the reactor, whereas in the case of 130°C the temperature went up to 143°C. The lowest temperatures were recorded on the surface of the bed (height $h_b = 5cm$), namely 60°C and 112°C. Between the surface and the centre of the bed, a linear temperature distribution is evident for both cases. However, there is a clear difference in the temperature diffusion pattern at the basis of the bed, where when heated to 70°C, the basis of the bed has almost the same temperature as the surface, creating a symmetric distribution. On the other hand, this symmetry is not evident when heating to 130°C, since the temperature on the basis is around 125°C, lower compared to the centre but higher compared to the surface.

From the heat maps, it can be concluded that temperature control during microwave heating is certainly a difficult task, since temperature gradients from 60 to 80°C and from 110 to 143°C were reported when heating this particular GAC to 70°C and 130°C. Even if the GAC presents excellent dielectric properties as seen in Section 4.1, it is still heated in a non-uniform way. This means that the geometry of the bed influences the temperature distribution as well, as it will be reported in Chapter 5 (Section 5.3.2.5).
4.6. GAC cyclic process and strength

One parameter that greatly affects the economics of the CO\textsubscript{2} capture process by adsorption technologies is the re-use of the solid sorbent (Drage et al., 2012). In order to examine the stability of the sorbent in cyclic conditions, a continuous cyclic operation of CO\textsubscript{2} adsorption/desorption was examined. A total of 25 cycles were completed and the sorbent was examined in terms of its surface area, pore size and CO\textsubscript{2} adsorption capacity under the same conditions used during the initial characterisation (Section 4.1).
The results would help to interpret whether the specific GAC is influenced by consecutive MSA or TSA processes. The same procedure as for a single cycle (Section 3.6) was followed. It is important to note that since it was not feasible to complete 25 cycles in one day, the sample remained inside the reactor under inert conditions, created from a 50ml/min N₂ flow while the process was not in operation (overnight). Table 4.3 summarises the results from this study, comparing GAC’s textural, chemical and dielectric properties after 25 MSA or TSA cycles with the parent GAC and the results are discussed below.

Table 4.3: Textural, chemical and dielectric properties of parent and reused (25 MSA or TSA cycles) GAC

<table>
<thead>
<tr>
<th>Material</th>
<th>(S_{\text{BET}}) m²/g</th>
<th>Total Pore Vol (Vp) cm³/g</th>
<th>C (%)</th>
<th>TGA CO₂ uptake (% w/w) at 25°C</th>
<th>(\varepsilon_r')</th>
<th>(\varepsilon_r'')</th>
<th>tan delta (tan δ)</th>
<th>Dp (cm)</th>
<th>Pabs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAC</td>
<td>946.7</td>
<td>0.62</td>
<td>90.9</td>
<td>11.7</td>
<td>15.2</td>
<td>6.6</td>
<td>0.44</td>
<td>2.2</td>
<td>89</td>
</tr>
<tr>
<td>GAC after 25 MSA cycles</td>
<td>340.7</td>
<td>0.45</td>
<td>89.1</td>
<td>11.4</td>
<td>18.9</td>
<td>9.2</td>
<td>0.49</td>
<td>1.8</td>
<td>93</td>
</tr>
<tr>
<td>GAC after 25 TSA cycles</td>
<td>292.4</td>
<td>0.42</td>
<td>84.9</td>
<td>11.1</td>
<td>16.6</td>
<td>8.2</td>
<td>0.50</td>
<td>1.9</td>
<td>92</td>
</tr>
</tbody>
</table>

It is observed that both processes do not affect significantly the maximum amount of CO₂ adsorbed. However, after 25 cycles of MSA, the CO₂ adsorption capacity is higher (11.4% w/w) than in the case of 25 TSA cycles (11.1% w/w). Even if the difference between the two is not so significant, an important trend is evident which may provide a prediction of how the material would respond after >25 cycles. Figure 4.40 shows the evolution of the CO₂ adsorption capacity as a function of number of cycles. It is clear that GAC’s CO₂ adsorption capacity decreases linearly when MSA process is applied by an average rate of 0.4% per cycle.

On the other hand, in the case of TSA, there are two distinct patterns; at first (0-10 cycles) the decrease rate is similar to the MSA one, however there is a significant change after the 10th cycle, where the CO₂ adsorption capacity decrease rate becomes 1.3% per cycle.
Conventional thermal heating of GAC after successive adsorption and regeneration cycles decreases the CO$_2$ adsorption capacity significantly, which is attributed to the adverse changes in the adsorbent physical structure (Dehdashti et al., 2010), meaning that specific surface areas and micropore volumes slightly decreased after consecutive cyclic heating (Ania et al., 2007). Consequently, BET surface area and pore volume studies have been undertaken in order to prove the above statement. As can be seen in Table 4.3, an abrupt decrease in the BET surface areas of the regenerated samples was observed. BET surface area values declined significantly after consecutive regeneration cycles, ending in 65% lower than those of the parent GAC. This effect was more evident during the TSA process, since the apparent BET surface area of GAC fell to 296m2/g (67% decrease) after 25 cycles, compared to 348m2/g (61% decrease) when using MSA. In addition, the total pore volume of the sorbent was also lower after regeneration, namely 0.45 and 0.42cm3/g for MSA and TSA respectively, compared to 0.6cm3/g for the parent GAC, proving that some destruction of the pore network is apparent. Some destruction and collapse of the porous network is observed for both processes, which would have an immediate effect on the efficiency of the process, resulting in the aforementioned decrease in CO$_2$ adsorption capacity, pore volume and BET surface area. When regeneration is performed by TSA, the micropore volume decrease is accompanied by a downward shift to pores of narrower sizes, suggesting that desorption under conventional heating could result in some blocking effects at the entrance of the pores.
In contrast, in the case of MSA, a slower and gradual fall is observed, proving that pores blockage, specific surface areas and micropore volumes reduction occur to a lesser extent compared to TSA, being in agreement with previous studies (Ania et al., 2005).

Finally, it can be observed that after 25 MSA or TSA cycles, the dielectric properties of GAC were improved, resulting in higher loss tangent values, namely 0.49 and 0.5 for MSA and TSA cyclic processes, respectively. This increase had also an effect on the microwave power absorption potential of the sobent \((P_{\text{abs}}) \), possibly due to the change of the porosity network and the decrease of the void space of the material, as will be discussed in Section 5.1.2; it was found that \(P_{\text{abs}} \) increased after 25 cycles of both MW and CH heating from 89% to 93% and 92% respectively, suggesting that the microwave energy absorption, and consequently the heating efficiency, improves with increasing number of cycles. However, the penetration depth decreased to 1.8 and 1.9 cm respectively, which was to be expected from equation 2.9 (Section 2.2.6).

4.7. Conclusions

In this chapter, the results obtained from a series of experiments using a granular activated carbon (GAC) were presented. To begin with, characterisation studies of the parent material in terms of \(\text{CO}_2 \) adsorption capacity, dielectric properties, BET and elemental analysis were discussed. Next, the adsorption step was presented, trying to investigate the effect of various parameters, such as \(\text{CO}_2 \) concentration inside the binary gas mixture (40%, 15% and 5% vol. \(\text{CO}_2 \) – balance \(\text{N}_2 \)), total feed gas flow rate and moisture (~10%) presence. It is concluded that as the \(\text{CO}_2 \) concentration in the feed gas increases, the total \(\text{CO}_2 \) amount adsorbed (dynamic adsorption capacity) increases as well, since, according to the Henry’s law, adsorption is proportional to the partial pressure of the adsorbed gas (in this case \(\text{CO}_2 \)). Moreover, one interesting factor was that, a ~10% of moisture in the binary gas mixture of \(\text{CO}_2 \) and \(\text{N}_2 \) seems to enhance the \(\text{CO}_2 \) adsorption capacity on this particular GAC; due to the introduction of \(\text{H}_2\text{O} \) vapors, the total flow rate of the feed gas was increased, resulting in better adsorption performance of the GAC. Furthermore, it was proven that an increase in the total flow results in increased amount of \(\text{CO}_2 \) adsorbed; a mass transfer correlation was used to
prove that an increase from 1.27 m/min to 2 m/min would lead to an increase of \(\sim 65\%\) of the mass transfer coefficient, favouring the CO\(_2\) adsorption process.

After completion of the adsorption tests, desorption experimental results were presented and described; initially, a comparison between MSA and TSA in terms of heating rates was produced. This comparison proved that MSA has the ability to heat the GAC at a faster pace to the required temperature, compared to TSA. Moreover, it was also shown that there is no risk of thermal runaway when using this material, since the heating rate was decreasing with increasing temperature. Subsequently, desorption studies were discussed, focusing on three parameters that helped evaluating and comparing the two processes, namely regeneration efficiency, desorption kinetics and energy consumption per kg of sorbent used. Since GAC was used as a reference material against the materials that are presented in the next chapters, a full study, covering and combining all the parameters produced from a total of 48 experiments, was presented. Those experiments proved that MSA enhanced the regeneration efficiency of the GAC, compared to TSA. However, the values obtained were not as high as expected, especially in the case of wet gas conditions, and only some of them were equal or higher than 80\%, which is the lowest acceptable limit for the feasibility of a real scale CO\(_2\) capture unit. One possible reason is that, MSA has the disadvantage of temperature non-uniformity inside the sorbent bed. This non-uniformity can be influenced by various parameters, such as material properties, frequency and bed geometry. As a result, temperature distribution was also examined for the GAC bed. These thermal maps showed that even if the \(T_{av}\) is equal to the target temperature, its distribution was not uniform; the higher temperatures were observed in the centre of the sample, whereas the lowest values were recorded for the surface of the bed. This temperature non-uniformity was attributed to the nature of the multimode microwave heating and has a number of possible causes such as inherent electromagnetic field non-uniformity due to cavity design, heat losses and/or inhomogeneity of the sample and shape, size and dielectric properties of the sample being heated.

Regeneration efficiency was followed by a comparison of CO\(_2\) desorption kinetics during MSA and TSA. Initially, four different desorption times were reported, each indicating a different CO\(_2\) recovery percentage. This evaluation helped to determine the best regeneration conditions, deciding on a suitable compromise between CO\(_2\) amount
recovery and desorption time. As a result 70% recovery was selected as the optimum choice, for which a comparison between MSA and TSA was presented, since the desorption rates need to be in equilibrium with the adsorption rates for any continuous separation process. It was proven that MSA managed to reduce the time needed by as much as 45%, which, was an important factor for the economics of the CO₂ capture process, since it directly affects the energy consumption. Furthermore, the influence of the moisture content in the feed gas mixture was also discussed. It was proven that in the case of MSA, moisture deposited on the surface of the material affects the heating process in a positive way, since a faster desorption process was observed, compared to the dry conditions. This was to be expected, since H₂O, being a dipole, is a very good microwave absorber, enhancing the heating process resulting in energy savings as well.

Energy consumption was also compared for the case of 70% CO₂ desorption and at the beginning, an inverse relation with the total carrier gas flow rate was reported. Furthermore, it was also clear that there is an inversely proportional relationship between energy consumed and amount adsorbed during the adsorption step. Most importantly, it was proven that MSA is a more energy efficient process, compared to TSA. It was reported that an average of only ~30-50% of the energy consumed during TSA is needed for MSA for the same conditions and regeneration temperature. The decrease in energy consumption during the MSA process can initially be attributed to the fact that MSA is a faster process compared to TSA. Secondly, microwave heating mechanism is inherently different compared to conventional heating via conduction and convection. During TSA heat losses, resistances in heat transfer due to the reactor and temperature gradients are observed, whereas during MSA microwaves are directly absorbed from the GAC, transforming electromagnetic energy to heat instantly. The latter mechanism results in a more efficient and volumetric heating, compared to the TSA process. Same trends appeared for every temperature investigated, however $E_{70°C}$ was considerably lower compared to $E_{130°C}$. As a result, taking into consideration that the regeneration efficiency and the desorption kinetics were not considerably improved by a temperature increase, combining it with the fact that a higher energy consumption is reported, it can be concluded that 130°C desorption may be classified as more energy intensive compared to 70°C, making it unfavourable for the GAC desorption process.
Lastly, the possibility to use the specific material in a cyclic process was examined and as a result the stability of the sorbent in cyclic CO₂ adsorption/desorption conditions was studied. The textural and dielectric properties of the material were measured before and after 25 cycles of MSA or TSA. It was reported that the regenerated GAC presented an increased tan δ value, resulting in improved microwave power absorbed and heating efficiency compared to the parent sample as the cycles increased. Moreover, BET surface area analyses suggested that the porous structure and the surface area of the material are affected by both heating processes, however, the decrease is more evident in the case of TSA. Pores blockage, specific surface areas and micropore volumes reduction occur to a lesser extent when using MSA, compared to TSA. Nevertheless, the CO₂ adsorption capacity of the sorbent is not drastically affected by the textural changes for both processes, although the decrease is more pronounced when TSA is applied. The above observations lead to the conclusion that MSA has the potential to be used in a cyclic process without significant destruction of the GAC sorbent and without affecting its CO₂ adsorption potential significantly.
References

Chapter 5 – Material parameters in MSA/TSA

In the previous chapter, the process parameters for the TSA and MSA technologies were discussed for a carbon based material (GAC). Following the conclusions that MSA can intensify the CO$_2$ desorption process at 70% CO$_2$ recovery as the optimum choice, this chapter focuses on the study of different adsorbent material, highlighting the importance of raw material, adsorbent shape and surface modifications in the desorption process. Five materials were chosen for this investigation - four of which are carbon based, with the last one being a lithium based silica - in order to compare with the performance of the reference material, GAC, described in Chapter 4. The selected materials are presented in Table 5.1; they present different properties in terms of functionalities (NH$_3$ impregnation) and forms - powder, granular and pellets - for the carbon-based sorbents, while the silica material combines form and surface modification, since it is a powdered form impregnated with amine (TEPA) material.

Table 5.1: Solid sorbents selected for study in Chapter 5

<table>
<thead>
<tr>
<th>Sorbent name</th>
<th>Provider</th>
<th>Raw material</th>
<th>Shape</th>
<th>Particle size (mm)</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKAS</td>
<td>CSIC (Spain)</td>
<td>Almond shells AC</td>
<td>Granules</td>
<td>0.7-0.9</td>
<td>-</td>
</tr>
<tr>
<td>GKAS-N</td>
<td>CSIC (Spain)</td>
<td>Almond shells AC</td>
<td>Granules</td>
<td>0.7-0.9</td>
<td>NH$_3$ modified surface</td>
</tr>
<tr>
<td>Org</td>
<td>Desotec (Belgium)</td>
<td>Coconut shells AC</td>
<td>Granules</td>
<td>2-4</td>
<td>-</td>
</tr>
<tr>
<td>OrgP</td>
<td>Desotec (Belgium)</td>
<td>Coconut shells AC</td>
<td>Powder</td>
<td>0.06</td>
<td>Grinded Org</td>
</tr>
<tr>
<td>SBA TEPA</td>
<td>Rey Juan Carlos University (Spain)</td>
<td>Silica SBA-15</td>
<td>Powder</td>
<td>0.04</td>
<td>30% TEPA impregnation</td>
</tr>
</tbody>
</table>

Firstly, characterisation studies of the materials are presented, including textural properties that describe how they affect the bed design, and dielectric properties. A comparison of MSA and TSA modes follows, taking into account only the most influential parameters derived from Chapter 4, namely the importance of anhydrous or wet conditions as well as the desorption temperature varies, while the total flow rate and the [CO$_2$]$_{in}$ will remain constant throughout. As a result, a study including a total of 40 experiments (eight experiments per sample) are discussed, aiming at identifying the
influence of adsorbent and bed shape as well as surface modifications on the CO$_2$ desorption process when using MSA.

5.1. Materials Characterisation

The first objective of this chapter is to identify the effect of adsorbent shape on the adsorption/desorption of the MSA system. Sorbent materials are usually divided into four basic categories according to their physical properties, shape and surface chemical modifications, which are briefly described below:

i. *Granular adsorbents*

Granular adsorbents are relatively smaller in terms of particle size compared to pelletized materials. They are commonly used for both liquid/solid (water treatment and components separation in a flow system) and gas/solid applications (deodorising and VOC removal, including CO$_2$ capture processes) and their size vary according to the process; for example, water/liquid applications utilise granular sorbents of 6x10 (3.3x2.0 mm), 8x16 (2.4x1.2 mm), 12x30 (1.7x0.6 mm), or 20x50 (0.8x0.3 mm) mesh size while in air/vapour applications a bigger particle size is used (4x6 – 4.76x3.36 mm, 4x8 – 4.76x2.38 mm or 4x10 – 4.76x2.00 mm). In this chapter, two different granular sorbent materials are compared in terms of adsorption and MSA/TSA performances, namely GKAS and GKAS-N800, as seen in Table 5.1. These sorbents are carbon based materials produced by the Instituto Nacional del Carbón (CSIC). Almond shells were used as raw material for both samples, with GKAS-N800 samples (being referred as GKAS-N in this chapter) undergoing an amination process that included heat treatment with gaseous ammonia (NH$_3$). The original objective of this process was to introduce basic N$_2$ functionalities onto the GKAS activated carbon, in order to enhance CO$_2$ adsorption potential, as will be discussed in Section 5.2. This research focuses on the effect of these N$_2$ functionalities on the MSA/TSA desorption processes.

ii. *Pelletized adsorbents*

Pelletized (or extruded) sorbent materials are most commonly found in cylindrical forms with diameters varying from 0.8 to 45 mm. Typical applications include air/gas purification processes (gas/solid separation technologies), since they present low pressure drop as the gas passes through the sorbent bed. Moreover, they are well known
for their high mechanical strength that could enhance the possibility of reusing the samples and low dust content (Sarkar and Bose, 1997). Pelletized or extruded activated carbons (pressed pellets) are predominantly produced from mixing pulverised charcoal or anthracite with a suitable binder, being extruded at high pressure in order to form their cylindrical shape. In this research, pelletized activated carbon, provided by Desotec (Belgium) with product name Organosorb 10-CO (referred to as Org in this chapter), was utilised. Org was produced from coconut shells, with particle size between 2.8 and 4.75 (accounting for 93%) and is commonly used to remove low boiling organic solvents and odours from air and gas. However, its large surface area (1140m²/g), micropore volume and hardness (96%) make this sorbent suitable for exhaust gases treatment as well, VOC capture including CO₂ and SO₂ desulphurisation processes.

iii. Powdered adsorbents

The most common sorbent materials in powder form (or fine granules) present an average diameter between 0.15 and 0.25 mm, being significantly smaller compared to pellets and granules. In general, powder materials can be defined in various ways, but most commonly they are referred to as materials that consist of at least 90% (% w/w) of particles with a size less than 0.5mm (35 mesh). Powdered materials are usually fabricated from crushed or ground particles, with the vast majority (95–100%) of which passing through a 50 to 80 mesh sieve. In this occasion, Desotec Org (referred to as OrgP in this chapter) was used to produce the powdered adsorbent; OrgP was prepared by grinding the original Org pellet, using a Fritsch Pulverisette 2 mortar grinder, producing a sorbent with a size that is predominantly less than 0.075mm (sieve number 200).

iv. Impregnated adsorbents

Impregnated sorbent materials can be found in any of the above forms, namely powders, granules or pellets. Chemical modification of the surface of solid sorbents has been the centre of attention with the most common scenarios including basic organic group (amines) and inorganic metal oxides (alkali metal or alkali-earth metal) being of particular interest (Samanta et al., 2011). The interaction between the acidic CO₂ molecules and modified basic active sites on the surface enhances the performance of the sorbent in terms of CO₂ adsorption capacity through the formation of covalent
bonding (Yu et al., 2012). In the last section of this chapter (Section 5.4), a mesoporous silica based material is investigated, namely SBA TEPA produced from impregnating SBA-15 with Tetraethylenepentamine (TEPA). Those samples were prepared and characterised at Rey Juan Carlos University in Madrid, Spain.

Prior to the commencement of the experimental work, all the materials were characterised in terms of chemical composition, textural and dielectric properties. The results are presented in the following sections.

5.1.1. Textural and chemical properties

In order to evaluate the CO₂ adsorption capacity of the sorbent materials mentioned in the previous section (Section 5.1), as well as their desorption performance during MSA and TSA processes, a number of parameters should be taken into consideration, including surface area, pore volume, CHN elemental analysis, CO₂ adsorption capacity and surface treatment, as discussed in Section 3.3. Another important parameter introduced in this section is the bed (or bulk) density. In simple terms, the bed density \((\rho_b)\) is the mass of the adsorbent in a specific volume and can be calculated from the following equation:

\[
\rho_b = \frac{m_{ads}}{V_t}
\]

(5.1)

where \(m_{ads}\) is the mass of the adsorbent and \(V_t\) is the total volume of the bed. The bed density is an important parameter that can lead to estimations regarding the shape of the bed and should not be confused with the apparent density of the bed \((\rho_{ap})\). The apparent density of a packed bed corresponds to the density measured after vibrating the granules in a way to minimize void spaces between particles (Totten et al., 2004). Typical \(\rho_{ap}\) values vary between 250 to 650 kg/m³ for the case of packing with activated carbons. On the other hand, the bed density is the density of the material loaded into an adsorber column or container, and is used for adsorber sizing in gas and liquid phase applications. Typically, it accounts for 90 to 91% of the apparent density and as a result it is usually calculated from the following equation:

\[
\rho_b = 0.9 * \rho_{ap}
\]

(5.2)
As it will be discussed later, the shape of the bed influences the temperature distribution during MSA, leading to different temperature gradients for every case. In this research, the parameter that defines the shape of the bed is the height since it is the only parameter that can change (the diameter remains constant $d_p = 20mm$), according to the aforementioned bed density. Bed shape is also related to bed porosity, another important factor when dealing with packed bed reactors. Bed porosity can be affected by the packing mode, the ratio between column to particle diameter (D/d_p), the particle shape and size distribution and of course bed height, according to Klerk (2003) and Zou et al. (1995). It should not be confused with the void fraction (ε) which is a measure of the void spaces in the material, and is expressed as a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0 and 100% and can be estimated from:

$$\varepsilon = \frac{V_{void}}{V_t}$$ \hspace{1cm} (5.3)

Where V_{void} is the void volume of the bed and is defined as

$$V_{void} = V_t - V_{ads}$$ \hspace{1cm} (5.4)

As a result, equation 5.3 can also be written as:

$$\varepsilon = \frac{V_t - V_{ads}}{V_t}$$ \hspace{1cm} (5.5)

which results in $\varepsilon = 1 - \frac{V_{ads}}{V_t}$ \hspace{1cm} (5.6)

Taking into consideration that $\rho = \frac{M}{\rho}$, then equation 5.6 can be transformed to

$$\varepsilon = 1 - \frac{\rho_b}{\rho_{ads}}$$ \hspace{1cm} (5.7)

Where ρ_{ads} describes the particle density, which is the mass of adsorbent per volume occupied by the particle. It can be concluded that the void fraction depends on the density of the sorbent and the density of the sorbent bed.

Table 5.2 summarises the properties of the materials used in this chapter. GAC is also included in this table for comparison reasons. Moreover, the bed volume and density are also included for each case, calculated from the above equations.
Table 5.2: Chemical analysis and textural characterisation of the samples

<table>
<thead>
<tr>
<th>Sorbent</th>
<th>g used</th>
<th>Treatment</th>
<th>S_BET m2/g</th>
<th>Total Pore Vol (V_p) cm3/g</th>
<th>C (%)</th>
<th>H (%)</th>
<th>N(%)</th>
<th>Bed height h_b (cm)</th>
<th>Bed Volume (V_b) cm3</th>
<th>Bed Density (ρ_b) kg/m3</th>
<th>TGA CO$_2$ uptake (% w/w) at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAC</td>
<td>5</td>
<td>Parent material</td>
<td>946</td>
<td>0.6</td>
<td>90.8</td>
<td>0.3</td>
<td>0.2</td>
<td>5.5</td>
<td>44.22</td>
<td>113.08</td>
<td>11.7</td>
</tr>
<tr>
<td>GAC (CH)</td>
<td>5</td>
<td>Parent material</td>
<td>292.4</td>
<td>0.42</td>
<td>84.8</td>
<td>0.3</td>
<td>0.2</td>
<td>5.5</td>
<td>44.22</td>
<td>113.08</td>
<td>11.1</td>
</tr>
<tr>
<td>GAC (MW)</td>
<td>5</td>
<td>Parent material</td>
<td>340.7</td>
<td>0.45</td>
<td>89.1</td>
<td>0.1</td>
<td>0.2</td>
<td>5.5</td>
<td>44.22</td>
<td>113.08</td>
<td>11.4</td>
</tr>
<tr>
<td>GKAS</td>
<td>1.6</td>
<td>-</td>
<td>21</td>
<td>0.01</td>
<td>91.0</td>
<td>2.0</td>
<td>0.4</td>
<td>1.6</td>
<td>12.87</td>
<td>124.33</td>
<td>6.9</td>
</tr>
<tr>
<td>GKAS-N</td>
<td>1.6</td>
<td>NH$_3$ Modified surface</td>
<td>326</td>
<td>0.24</td>
<td>89.2</td>
<td>0.6</td>
<td>4.5</td>
<td>1.8</td>
<td>14.47</td>
<td>110.58</td>
<td>9.6</td>
</tr>
<tr>
<td>Org</td>
<td>5</td>
<td>-</td>
<td>1140</td>
<td>0.55</td>
<td>89.1</td>
<td>0.4</td>
<td>0.4</td>
<td>5.3</td>
<td>42.61</td>
<td>117.35</td>
<td>5.7</td>
</tr>
<tr>
<td>OrgP</td>
<td>5</td>
<td>Powder Org</td>
<td>1050</td>
<td>0.48</td>
<td>89.2</td>
<td>0.4</td>
<td>0.4</td>
<td>4.4</td>
<td>35.37</td>
<td>141.37</td>
<td>5.5</td>
</tr>
<tr>
<td>SBA TEPA</td>
<td>1.4</td>
<td>30% TEPA Impregn.</td>
<td>294</td>
<td>0.53</td>
<td>15.4</td>
<td>-</td>
<td>9.0</td>
<td>4.2</td>
<td>33.77</td>
<td>41.46</td>
<td>7.4</td>
</tr>
</tbody>
</table>

It is clear that all the carbon-based samples consist of >88% carbon, while the rest is shared between hydrogen and nitrogen. Moreover, it is interesting that they present similar bed densities, which implies that the temperature distribution of the bed during MSA will be uniform, since the shape of the bed is identical for each case. However, the penetration depth of the microwave irradiation should also be taken into account for each individual case and this will be discussed in Section 5.1.2.

It is interesting to note that the GAC samples present the highest CO$_2$ adsorption capacity, compared to the other carbon-based materials when tested in the thermogravimetric analyser. This capacity remains high and above 10% even in the case of the reused GAC for both 25 cycles of MSA and TSA (11.4% and 11.1% respectively). It is also evident that the GAC samples demonstrate the highest pore volume (0.6 cm3/g), while the highest BET surface area is shown in the case of Org and OrgP. However, these samples present the lowest CO$_2$ adsorption capacity, since only a 5.5-5.7% (w/w) weight uptake was reported. An interesting case is that of the SBA TEPA, which even if it presents a significant CO$_2$ uptake (7.4% w/w), its bed density is significantly lower than that of the carbon-based sorbents. This factor is expected to
play an important role in the volumetric heating of the bed during the regeneration process, as well as in the bed sizing during scaling up studies.

5.1.2. Dielectric properties

In addition to the textural and chemical properties of a sorbent material, a crucial parameter in microwave heating is also its dielectric properties, since they indicate the energy coupling of a material with the electromagnetic field leading to an estimation of its heating potential (Metaxas et al., 1983; Schubert et al., 1995), as reported previously in Section 3.3.5. As a result, three important parameters were evaluated in order to clarify the dielectric properties of the sorbent materials being in consistency with Chapter 4, following the equations of Section 3.3.5. The parameters evaluated are the tan delta (tan δ) value, the penetration depth (D_p) and the heating efficiency (or microwave power absorption potential) per mg of sample. Similarly to Chapter 4, the dielectric properties were measured in collaboration with University of Cardiff, using an on-axis TM010 cylindrical cavity at 2.5 GHz. The results of the dielectric measurements are reported in Table 5.3, from which useful conclusions can be drawn.

As mentioned in Section 2.2.6 that the ability of a material to convert electromagnetic energy to thermal energy is inversely proportional to its penetration depth (\(\tan \delta \sim \frac{1}{D_p} \)), the \(D_p \) values were reported for each sorbent. It is clear that the above connection between tan δ value and penetration depth is valid, resulting in very high \(D_p \) values for the silica based sorbents and in very low values for the carbon based materials. The penetration depth, along with the shape and the void spaces of the bed, are responsible for the uniform or non-uniform temperature distribution inside the sorbent bed, as discussed later in this chapter. Furthermore, it is interesting to note that the highest tan δ values were reported for the GAC sample, while this value was increased after 25 cycles of TSA or MSA, as reported in Section 4.6. The lowest values were reported for the case of SBA TEPA, which could possibly mean that they are not microwave absorbent materials and that they will not be heated under electromagnetic irradiation. However, this outcome should be ascertained from the following power absorption graph (Figure 5.1). Looking at the carbon based sorbents, variations in the tan δ values can be noted; specifically, it is evident that for the GKAS and the Org sorbents the values reported are much lower than that of the GAC, namely 0.13 and
0.15 respectively. However, when measuring the dielectric properties of the sample modified with NH$_3$ functionalities, GKAS-N, the tan δ value almost tripled to 0.34. Moreover, when looking at the OrgP, which is the grinded powder deriving from Org, the tan δ value increased to 0.23. This is a very interesting result, considering that the samples’ chemical composition is almost identical (>89% of carbon inside the samples), indicating that the shape of the material plays an important role on its dielectric properties.

Another important parameter with regards to the dielectric properties of the material is the microwave power % absorption, or else heating efficiency. This parameter will help to validate the above results, helping to understand which samples have the potential to be heated effectively under electromagnetic irradiation. Figure 5.1 describes the heating efficiency per mg of the samples used in this research. It is clear that the carbon based samples are heated much more efficiently compared to the silica based sorbent. Specifically, SBA TEPA presents a heating efficiency of 2% respectively, which means that this material is not suitable for microwave applications. On the other hand, most of the carbon based sorbents demonstrate excellent heating efficiencies, higher than 85%, classifying them as exceptional microwave absorbents. However, the GKAS sample presents unexpectedly low heating potential that does not exceed 18%. Nevertheless, it is apparent that the GKAS sample presents higher microwave heating efficiencies after

<table>
<thead>
<tr>
<th>Material</th>
<th>Average Mass (mg)</th>
<th>D_f</th>
<th>D_{B}</th>
<th>ε'_r</th>
<th>ε''_r</th>
<th>tan delta</th>
<th>D_p (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAC</td>
<td>119</td>
<td>50</td>
<td>47</td>
<td>15.2</td>
<td>6.68</td>
<td>0.44</td>
<td>2.2</td>
</tr>
<tr>
<td>GAC CH</td>
<td>115</td>
<td>55</td>
<td>58</td>
<td>16.62</td>
<td>8.24</td>
<td>0.5</td>
<td>1.9</td>
</tr>
<tr>
<td>GAC MW</td>
<td>125</td>
<td>63</td>
<td>65</td>
<td>18.9</td>
<td>9.23</td>
<td>0.49</td>
<td>1.8</td>
</tr>
<tr>
<td>GKAS</td>
<td>100</td>
<td>9</td>
<td>3</td>
<td>3.56</td>
<td>0.43</td>
<td>0.13</td>
<td>13.5</td>
</tr>
<tr>
<td>GKAS (CH)</td>
<td>102</td>
<td>10</td>
<td>4</td>
<td>3.84</td>
<td>0.57</td>
<td>0.15</td>
<td>13.2</td>
</tr>
<tr>
<td>GKAS (MW)</td>
<td>99</td>
<td>10</td>
<td>4</td>
<td>3.84</td>
<td>0.57</td>
<td>0.15</td>
<td>13.2</td>
</tr>
<tr>
<td>GKAS-N</td>
<td>104</td>
<td>46</td>
<td>33</td>
<td>14.07</td>
<td>4.69</td>
<td>0.34</td>
<td>3.1</td>
</tr>
<tr>
<td>GKAS-N (CH)</td>
<td>105</td>
<td>49</td>
<td>36</td>
<td>14.92</td>
<td>5.12</td>
<td>0.35</td>
<td>2.9</td>
</tr>
<tr>
<td>GKAS-N (MW)</td>
<td>109</td>
<td>52</td>
<td>45</td>
<td>15.77</td>
<td>6.39</td>
<td>0.41</td>
<td>2.4</td>
</tr>
<tr>
<td>Org</td>
<td>149</td>
<td>167</td>
<td>49</td>
<td>48.43</td>
<td>6.96</td>
<td>0.15</td>
<td>3.8</td>
</tr>
<tr>
<td>OrgP</td>
<td>149</td>
<td>88</td>
<td>42</td>
<td>26</td>
<td>5.97</td>
<td>0.23</td>
<td>3.3</td>
</tr>
<tr>
<td>SBA TEPA</td>
<td>64</td>
<td>6.2</td>
<td>0.11</td>
<td>2.77</td>
<td>0.02</td>
<td>0.01</td>
<td>400</td>
</tr>
</tbody>
</table>
4 cycles of TSA or MSA, namely 20% and 26%, respectively. This phenomenon was also evident in the case of GAC, as explained in Section 4.6, as well as in the case of GKAS-N, for which the initial efficiency was 83% increasing to 85% and 90% after 4 cycles of TSA and MSA respectively. These results are in accordance with the aforementioned data about tan δ, validating the sorbents’ microwave heating potential.

![Figure 5.1: Heating Efficiency (%) per mg of sorbent. The carbon based materials are highlighted in dark blue, whereas the lithium based silicas are in light blue](image)

One reason that could possibly explain this abnormality with the GKAS sample is that it possesses limited transport pores (total pore volume $V_p = 0.01 \, \text{cm}^2/\text{g}$, as reported in Table 5.2). As Ho et al. (2003) pointed out, solid materials usually present various porosity-related challenges affecting their mechanical, chemical, electrical and thermal properties. In general, the presence of porosity is expected to decrease the conductivity of the system; the extend depends on the fraction of porosity. However, in the case of microwave heating the above relation is more complex; various modelling theories have been introduced as an attempt to predict the connection between porosity and dielectric constant, including the Maxwell-Wagner-Sillars, Bruggeman-Hanai and Looyenga treatments (Lestreiz et al., 1998). Each theory depends on the distribution and shape of the voids, however these modelling attempts are beyond the aims and objectives of this research. Indicatively and in order to show the complexity of the study, the Maxwell-Wagner-Sillars model can be expressed by the following equation of Volume Average Theory (VAT):
\[
\varepsilon_{eff} = (1 - P) \ast \varepsilon'_r + P \ast \varepsilon_i
\]

(5.8)

Where \(P = \frac{V_{por}}{V_t} \), with \(V_{por} \) being the volume of the pores, \(\varepsilon_{eff} \) the effective dielectric constant and \(\varepsilon_i \) the dielectric constant value (Bouledjib et al., 2010).

Moreover, in the case of GKAS-N, another effect contributes to its efficient heating compared to GKAS, when using MSA; the \(\text{NH}_3 \) surface functionalities of the specific sample enhance the efficiency of the heating, compared to GKAS, resulting in increased microwave absorption efficiency. The molecular geometry of \(\text{NH}_3 \) is trigonal pyramidal, resulting in a vector sum of the three H-N bond dipole moments (\(u_{HN} = 1.33 \) D) of 1.47, as seen in Figure 5.2. This means that the \(\text{NH}_3 \) molecule is polar, which as discussed in Section 2.2.4 significantly affects the MW heating process, since the electric field component of the microwaves forces induced dipoles to rotate with the alternating field. This molecular movement produces friction among the rotating molecules and the energy is subsequently dispersed as heat.

![NH3 molecular geometry](image)

Figure 5.2: NH3 molecular geometry

5.2. GKAS & GKAS-N800

Up to this point, this research focused on the GAC which was a carbon-based material but with no surface modifications. Therefore, a reasonable next step is to test a modified AC that has previously shown enhanced \(\text{CO}_2 \) adsorption uptake compared to its parent sample, into the TSA and MSA rigs. The main purpose of this study is to examine if the chemical modifications of the surface of the sorbent would play a role on the microwave absorption ability, leading to an enhanced desorption step.
Chemical impregnation of carbon-based sorbents has received significant attention for the CO₂ adsorption process (Yu et al., 2010). It is based on the principles of CO₂ chemical absorption (chemisorption) using aqueous amine solutions, where CO₂ reacts with primary or secondary amines and forms carbamates (Caplow, 1968 and Crooks et al., 1989). To overcome the issues deriving from this technology, such as high energy demand especially during the desorption process and equipment corrosion, while maintaining high CO₂ adsorption capacity and selectivity, hybrid solid sorbents have been developed by impregnation of solid supports with amines (Xu et al., 2003, Satyapal et al., 2001, Maroto-Valer et al., 2005, Maroto-Valer et al., 2008, Plaza et al., 2007 and Plaza et al., 2008). Nonetheless, Plaza et al. (2007) reported that this technique does not work well with microporous sorbent materials, since the amines tend to block the access to the pores network of the AC, partially eliminating the positive effect of their improved surface chemistry, leading to reduced CO₂ adsorption potential. Furthermore, other drawbacks of amine surface modification of solid sorbents include: high volatility, potential degradation in oxygen environment, leaching and deactivation in the existence of sulphur components in the flue gas (Plaza et al., 2009).

However, Plaza et al. (2011) reported that apart from amine impregnation, there are other ways to enhance the adsorption of the acidic CO₂, namely by introducing basic functionalities on the AC; the molecule of CO₂ behaves as an electron acceptor (weak Lewis acid) able to interact with electron-donors, such as nitrogen surface groups. There are various ways to insert nitrogen functionalities onto the sorbent, such as pyrolysis of N-containing polymers (Drage et al., 2007, Pevida et al. 2008 and Zhao et al., 2010), chemical reaction (Gray et al., 2004 and Zhao et al., 2010) or heat treatment with ammonia gas in the presence or absence of oxygen (usually referred to as ammomoxidation and amination respectively) (Jansen et al., 1994, Pevida et al., 2008, Plaza et al., 2009, Plaza et al., 2010, Plaza et al, 2010 and Przepiórski et al., 2004). For the purposes of this research, amination was selected as the pathway to modify the surface of the AC, since it has already been proven that this technique enhances the CO₂ adsorption, according to Plaza et al. (2011). Specifically, they reported that amination resulted in effective introduction of stable N₂ heteroatoms into the carbon matrix promoting the development of a basic AC with increased delocalised electrons, while simultaneously it promotes the narrow microporosity of the AC, enhancing CO₂ adsorption potential.
As a result, two different carbon-based solid sorbents were evaluated in the present section, the first being the parent sample (GKAS), while the second one being the nitrogen modified sorbent (GKAS-N). These sorbents were obtained from almond shells and were produced in Spain during a collaboration with the Instituto Nacional del Carbón (CSIC). The particle size of the raw material was measured to be between 1 and 3 mm and was carbonised under N$_2$ flow at 873 K. Later, the carbonised product gave rise to two different samples; the first sample was produced by physical activation with 10 cm3/min of CO$_2$ flow up to a 40% of burn off at 973 K, obtaining the sample referred to as GKAS. The second sample, referred to as GKAS-N, was the nitrogen modified sorbent and was obtained by treating the carbonised material with ammonia (NH$_3$) at 1073 K for 2 h.

5.2.1. Adsorption

Figure 5.3 shows the CO$_2$ breakthrough curves of the aforementioned carbons, GKAS and GKAS-N, at ambient temperature and pressure for a feed consisting of 15% vol. CO$_2$ (85% N$_2$), at a total flow rate of 100ml/min. These experiments were carried out to evaluate the performance of the selected sorbent materials and compare them with GAC using conditions that simulate that of a flue gas stream and as a result, the moisture content was also taken into account. The letter D expresses the dry conditions of the feed gas, while the letter W is used when wet gas conditions were examined, as previously explained in Section 3.7. The time-dependent evolution of the effluent CO$_2$ molar fraction (y-axis represents the normalised value $\frac{C_{\text{CO}_2}^{\text{out}}(t)}{C_{\text{CO}_2}^{\text{in}}}$) is presented. Initially, all the CO$_2$ that enters the reactor is adsorbed by the sorbent separating it from the N$_2$ that exits the bed. After three to six minutes, depending on the sorbent and the conditions used, the mass transfer zone approaches the bed outlet and some CO$_2$ molecules start to be detected in the effluent stream by the TOF-MS. It is interesting that GKAS curves present shorter breakthrough times, t_b, (which is the time needed for $\frac{C_{\text{CO}_2}^{\text{out}}(t)}{C_{\text{CO}_2}^{\text{in}}} = 0.05$), compared to GKAS-N for each condition; specifically, for the dry feed gas experiments t_b equals with 210 seconds for GKAS, while in the case of GKAS-N it increases to 245 seconds. The same trend is evident for the wet feed gas adsorption, namely t_b increases from 295 to 340 seconds. The sorbent bed then reaches
equilibrium conditions and becomes saturated as the effluent concentration equals that of the feed \(\frac{C_{\text{CO}_2}^{\text{out}}(t)}{C_{\text{CO}_2}^{\text{in}}} = 1 \). The curves corresponding to the GKAS sorbent are broader in shape, compared to the ones representing GKAS-N that are steeper, which suggests that increased mass transfer resistance is present due to the limited transport pores that it possesses (GKAS: \(V_p = 0.01 \text{ cm}^2/\text{g} \), as reported in Table 5.2). Combining the longer breakthrough times with the lower mass transfer resistance, it can be concluded that GKAS-N presents better adsorption performance compared to GKAS, which is in accordance with previous studies (Plaza et al., 2011).

![Breakthrough curves obtained from a 15/85 CO2/N2 binary mixture at 25°C and 1bar, comparing GKAS and GKAS-N at dry and wet gas conditions](image)

Figure 5.3: Breakthrough curves obtained from a 15/85 CO2/N2 binary mixture at 25°C and 1bar, comparing GKAS and GKAS-N at dry and wet gas conditions

Figure 5.4 summarises the CO2 amount adsorbed for both samples under dry and wet feed gas conditions. As previously reported (Section 4.2) the CO2 breakthrough capacities are below the corresponding values obtained from the thermogravimetric analyses that were presented in Section 5.1.1, due to the conceptual difference between static and dynamic adsorption potential discussed in Section 4.2.1. Moreover, the reported amount adsorbed is subjacent to the case of pure CO2 flow, due to the reduced CO2 partial pressure in the feed gas mixture. Nevertheless, GKAS and especially GKAS-N still present a significant CO2 adsorption capacity. As expected, GKAS-N showed higher CO2 dynamic adsorption capacity, compared to GKAS: in particular, 0.1 g of CO2 were adsorbed per 1.6 g of GKAS-N under dry feed gas conditions,
corresponding to a weight uptake of 6.25% (w/w), which is an enhanced performance compared to GKAS which under the same operating conditions presented a 5.1% (w/w) weight increase (0.08 g of CO₂ per 1.6 g of sorbent). The GKAS-N sorbent showed an enhanced performance under wet feed gas conditions as well, following the same trends reported for GAC in Chapter 4 (Section 4.2.3). It is noticeable that both samples increased their CO₂ dynamic adsorption capacities, however the amount adsorbed from GKAS was still lower than GKAS-N. Specifically, the weight increase was enhanced from 5.1% to 5.6% and from 6.25% to 7.35% for GKAS and GKAS-N, respectively.

![Figure 5.4: Amount of CO₂ adsorbed onto the GKAS and GKAS-N from a 15/85 CO₂/N₂ binary mixture at 25°C and 1bar, for dry and wet gas conditions](image)

5.2.2. Desorption

After reaching equilibrium conditions (C/C₀ = 1) during adsorption, desorption step was conducted for the GKAS and GKAS-N, under a 100ml/min N₂ purge gas flow examining two temperatures, namely 70°C and 130°C in order to compare TSA and MSA processes. The effect of dry and wet gas conditions was examined as well.

5.2.2.1. Desorption profiles

Figures 5.5 and 5.6 present the CO₂ outlet concentration profiles for GKAS during CO₂ desorption via MSA and TSA as a function of time (seconds) using two different temperatures, namely 70°C and 130°C and two different gas conditions, dry and wet conditions.
respectively. Unlike the case of GAC, it is clear that there are no distinct differences in the CO$_2$ outlet distribution between TSA and MSA. The advantages of the MSA distribution described in Chapter 4 including the rapid peak of [CO$_2$]$_{out}$ within seconds and the initial high heating rates, as well as the absence of a long tail towards longer desorption times are not evident in the case of GKAS. Here, both desorption modes present similar [CO$_2$] peaks and long tails, indicating that the heating rates of the two modes are identical, contrary to the case of GAC.

![Figure 5.5](image1.png)

Figure 5.5: Time dependent CO$_2$ outlet concentration profiles during GKAS regeneration at 70°C and 130°C for dry gas conditions via MSA and TSA

![Figure 5.6](image2.png)

Figure 5.6: Time dependent CO$_2$ outlet concentration profiles during GKAS regeneration at 70°C and 130°C for wet gas conditions via MSA and TSA
As a result, it is also interesting to evaluate the heating rates throughout the desorption experiment for the TSA and MSA modes presented in Figure 5.7, in order to validate the above assumption. At first, the thermal response of GKAS during the MSA process looks promising, since it indicates that the loss factor of the adsorbent material does not increase with temperature, as in the case of GAC (Section 4.3). This means that the ‘runaway effect’, can be avoided for the case of GKAS as well, since the slope of the sorbent’s heating rates versus temperature, is not positive. However, it is also clear that the rates are different than in the case of GAC. At the beginning of the process, GAC presented extremely high heating rates, 25°C/min and 60°C/min for 70°C and 130°C respectively, leading to the initial rapid CO₂ desorption described from the high peak in the desorption graphs. In contrast, this was not the case for GKAS, for which initially the heating rate was 7°C/min and 10°C/min for 70°C and 130°C, respectively, for the MSA process. Even if these rates were higher than in the TSA case (2°C/min and 5°C/min, respectively), they did not result in a different heating process, since the difference is not noteworthy, thus generating similar desorption graphs. Looking at Section 5.1.2, this effect could simply be attributed to the non-favourable dielectric properties of GKAS; this material presented the lowest microwave absorption potential (14%), compared to the other carbon based materials and as a result, no distinct differences in the performance of MSA compared to TSA were to be expected.

![Figure 5.7: Heating rates of GKAS for MW and CH at 70°C and 130°C](image)
On the other hand, GKAS-N presented quite distinct dielectric properties (85% microwave absorption efficiency), compared to GKAS, mainly due to the polar nature of the NH$_3$ surface functionalities, as reported in Section 5.1.2. As a result, GKAS-N presented clearly different trends during CO$_2$ desorption via MSA and TSA, as seen in Figures 5.8 and 5.9, similar to the trends reported for the GAC sample; the maximum $[\text{CO}_2]_{\text{out}}$ is clearly higher during the MSA process compared to TSA, meaning that most of the adsorbed CO$_2$ is quickly desorbed, due to the rapid heating of the sorbent, similar to GAC. However, it is interesting to note that, unlike the GAC case, the peaks of TSA and MSA appear at approximately the same time period, namely after 80-100 seconds, depending on the gas conditions. It is also worth mentioning that the introduction of moisture seems to affect the desorption process as well since the peaks were considerably lower compared to the dry gas conditions; specifically, a 10-15% reduction in the curves' peaks is apparent for both TSA and MSA for each temperature used. However, in order to assess the full performance of GKAS and GKAS-N, the regeneration efficiency, desorption kinetics and energy consumption parameters should be taken into consideration.

Figure 5.8: Time dependent CO$_2$ outlet concentration profiles during GKAS-N regeneration at 70°C and 130°C for dry gas conditions via MSA and TSA
5.2.2.2. Regeneration efficiency

Initially, the regeneration efficiency of GKAS and GKAS-N during MSA and TSA is discussed. Figures 5.10 and 5.11 show the performance of both sorbents, previously loaded with CO₂ from a 15% (vol.) gas mixture (balance N₂), during desorption, including both dry and wet gas conditions at 70°C and 130°C. It is clear that for both sorbents MSA resulted in an increase of the total regeneration efficiency of the materials. This is an interesting result, especially for the case of GKAS, since it was shown in the previous section (Section 5.2.2.1) that the desorption profiles in the MSA mode did not show any distinct differences compared to TSA. However, here it is evident that MSA enhanced its regeneration efficiency; for the case of dry gas conditions, an increase from 85% to 91% and from 83% to 90% for 70°C and 130°C respectively was reported. Moreover, when using wet gas conditions during the adsorption step, the regeneration efficiency of the sorbent decreased significantly for TSA from 85% to 63% and from 83% to 67% for 70°C and 130°C, respectively. Nevertheless, MSA managed to improve TSA’s regeneration efficiencies, resulting in an increase to 71% and 82%, respectively. It is worth mentioning that the increase in temperature did not play an important role for dry gas conditions. On the other hand, there is an important difference in the regeneration efficiency during MSA mode when increasing the temperature under wet conditions, namely a significant increase from 71% to 82%. This was to be expected since, as discussed in Section 4.2.3, H₂O blocks
the pores on the surface – acting as a superficial cover -, not allowing the \(\text{CO}_2 \) molecules to diffuse to the outside of the pores when a heating process is applied. As a result, a higher temperature enhances the quick evaporation of the \(\text{H}_2\text{O} \) molecules, allowing more \(\text{CO}_2 \) to be desorbed and diffused through the pores of GKAS-N, hence increasing the regeneration efficiency.

![Comparison of the regeneration efficiency of GKAS for MSA and TSA at 70°C and 130°C at dry/wet gas conditions](image)

Figure 5.10: Comparison of the regeneration efficiency of GKAS for MSA and TSA at 70°C and 130°C at dry/wet gas conditions

Similar trends were reported for GKAS-N, as seen in Figure 5.11. However, even if this sorbent is heated more efficiently during MSA compared to GKAS, due to its enhanced dielectric properties (Section 5.1.2), the regeneration efficiency of the sorbent follows the exact same trends, indicating that it is not the heating process, but the heating mechanism that is important during \(\text{CO}_2 \) desorption. It is evident that for the case of dry gas conditions, an increase from 85% to 92% and to 91% for 70°C and 130°C, respectively, was observed, being very close to the results presented for GKAS, within the error deviation of the experiments (±2.5%). Furthermore, for the case of wet gas conditions during the adsorption step, the regeneration efficiency of the sorbent decreased significantly during TSA mode from 85% to 63% and 61% for 70°C and 130°C, respectively. Once again, MSA improved TSA’s regeneration efficiencies, resulting in an increase to 73% for both temperatures. It is also worth mentioning that even if MSA managed to enhance the \(\text{CO}_2 \) desorption process in terms of regeneration efficiency of the sorbent, it did not manage to reach the 80% limit for the wet gas conditions that was set as the target efficiency in Chapter 4.
5.2.2.3. Desorption kinetics

The next parameter that is investigated in this section is the CO$_2$ desorption kinetics when using GKAS and GKAS-N comparing MSA and TSA modes. In Section 5.2.2.1 it was reported that GKAS presented similar desorption profiles for both MSA and TSA, which was not the case for GKAS-N, for which the two profiles were distinctly similar compared to GAC. This information demonstrated an initial assumption based on the CO$_2$ desorption profiles that the desorption rates would be almost identical in the case of GKAS, when comparing the two heating processes. Figure 5.12 shows the comparison of desorption rates for GKAS during MSA and TSA, taking into consideration the time needed for 70% of CO$_2$ desorption to take place (t_{70}). It is apparent that there is some time reduction when using the MSA technology compared to TSA mode. Specifically, in the case of dry gas conditions, t_{70} decreased from 4.5 to 4.2 minutes and from 4 to 3.8 minutes for 70°C and 130°C, respectively. However, this reduction is not significantly different from an expected error (±2%, as explained in section 4.4) to justify the use of MSA technology for this sorbent. On the other hand, the most noticeable reduction occurred in the case of wet gas conditions, reducing the time needed by 30% (from 5.25 to 3.67 and from 4.25 to 3.1 minutes for 70°C and 130°C respectively) for both temperatures. This means that in the presence of moisture in the exhaust gas, MSA process is more efficient compared to TSA, having also in
mind that the regeneration efficiency achieved is higher during the MSA as shown in Section 5.2.2.2.

![Figure 5.12: Comparison of t70 for MSA and TSA using GKAS when heating at 70°C for dry/wet gas conditions](image)

Figure 5.13 presents the comparison between MSA and TSA in terms of desorption time needed (t70) when using GKAS-N as sorbent. The differences between MW and CH heating mechanisms are clear and the process is significantly less time-consuming for every case examined, following a similar trend to GAC. Precisely, an average of 4.5 minutes are needed to reach t70 for desorption under TSA when using dry gas conditions, while in the presence of moisture t70 increased for both 70°C and 130°C. In contrast, MSA intensified the CO2 desorption kinetics for both dry and wet gas experiments, by managing to decrease t70 efficiently for every case examined; specifically, for the dry gas experiments, the time was reduced by as much as 35%, from 4.6 to 2.9 and 2.8 minutes for 70°C and 130°C, respectively. More importantly, the greatest decline in desorption time was evident for the wet gas experiments, where the decrease reached 45%, reducing t70 from 5.25 and 4.8 to 2.8 and 2.9 for 70 and 130°C, respectively.
5.2.2.4. Energy consumption

The last parameter that was used in order to examine the performance of GKAS and GKAS-N during MSA and TSA desorption is the energy spent during this step. Similarly to Section 4.4.4., only $E = E_{70}$ was considered, which accounts for the energy required for a 70% CO$_2$ desorption, in order to keep consistency with regards to the parameters compared. Since the energy consumed is directly associated with the desorption time (equation 4.12), it should be expected that the GKAS sample would present a lower performance in terms of energy efficiency compared to GKAS-N and GAC. Figure 5.14 presents the results obtained for GKAS during CO$_2$ desorption at 70°C and 130°C for dry/wet gas conditions and it is evident that the amount of energy consumed is higher than that of GAC (Section 4.4.4) for both TSA and MSA. In this instance, a clear trend is observed, resulting in higher consumptions with the increase in temperature and the switch to wet gas conditions. Specifically, when using TSA as desorption method and dry gas conditions, the energy consumed increases from 1.74 kWh/kg to 2.6 kWh/kg when increasing the temperature from 70°C to 130°C, respectively. A similar increase is evident for the wet gas conditions, where the consumption is even higher, escalating from 2.15 to 2.7 kWh/kg. Analogous trends can be observed for the MSA mode, however, in this scenario the energy consumed is proportionally lower; a 25% decrease (from 1.74 to 1.3 kWh/kg) in the energy needed for 70% CO$_2$ desorption is reported in the case of dry gas conditions when heating at 70°C, while this reduction is less in the case of 130°C (20%, from 2.6 to 2.1 kWh/kg).
The benefits of MSA are reduced even more in the case of wet gas conditions, where even if MSA still manages to cut down the amount of energy consumed, it does not exceed 17% - from 2.15 to 1.76 kWh/kg and from 2.7 to 2.25 kWh/kg for 70°C and 130°C, respectively.

Figure 5.14: Energy consumption during GKAS regeneration at 70°C and 130°C for dry/wet gas conditions

Figure 5.15 presents the E_{70} consumed during the regeneration process of GKAS-N that was previously saturated using $[CO_2]_{in} = 15\%$ heating to 70°C and 130°C, respectively. As expected, contrary to the case of GKAS, MSA achieved an important decrease in the energy consumed during the desorption step, making GKAS-N a more competitive adsorbent than GKAS; it is clear that, for every set of experiments E_{70} was reduced by at least 37%, with the best results deriving from the desorption at 130°C. Specifically, it was observed that when the GKAS-N sample was regenerated at 70°C, a decrease from 1.26 to 0.8 (37%) and from 1.4 to ~0.85 kWh/kg$_{sorb}$ (40%) during desorption under dry and wet gas conditions, respectively. This decline was even more pronounced in the case of 130°C desorption, where instead of 1.96 and 1.97 kWh/kg$_{sorb}$, only ~0.97 kWh/kg$_{sorb}$ were consumed, accounting for a significant decrease that exceeds 50%.
5.2.3. Conclusions for GKAS and GKAS-N

In this section, the performance of two carbon based sorbents for CO₂ capture and regeneration under TSA and MSA was evaluated. The first sample, GKAS, was produced from raw biomass, almond shells, whereas the second sample, GKAS-N derived from GKAS after introducing some basic N₂ functionalities on the surface by impregnation with NH₃. The aim of this chapter was to evaluate the performance of those sorbents, trying to examine possible relations between NH₃ impregnation and microwave heating processes. It was shown that unexpectedly the GKAS sample did not present desirable dielectric properties, which greatly affected its performance during MSA. Accordingly, the low microwave power absorption potential of GKAS influenced its regeneration process and as a result the desorption profiles generated from MSA and TSA were almost identical. However, MSA managed to enhance the regeneration efficiency of GKAS due to the direct heating of the sample from the MW, resulting in efficiencies higher than 90% in the case of dry gas conditions and 73-81% for wet gas. Moreover, the desorption kinetics were also intensified from the microwave heating, with the most noticeable result occurring in the case of wet gas conditions, reducing the time needed by 30%. Furthermore, an energy consumption reduction was evident as well, decreasing the energy needed by 25% and 17% for dry and wet gas conditions respectively.
On the other hand, GKAS-N presented a higher CO$_2$ adsorption uptake compared to GKAS to begin with, due to the presence of transfer pores, resulting in lower mass transfer resistance. Moreover, it also showed distinctly different desorption profiles under MSA mode, taking advantage of the fast heating rates due to its excellent dielectric nature. One possible reason that the MW is enhanced compared to GKAS could be the presence of NH$_3$ groups on the surface of the material; as discussed in Section 5.1.2, the NH$_3$ molecule is polar, thus the dipoles rotate with alternating field during MW and as such this friction is dispersed as heat. Consequently, regeneration efficiencies, desorption kinetics and energy requirements were improved compared to the case of GKAS.

However, even if MSA managed to intensify the desorption process for both materials, the comparison of the performance of GKAS and GKAS-N with GAC is not promising for various reasons; the only values that both GKAS and GKAS-N are comparable against GAC is related with the regeneration efficiency. However, it should be taken into account that GAC presents a higher CO$_2$ adsorption capacity (~10.8% compared to 6.9% and 9.6% for GKAS and GKAS-N, respectively). Nonetheless, comparing the dynamic adsorption potential, GAC seems to be favoured in processes that include high CO$_2$ partial pressures, while when dealing with low partial pressures (as in the case of post-combustion CO$_2$ capture), GKAS and GKAS-N seem to be advantageous. In terms of desorption kinetics, it is clear that GKAS is the weakest sorbent material between those three, since it presents an average of 3.5mins, whereas only 3 and 2.8mins are needed for GAC and GKAS-N respectively.

As a result, it can be concluded that the pore volume of a material plays a critical role in the desorption process when using MSA, with the existence of large pore volume inside a sorbent enhancing the MW. Moreover, the introduction of NH$_3$ to the material is another parameter that affects the MSA process, since the use of a polar element enhances the heating and consequently its desorption performance.

5.3. Desotec Organosorb

The next materials that were tested in the TSA and MSA rigs were obtained from Desotec (Belgium) and the aim was to clarify the connection between the shape of the
sorbent particles and their desorption properties, comparing MSA and TSA. As a result, two different AC – large granules and powder - produced from the same precursor were used. In general, large granules or pellets of AC are preferred when dealing with high pressure operations or when high volumetric adsorption capacity is needed (Craven et al., 2014). Desotec Organosorb 10-CO (2.80-4.75 mm), referred to as Org, is a coconut shell based granular activated carbon commonly used to remove low boiling organic solvents and odours from air and gas. However, its large surface area (1140m2/g) and pore volume (0.55cm2/g), reported in Table 5.2, make this sorbent suitable for exhaust gases treatment as well, including CO$_2$, VOC capture and SO$_2$ desulphurisation processes.

On the other hand, powdered AC (PAC) are commonly used by water treatment plants on either a full time basis or as needed for taste and odor control or removal of organic chemicals. Raw precursors for the production of PAC include organic materials with high carbon content such as coal, lignite or wood and its apparent density ranges between 0.3 and 0.75 g/cm3, depending on the precursor and production process (Najm et al., 1991). As a result, the second material used in this section, referred to as OrgP, was produced by grinding the Org using a Fritsch Pulverisette 2 mortar grinder until the solid mixture achieved homogeneity, creating fine powder passing through a 200 mesh sieve (0.075 mm).

5.3.1. Adsorption

Figure 5.16 presents the breakthrough curves obtained during the adsorption experiments using Org and OrgP at ambient temperature and pressure. The CO$_2$ concentration in the feed was $[\text{CO}_2]_{in} = 15\%$, with the balance being N$_2$, while the total gas flow rate was 100ml/min. Two feed gas conditions were reported, anhydrous and wet, with the wet case being simulated by injecting 10% moisture content, similar to Section 4.2.3. Following the error analysis in Chapter 4, the adsorption step was repeated four times, with the results presented being an average of those measurements, leading to a low deviation of $\pm 2\%$, as seen by the error bars of Figure 5.17.

It is evident that, for both Org and OrgP, the characteristic breakthrough time t_b increases, when switching from dry to wet feed gas conditions. This is a first indication
that in the case of moisture addition, the CO₂ dynamic adsorption capacity is higher compared to the results for anhydrous conditions. As expected from the thermogravimetric analyses measurements, it can be observed that the OrgP curves are steeper compared to Org, meaning that mass transfer resistance is lower, but CO₂ adsorption amount is lower as well. This difference in steepness of the curves is more evident in the case of wet gas conditions. Moreover, the equilibrium time (t_{eq}), for which CO₂ concentrations at the bed inlet and outlet are practically equal, is reached 3 minutes faster in the case of OrgP under wet gas, whereas under dry gas conditions, the t_{eq} for both sorbents is almost equal. One reason that explains this phenomenon is associated with the shape of the sorbent; OrgP, being a fine powder, tends to agglomerate when adding moisture to the gas mixture, prior to its CO₂ saturation and as a result, equilibrium time is reached faster. On the other hand, in the case of Org, there is no sign of agglomeration, since there is enough space for the H₂O to be deposited between the large granular particles inside the material bed. This is in agreement with previous studies (Standish et al., 1991), where it was reported that at any initial moisture content, it is sensible to assume uniform mixing of the particles if the particle size is large (>1mm).

![Figure 5.16](image)

Figure 5.16: Breakthrough curves obtained from a 15/85 CO₂/N₂ binary mixture at 25°C and 1bar, comparing Org and OrgP at dry and wet gas conditions

Figure 5.17 presents the total amount of CO₂ adsorbed from Org and OrgP during the adsorption step. It is clear that for both dry and wet gas conditions, the amount of CO₂
adsorbed was higher in the case of Org. Specifically, the Org managed to adsorb 0.18 g of CO₂ under dry gas conditions, while this amount increased for the wet gas to 0.21g. On the other hand, OrgP showed a poor performance during adsorption, ending with only 0.15 and 0.17 g of CO₂ adsorbed for the dry and wet gas conditions respectively. This effect could be attributed to the fact that, as mentioned in Section 5.1, a granular sorbent with large particle size takes advantage of the fact that no channeling, fluidizing, or bypassing takes place when a fluid passes through; large granules create a solid structure where migration of the adsorbent particles or channel formation is avoided. On the other hand, a powder sorbent may generate a loose particle bed into the reactor, which could lead to fluid chanelling; this would result in an uneven distribution of the fluid into the adsorbent bed while a vast amount of sorbent would not be utilised. As a result, the CO₂ adsorption capacity of OrgP would reasonably be lower than in the case of Org. Interestingly enough, a ~10% of moisture into a binary gas mixture of CO₂ and N₂ seems to enhance the CO₂ adsorption capacity of both Org and OrgP, for the same reasons as in the case of GAC, GKAS and GKAS-N. The CO₂ adsorption capacity in the case of Org was increased by as much as 17% (from 0.18\(g_{CO_2}\) to 0.21\(g_{CO_2}\)), while for OrgP the increase was lower, from 0.15\(g_{CO_2}\) to 0.17\(g_{CO_2}\), accounting for a 13% rise.

![Figure 5.17: Amount of CO₂ adsorbed onto the Org and OrgP from a 15/85 CO₂/N₂ binary mixture at 25°C and 1bar, for dry and wet gas conditions](image)
5.3.2. Desorption

After reaching equilibrium conditions (C/C₀ = 1) during adsorption process, desorption step was conducted for the Org and OrgP, following the same procedure as in the previous materials. N₂ purge gas flow was set to 100ml/min and two temperatures were selected, namely 70°C and 130°C in order to compare TSA and MSA processes. The effect of dry and wet gas conditions are also discussed.

5.3.2.1. Desorption profiles

Figures 5.18 to 5.21 present the [CO₂]ₜₐₜ profiles during CO₂ desorption from Org and OrgP via MSA and TSA modes as a function of time (seconds) using two different temperatures, namely 70°C and 130°C. Similar to the GAC desorption profiles, it is noticeable that there are two different outlet concentration patterns, MSA following the *log-normal distribution*, while TSA profiles are described by the *Rayleigh distribution*.

As discussed in Section 5.1.2., Org and OrgP present almost identical dielectric properties, including microwave absorption potential, with GAC and GKAS-N. As a result, since Org and OrgP are excellent microwave absorbers, it was expected that the MSA CO₂ desorption profiles as well as the heating rates would be proportionally similar with the previous cases. Truly, once again the most important difference derived from the aforementioned distributions is that in the case of MSA the maximum [CO₂]ₜₐₜ (curves’ peak) is reached distinctively faster compared to TSA mode. This means that most of the adsorbed CO₂ is quickly desorbed, due to the rapid heating of the sorbent, suggesting that the dissipation of CO₂ through the pores of Org and OrgP is favoured by microwave heating. It is remarkable that during MSA the [CO₂]ₜₐₜ peak is reached after ~50 seconds for both Org and OrgP, regardless dry/wet gas conditions or desorption temperature, taking advantage of the high initial heating rates that microwave heating can provide, as in the case of GAC discussed in Section 4.3. On the other hand, a smooth desorption profile is evident for the case of TSA, where the desorption rates are clearly lower compared to MSA. It is noticeable that the maximum [CO₂]ₜₐₜ is reached much later compared to MSA, due to the different heating mechanism during the two processes, discussed in Section 2.2.9; in both materials, the desorption peak in the TSA mode was reached after 200 seconds (>3mins). The same trend is evident with varying desorption temperature and gas conditions.
As a result, combining the facts that the peak of \([CO_2]_{out}\) is considerably higher in the case of MSA while it is reached clearly faster (1/4 of the time needed) compared to the TSA mode, it is evident that microwaves have the ability to intensify the CO\(_2\) desorption process for both Org and OrgP. Taking advantage of the excellent dielectric characteristics that these two materials present (Table 5.3), the CO\(_2\) molecules attached onto the surface of the sorbents are rapidly detached due to the fast heating during...
MSA, compared to TSA. However, further analysis of regeneration efficiency, desorption kinetics and energy consumption will follow in order to confirm the above statement.

Figure 5.20: Time dependent CO₂ outlet concentration profiles during OrgP regeneration at 70°C and 130°C for dry gas conditions via MSA and TSA

Figure 5.21: Time dependent CO₂ outlet concentration profiles during OrgP regeneration at 70°C and 130°C for wet gas conditions via MSA and TSA

5.3.2.2. Regeneration efficiency

The first parameter under investigation for the performance of Org and OrgP under TSA and MSA was their regeneration efficiency. The equations used were described in Section 4.4.2.
It is obvious that MSA intensified the desorption process in terms of Org/OrgP regeneration efficiency, since n_{des} is higher for every case when microwaves were utilised. One interesting observation is that the temperature increase does not seem to play a significant role in the regeneration performance, since similar trends are reported for both 70°C and 130°C. However, it can be concluded that when using a higher temperature, the regeneration efficiency increased. This increment, though, is not large enough to justify a heating process at a higher temperature, which would lead to higher cost due to the increased energy consumption, as will be discussed in Section 5.3.2.4.

On the other hand, it is clear that the most influential factor was the dry/wet gas condition during the adsorption step; specifically, both TSA and MSA processes report lower regeneration efficiencies in the cases of wet gas previously adsorbed. As can be seen from Figures 5.22 (Org) and 5.23 (OrgP), there is a huge decrease in the n_{des} when TSA is used when introducing wet feed gas; at 70°C desorption, n_{des} decreases from 81% to 66% for Org and from 88% to 69% for OrgP. Moreover, even when the sorbent materials were heated at 130°C, the same trend was evident; a radical decrease from 80% to 72% for Org and from 94% to 74% for OrgP. These values are well below the desirable values for a large scale process, where desorption efficiencies of >80% are needed in order for the capture process to be economically feasible, as explained in Section 4.4.2. However, experimental tests under the MSA process showed a radical improvement in those efficiencies as well, resulting in much higher amount of CO$_2$ desorbed from the Org/OrgP, being eventually comparable with the values obtained during dry gas conditions; for heating at 70°C, 88% was possible, while this amount increased further to 94% when heating at 130°C. In the case of OrgP, the desorption efficiency improved from 69% to 92% and from 74% to 89% for 70°C and 130°C desorption respectively, under wet conditions.

In addition, the highest desorption efficiencies were reported for the dry gas conditions, as expected; Org showed a total of 81% and 80% CO$_2$ desorbed during 70°C and 130°C TSA heating, respectively, while OrgP presented a better performance resulting in 88% and 94% regeneration efficiency. MSA process managed to boost those efficiencies as well; when heating at 70°C, a 88% was possible for the Org material, while this amount increased for higher temperature to 94%. Accordingly, when using OrgP, the desorption efficiency improved to 94% and 97% for 70°C and 130°C, respectively.
It can be concluded that MSA managed to increase the regeneration efficiency of both Org and OrgP, resulting in higher efficiencies compared to GAC. In the case of dry gas conditions, TSA shows very good results for the Org and OrgP sorbents, since an average of 81% and 91%, respectively, was reported, while the corresponding value of GAC was 77%. The values of Org/OrgP and GAC were fairly similar in the MSA mode, namely 85-90%. However, in the case of wet gas, the performance of Org/OrgP was exceptionally better compared to GAC; an average of 90% was reported for Org/OrgP, while GAC’s regeneration efficiency under the same conditions was slightly below 80% (~79.5%).

![Figure 5.22: Comparison of the regeneration efficiency of Org for MSA and TSA at 70°C and 130°C at dry/wet gas conditions](image)

The reasons for the above results are due to the differences in the way moisture was distributed in the samples; firstly, fine powders and small granules (<1mm) present strong cohesive forces between particles, tending to agglomerate when mixing with moisture content. In this form, the moisture is similar to bound water and it is difficult to remove with microwave energy (Standish et al., 1991). Another reason for the better performance of the large granules is associated with the differences in permeabilities. During microwave heating of granular materials, moisture movement to the surface occurs by both liquid and vapour mass flow. For low permeability, which is the case for small particles (GAC and OrgP), vapour pressure can build up inside the fixed bed and water droplets can be expelled, a phenomenon referred to as liquid pumping ensues (Perkin, 1983). As a result, it is reasonable to point out that in the case of a wet flue
gas, sorbents with large particle sizes (large granules >1mm, or pellets) may be preferred (Standish et al., 1988).

5.3.2.3. Desorption kinetics

The next parameter that was investigated was the desorption kinetics of Org and OrgP during MSA and TSA. As discussed in Section 4.4.3, 70% recovery was selected as the optimum desorption condition, balancing between energy consumption and time needed for the desorption to be accomplished. As a result a comparison of t_{70}, i.e. the time needed for 70% CO$_2$ recovery, between MSA and TSA modes are presented next.

The following figures (Figure 5.24 and 5.25) present a direct comparison of the t_{70} between MSA and TSA for two different temperatures, 70°C and 130°C for both dry and wet gas conditions. Specifically, Figure 5.24 presents the results obtained from desorption experiments using Org, while 5.23 describes the t_{70} comparison for the case of OrgP. It is clear that TSA is a more time-consuming process, needing an average of ~5.0 minutes to reach t_{70} when heating at 70°C, while the increase in temperature to 130°C did not seem to play an important role, since t_{70} only decreased to an average of ~4.9 minutes. This suggests that CO$_2$ is desorbed at lower temperatures, before reaching 130°C, being in agreement with previous studies (Plaza et al., 2011), where it was reported that TSA at 100°C was sufficient to achieve full regeneration of the
activated carbon. This is an important observation for the process, since the use of a lower temperature during desorption is directly associated with lower energy consumption. In contrary, MSA intensified the CO$_2$ desorption kinetics for both dry and wet gas conditions, by managing to decrease the time needed by as much as 48%, resulting in a t_{70} process that took an average of 2.6 minutes to be accomplished for OrgP, being in agreement with the observations reported for the CO$_2$ desorption profiles in Section 5.3.2.1. It is interesting to point out that even though MSA managed to accelerate the CO$_2$ desorption process from Org as well, the decrease in t_{70} was smaller compared to OrgP; Figure 5.24 shows that an average of 2.9 minutes were needed in the case of OrgP, resulting in a 35% reduction, 13% less than Org. This can be associated to the differences in the size of the bed formed for Org and OrgP, combined with the different penetration depth that they possess (Tables 5.2 and 5.3); materials with high values of loss factor are characterised by lower values of penetration depth, meaning that microwaves can totally be absorbed within the outer layers of the material (Bogdal, 2005). For example, in the case of OrgP (with penetration depth of 3.2cm), the total microwave power is absorbed faster while the waves penetrate the material, compared to Org (with penetration depth of 3.8cm). As a result heat is generated faster in the case of OrgP and is then transferred to the rest of the bed via conduction. A smaller bed size (diameter: 2cm and height: 4.4cm), compared to Org (diameter: 2cm and height 5.5cm) also enhances the heating via conduction resulting in faster heating rates for OrgP, as seen when comparing Figures 5.24 and 5.25.

![Figure 5.24](image-url)

Figure 5.24: Comparison of t_{70} for MSA and TSA using Org when heating at 70°C for dry/wet gas conditions
The last parameter under investigation for the comparison of TSA and MSA is the energy consumption during the regeneration of Org and OrgP. As explained in Section 4.4.4, the energy consumption is directly associated with the thermal and dielectric properties of the material and as a result it is forecasted that MSA would lead to lower consumption compared to TSA in this scenario. Moreover, taking into consideration the relation between material density, porous structure and size with microwave absorption previously discussed (Sections 5.1.2, 5.2.3 and 5.3.2.2), it can also be expected that the Org and OrgP adsorbents would present very promising results with regards to energy consumption measurements, compared to GKAS and GKAS-N.

Figures 5.26 and 5.27 describe the comparison of energy usage (kWh/kg) between TSA and MSA for two different temperatures (70°C and 130°C) and dry/wet gas conditions, for Org and OrgP, respectively. As expected, MSA achieved an important decrease in the energy consumed during the desorption step (E_{70}); it is clear that for every set of experiments E_{70} was reduced by at least 35%, with the best result deriving from the 130°C desorption temperature. Specifically, when an output temperature of 70°C was selected, a decrease from 0.63 to 0.33 kWh/kg$_{sorb}$ and from 0.62 to ~0.4 kWh/kg$_{sorb}$ during desorption for dry and wet gas conditions, respectively, was reported. This decline was even more radical in the case of 130°C, where instead of 0.97 and 0.9 kWh/kg$_{sorb}$, only ~0.44 and 0.5 kWh/kg$_{sorb}$ were consumed. Similar values were
reported when using OrgP (Figure 5.27), with the variation of the values being in the range of the error possibility. This was to be expected, since Org and OrgP have the same C composition, derived from the same precursors, with the only difference being the particle size and shape. However, it is clear that the shape and size of the material do not alter the energy consumption during the CO$_2$ desorption step either for TSA or for MSA mode.

Figure 5.26: Energy consumption during Org regeneration at 70°C and 130°C for dry/wet gas conditions

Figure 5.27: Energy consumption during OrgP regeneration at 70°C and 130°C for dry/wet gas conditions
5.3.2.5. Temperature distribution

As discussed in Section 4.5, the temperature distribution inside the bed reactor is an important factor to be considered when dealing with microwave applications. The temperature uniformity of a bed mainly depends on the material’s dielectric properties, with the most influential parameter being the penetration depth, and on the bed’s geometry, which is formed according to the material’s shape and density. For this case, Org and OrgP generated different bed geometries, not in terms of shape (which remained cylindrical), but in terms of bed’s height as discussed in Section 5.3.2.3, which directly affects the distribution of the temperature inside the bed, as seen in Figures 5.28 and 5.29. In all cases, the highest temperature was recorded at the centre line of the cylinder; in the case of 70°C, the Org and OrgP beds reached a maximum of 85°C in the centre of the cylinder, whereas in the case of 130°C the temperature went up to 152°C and 142°C for Org and OrgP, respectively. The lowest temperatures were recorded on the surface of the bed (height = 5cm), 60°C and 108°C for Org, whereas for OrgP 75°C 123°C. However, even if the patterns followed are the same for both Org and OrgP with regards to the hottest and coldest spots, it is clear that in the case of OrgP (higher density leading to lower bed height) the temperature difference inside the bed is smaller than in the case of Org; OrgP presents a ΔT_bed of 10°C when the target temperature is 70°C (ΔT_bed = 20°C when heating at 130°C), while in the case of Org the ΔT_bed increases to 25°C (44°C when heating at 130°C). Between the surface and the centre of the bed, a linear temperature distribution is evident for both cases.

As previously discussed, another important parameter influencing the temperature distribution of the bed during microwave heating is the penetration depth of the target material. In microwave heating, due to the penetrative power of microwaves, heat can be generated from within the material itself as a result of the absorption of microwave energy by the material directly. The penetration depth varies among materials and among different geometries, resulting in different temperature distributions inside the bulk of the sorbent materials (Gupta and Wung, 2007). Comparing the heating of the GAC fine granules with the large granules of Org, it is clear that in the case of GAC the highest temperatures recorded were lower, namely 78°C and 143°C for heating at 70°C and 130°C respectively. This can associated to the difference in D_p values of both samples, reported in Section 5.1.2 (D_{P_{Org}} = 3.8cm while D_{P_{GAC}} = 2.2cm). This means that the microwave penetration into the Org sample is not limited on its outer layer but
continues further to the core of the bed, while in the case of GAC the energy penetrating inside the bed cylinder is reduced faster. In other words, GAC has the ability to absorb microwave power faster than Org and OrgP, transforming it to heat that then is dispersed into the rest of the material by conduction. This results in significantly less temperature difference inside the bulk of the bed for GAC compared to Org and OrgP.

![Figure 5.28: Heat map of the Org bed when heated with MSA at (a) 70°C and (b) 130°C](image)

![Figure 5.29: Heat map of the OrgP bed when heated with MSA at (a) 70°C and (b) 130°C](image)

From the above heat maps, it can be concluded that predicting temperature distribution during microwave heating is a difficult task and is certainly affected by the dimensions of the target object, since temperature gradients from 60°C to 80°C and from 110°C to 150°C were reported when heating Org and OrgP to 70°C and 130°C. Even if these materials present excellent dielectric properties as seen in Section 5.1.2, they are still heated in a non-uniform way. Prediction models of temperature distribution for different geometries and bed sizes is an important field of study that is also suggested in the future work chapter (Section 6.2)
5.3.3. Conclusions for Org and OrgP

In this section, the performance of another two carbon based sorbents for CO$_2$ capture and regeneration under TSA and MSA was evaluated. The first sample, Org, was composed by large granules, whereas the second sample, OrgP derived from grinding the Org granules to form a powdered activated carbon. The aim of this study was to evaluate the performance of those sorbents, trying to examine possible relations between the shape of the sorbent and MSA. It was shown that both samples presented excellent dielectric properties, close to the ones reported for GAC in Chapter 4. As a result, MSA managed to intensify the CO$_2$ desorption process in the cases of Org and OrgP, in terms of regeneration efficiency, kinetics and energy consumption, compared to TSA, due to their excellent dielectric nature that enables high heating rates and efficient heating of the bulk.

However, the density of the samples was different, resulting in the creation of a different shaped sorbent bed packing inside the reactor, with the OrgP being more compact shaped compared to Org. This compact packing, combined with the smaller penetration depth of OrgP, resulted in a better temperature distribution inside the bed when heating it with MSA, compared to both Org and GAC. Moreover, a comparison of the desorption kinetics showed that materials of the same nature but with lower penetration depth can present higher desorption rates, since their heating rates are higher, due to their ability of absorbing the microwaves faster (OrgP). As a result, it can be concluded that fine granules (<1mm), or powder materials are favoured by the microwave heating, since they create a more compact sorbent bed that is heated faster and more uniformly, compared to a structure that consists of large granules (>1mm) or pellets.

On the other hand, in the case of wet gas applications, large granules or pellets should be considered as better candidates, compared of powdered materials, since the moisture content seems to affect both adsorption and MW desorption processes; during adsorption, a fine powder tends to agglomerate when adding moisture to the gas mixture, prior to its CO$_2$ saturation and as a result, equilibrium time is reached faster. On the other hand, in the case of larger particles, there is no sign of agglomeration, since there is enough space for the H$_2$O to be deposited between the large granular particles inside the material bed. Furthermore, in the case of MSA regeneration, apart
from the difficulty in regenerating an agglomerated material, another reason for the better performance of the large granules is associated with the differences in permeabilities. During microwave heating of granular materials, moisture movement to the surface occurs by both liquid and vapour mass flow. For low permeability, which is the case for small particles (GAC and OrgP), vapour pressure can build up inside the fixed bed and water droplets can be expelled, affecting the CO$_2$ desorption regeneration efficiency of the sample. As a result, it is safe to point out that in the case of a wet flue gas, sorbents with large particle sizes (large granules >1mm, or pellets) may be preferred.

5.4. Silica based materials

Previous sections have focused on carbon-based materials for CO$_2$ capture evaluated using TSA and MSA systems for the desorption step. These materials, along with zeolites, present a remarkable CO$_2$ adsorption capacity at low temperature applications (Arenillas et al., 2005; Wahby et al., 2010). However, van der Vaart et al. (2000) and Siriwardane et al. (2001) reported that this dynamic adsorption potential decreases significantly for processes with low CO$_2$ partial pressures, as proven in Section 4.2.1 as well. As a result, there is a need to investigate other materials that could potentially overcome the aforementioned barriers. Sanz-Perez et al. (2013) suggested the use of hybrid organic–inorganic materials produced from incorporation of organic groups to an inorganic matrix, such as mesostructured silicas, taking advantage of their excellent structural properties (Xu et al., 2003, Harlick and Sayari, 2007). As a result, this section focuses on a different adsorbent, namely a silica based material (SBA TEPA), which was produced and characterised in Rey Juan Carlos University, Spain, being part of a scientific collaboration. Its organic nature was generated by impregnating the calcined SBA-15 with tetraethylenepentamine (TEPA, = 0.998 g/mL), by wet impregnation, producing 2 g of SBA TEPA. Due to the TEPA’s degradation at elevated temperatures (>120°C), regeneration of the material is only undertaken at mild temperatures (50-100°C). As a result, only one temperature was examined in this case, namely 70°C. The main objective of this section is to evaluate the possibility of using MSA for the regeneration of SBA TEPA, an adsorbent that has already shown excellent capture potential (Sanz-Perez et al., 2013), in order to enhance the CO$_2$ desorption process.
Table 5.4: Results obtained from TSA experiments using SBA TEPA under dry and wet feed gas conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CO$_2$ adsorbed (g)</th>
<th>CO2 adsorption per g${sorb}$ (%)</th>
<th>Regeneration efficiency (%)</th>
<th>t_{70} (mins)</th>
<th>E_{70} (kWh/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15D100CH70</td>
<td>0.12</td>
<td>8.6</td>
<td>88.24</td>
<td>7.4</td>
<td>3.32</td>
</tr>
<tr>
<td>15W100CH70</td>
<td>0.138</td>
<td>9.9</td>
<td>81.4</td>
<td>8.25</td>
<td>3.78</td>
</tr>
</tbody>
</table>

Table 5.4 summarises the results obtained from TSA experiments using SBA TEPA under dry and wet feed gas conditions. It is clear that this sorbent presents very good CO$_2$ dynamic adsorption potential, namely 8.6% and ~10% per g of sorbent for dry and wet gas, respectively, indicating that moisture had a positive effect on CO$_2$ capture. This result is in accordance with previous studies (Sanz-Perez et al., 2013), where it is stated that a rise in the sorbent’s CO$_2$ capture capacity is expected under a wet adsorption feed gas mixture compared to dry gas conditions due to the development of carbonate and bicarbonate that results in doubling the 0.5 CO$_2$/N molar ratio, reported for anhydrous conditions (formation of carbamate). After the completion of the adsorption step, desorption under TSA was evaluated. It was reported that SBA TEPA presents very high regeneration efficiency, especially when dry gas is used, namely 88% when heating to 70°C. However, it is also evident that it presents poor desorption kinetics, since a total of 7.43 and 8.25 minutes are needed for 70% of desorption to take place, resulting in a 60% more time-consuming process, compared to the carbon based sorbents. Moreover, the energy use (E_{70}) is also higher than all the other cases investigated in this research, since 3.3kWh/kg and 3.8kWh/kg are consumed during 70% regeneration for dry and wet gas conditions, respectively.

The poor performance during regeneration of SBA TEPA under TSA mode can also be seen in Figure 5.30. The desorption profile of SBA TEPA is quite different compared to the profiles of the carbon based sorbents examined in this research, since it does not follow neither the log-normal nor the Rayleigh distributions; the [CO$_2$]$_{out}$ desorption peak occurs after 100 seconds, which was to be expected according to previous results reported before, however the desorption seems to come to an abrupt end immediately after this peak. As a result, there is a quick decrease in the amount of [CO$_2$]$_{out}$, which after ~200 seconds stabilizes and returns to the tail reported for the carbon based
sorbents. Nonetheless, this tail does not reach an asymptote even after 1000 seconds, with the regeneration being continued at very low levels of $[\text{CO}_2]_{\text{out}}$.

![Figure 5.30: Time dependent CO2 outlet concentration profiles during SBA TEPA regeneration at 70°C for dry/wet gas conditions TSA](image)

As a result, the reasonable next step with regards to SBA TEPA research is to examine new pathways for its regeneration. Based on the results of MSA that were reported in this study, one interesting desorption technology that could possibly intensify the regeneration process of SBA TEPA is microwave heating. However, as reported in Section 5.1.2, SBA TEPA is a very poor dielectric material with almost zero microwave absorption potential. Nonetheless, one possible mechanism to overcome this barrier could be by mixing the sorbent material with a microwave susceptible material such as silicon carbide (SiC), as explained in Section 2.2.9. Consequently, fine powder of SiC was purchased from Sigma-Aldrich with particle size of 37-74 µm.

Three different attempts were studied, namely mixing SBA TEPA with SiC in three different weight proportions, namely 1:1, 1:2 and 1:3 and the heating rates at MSA mode with a target temperature of 70°C are reported in Figure 5.31. It is apparent that when using SBA TEPA without mixing it with SiC, the sorbent bed is not heated at all, increasing its temperature from 19°C to only 22°C after 6 minutes of MW heating. It is also clear that the more quantity of SiC used, the easier it gets to heat the bed, with the best performance reported in the case of mixing SBA TEPA with SiC at a 1:3 (w/w) ratio. However, even in this case, the bed is not heated to 70°C, which was the output temperature, but it only reaches ~60°C after 6 minutes of heating. This outcome is still
not desirable, having in mind that the carbon based sorbents were heated to 70°C after only ~1 minute of MW, as reported in Section 4.3. As a result, no MSA experiments were conducted in this case, however this could potentially be an interesting field of research for future studies.

![Figure 5.31: Heating rates process comparison of MW and CH for 70°](image)

5.5. Conclusions

In this chapter, the performance of four carbon based and one silica based sorbents for CO₂ capture and regeneration under TSA and MSA was evaluated. The aim of this chapter was to relate the performance of those sorbents with physical, textural or chemical properties. As a result, sorbents that presented different geometries (large granules, such as Org and powders such as OrgP and SBA TEPA) and different chemical functionalities (basic NH₃ modified sorbents, GKAS-N and TEPA impregnated SBA, SBA-TEPA) were chosen to be compared with the performance of GAC, used as the reference material from Chapter 4.

Firstly, the influence of basic functionalities on carbon based sorbents on the adsorption/desorption performance was examined. It was shown that the GKAS sample did not present desirable dielectric properties, which had a noticeable influence on its performance during MSA. This result was not expected since GKAS chemical analysis showed a similar composition with the other carbon based sorbents that presented excellent microwave absorption potential. One possible explanation of this result was
that GKAS possesses limited transport pores. In general, the higher the pore volume of a sorbent material, the lower its electrical conductivity, however, when microwave heating is applied this relation is more complex; as the electrical conductivity decreases, the penetration depth increases which means that microwaves can penetrate a bulk sample more efficiently. This can be attributed to the fact that there is appropriate space inside the bulk of the material which possibly favours the reflection of microwaves, thus increasing the propagation paths into the adsorbent, the extend depending on the fraction of porosity. As a result, the microwave absorption potential is proportional to the pore volume of the material, as seen for the case of GKAS-N, Org and OrgP.

As a result, it can be concluded that the pore volume of a material plays a critical role in the desorption process when using MSA. The existence of large pore volume inside a sorbent seems to enhance the MW, since it provides more space for the waves to be reflected, resulting in a more efficient microwave absorption. Moreover, the introduction of NH$_3$ to the material’s surface is another parameter that affects the MSA process, since the use of a polar element enhances the heating and consequently its desorption performance. Furthermore, GKAS-N presented higher CO$_2$ adsorption capacities, compared to the non-impregnated samples. As a result impregnation may be preferred when dealing with low CO$_2$ partial pressures in the feed gas mixture.

Looking at the influence of the shape of the sorbent on MSA and TSA, the samples Org (large granules) and OrgP (powder produced from the grinding of Org) were evaluated. It was shown that both samples presented remarkable dielectric properties, close to the ones reported for GAC in Chapter 4. However, due to the difference in shape, the density of the bed was different. This resulted in the creation of a different shaped sorbent bed packing inside the reactor, with the OrgP being more compact shaped compared to Org. This compact packing resulted in a better temperature distribution inside the bed when heating it with MSA, compared to Org bed which presented extensive void spaces between the particles. As a result, it can be concluded that fine granules (<1mm), or powder materials are favoured by the microwave heating, since they create a more compact sorbent bed that is heated faster and more uniformly, compared to a structure that consists of large granules (>1mm) or pellets.
However, it was reported that MSA managed to intensify the CO₂ desorption process in both cases of Org and OrgP as well, compared to TSA, in terms of regeneration efficiency, kinetics and energy use. Both pelletized and powder materials showed excellent dielectric character and as a result the decision between those two shapes depends only on the application and the process parameters, namely pressure drop. However the low CO₂ static as well as dynamic adsorption capacities that Org and OrgP presented, is a factor that needs to be taken into account. One interesting future study could be the modification of Org and OrgP with NH₃ functionalities (as in the case of GKAS and GKAS-N) in order to enhance their CO₂ adsorption/desorption potential as happened in the case of GKAS, however this study is beyond the aims of this research.

However, in the case of wet gas applications, large granules or pellets should be considered as better candidates, compared to powdered materials, since the moisture content seems to affect both adsorption and MW desorption processes; during adsorption, a fine powder tends to agglomerate when adding moisture to the gas mixture, prior to its CO₂ saturation resulting in faster equilibrium times. On the other hand, in the case of larger particles (>1mm), there was no sign of agglomeration, since there is enough space for the H₂O to be deposited between the large granular particles inside the sorbent bed. Moreover, in the case of MSA regeneration, apart from the difficulty in regenerating an agglomerated material, another reason for the better performance of the large granules is associated with the differences in permeabilities. During microwave heating of granular materials, moisture movement to the surface occurs by both liquid and vapour mass flow. For low permeability, which is the case for small particles (GAC and OrgP), vapour pressure can build up inside the fixed bed and water droplets can be expelled, affecting the CO₂ desorption regeneration efficiency of the sample. As a result, it is safe to conclude that in the case of a wet flue gas, sorbents with large particle sizes (large granules >1mm, or pellets) may be preferred.

Finally, an impregnated silica based powder (SBA TEPA) was also selected for evaluation of MSA and TSA processes. This material was selected because it has been reported as an excellent CO₂ sorbent that can overcome the barriers set from the post-combustion process parameters, namely low CO₂ partial pressures and elevated temperatures. This sorbent showed very good results regarding CO₂ dynamic adsorption capacities, which were also enhanced by the presence of moisture. However,
the regeneration of this material is regarded as the crucial step for this sorbent, since the CO$_2$ desorption process is time- and energy-consuming when using TSA, compared to the carbon based sorbents. Unfortunately, SBA TEPA is not an efficient microwave absorbent and the packed bed was not heated effectively even after mixing the sorbent with a ratio of 1:3 with SiC, a material that presents excellent dielectric properties. As a result, the evaluation of MSA for this sorbent was not feasible.
References

Chapter 6 – Conclusions and future work

This chapter summarises the results and conclusions derived from the experimental studies (Section 6.1). Suggestions for further work are presented in Section 6.2.

6.1. Conclusions

Carbon dioxide capture and storage (CCS) has been recognised as one of the most important technologies towards climate change mitigation, mostly due to the fact that fossil fuels are still predominant for energy production, with the International Energy Agency predicting that they will provide ~75% of the world’s primary energy in 2040. There are three main pathways for CO₂ capture, namely post-combustion, pre-combustion and oxy-fuel combustion. This research focused on post-combustion capture technology, since it offers various advantages over the other technologies, the most important being that it can be retrofitted to existing plants. However, retrofitting has a significant impact in the efficiency of the power generation process, since additional energy and costs are associated with the operation of the capture plant. CO₂ capture process represents typically about 70% of the total cost of the CCS chain, and therefore, novel processes that may result in cost reductions compared to existing commercially available technologies are gaining support. The economic evaluation of a CO₂ capture system is often driven by energy demands and in adsorption technology this energy is particularly required for the desorption step. As a result, efficient regeneration systems ensuring multiple re-use of adsorbent materials, while consuming the least possible energy, are required.

To this end, this study presented and analysed a relatively new approach for CO₂ capture, namely Microwave Swing Adsorption (MSA). The aim of this research was to intensify the CO₂ desorption process from solid materials, focusing on improving the regeneration efficiency and kinetics as well as the energy spent during this step. The above aim was based on the hypothesis that the direct absorption of energy during microwave heating by the solid adsorbent, in contrast to the indirect supply of heat by thermal conduction, may enable a much faster process using a lower process temperature that would result in less energy consumption, compared to existing technologies (conventional TSA processes).
The effects of microwave regeneration of sorbent materials can vary depending on various parameters, dividing this research in two main sections, namely process parameters (Chapter 4) and materials’ properties parameters (Chapter 5). In this regard, continuous adsorption/desorption tests were conducted in a lab scale MSA/TSA rig (described in Chapter 3), using solid materials with different properties.

At first, Chapter 4 presented the characterisation studies of GAC, a microporous granular activated carbon with no surface modifications operating as the reference material for this research, in terms of CO₂ adsorption capacity, dielectric properties, BET and elemental analysis. Moreover, the effects of feed gas flow rate and existence of moisture during the adsorption step were examined. Purge gas flow rate, desorption temperature, CO₂ concentration in the feed gas during adsorption and moisture content were the parameters examined during the regeneration step, in an attempt to reach to a conclusion regarding the optimum process parameters during desorption. Finally, re-utilisation of the specific material was also examined, reporting a comparison of the sorbent’s properties before and after 25 consecutive MSA or TSA cycles.

With regards to the adsorption step, it was concluded that as the CO₂ concentration in the feed gas increases, the total CO₂ amount adsorbed (dynamic adsorption capacity) increases as well, since, according to the Henry’s law, adsorption is proportional to the partial pressure of the adsorbed gas (in this case CO₂). Moreover, moisture content in the CO₂/N₂ binary mixture resulted in enhanced CO₂ adsorption performance; namely as a consequence of the introduction of H₂O vapors (~55°C), the total flow rate of the feed gas was increased, resulting in better adsorption performance of the GAC. Lastly, it was proven that an increase in the total flow results in increased amount of CO₂ adsorbed; a mass transfer correlation was used to prove that an increase from 1.27 m/min to 2 m/min would lead to an increase of ~65% of the mass transfer coefficient, favouring the CO₂ adsorption process.

Adsorption experiments were followed by experimental results from CO₂ desorption via MSA and TSA; initially, a comparison between MSA and TSA in terms of heating rates was produced. This comparison proved that microwaves have the potential to heat the bed at a faster pace to the desired desorption temperature, compared to conventional heating. Microwave heating mechanism is inherently different compared to conductive
(and convective) conventional TSA heating. During TSA heat losses, resistances in heat transfer due to the reactor and temperature gradients were observed, whereas during MSA microwaves are directly absorbed from the GAC, transforming electromagnetic energy to heat instantly. Furthermore, it was also shown that there is no risk of thermal runaway – an effect that may lead to failure of the desorption process damaging the rig - when using this material, since the heating rate was decreasing with increasing temperature. Subsequently, desorption studies were discussed, focusing on three parameters that helped evaluating the initial aim of the project, namely regeneration efficiency, desorption kinetics and energy usage. The analysis of the experimental data proved that the initial hypothesis was correct; MSA managed to intensify the CO₂ desorption process, leading to remarkable improvement of the parameters mentioned above.

Specifically, it was reported that MSA contributed to an increase in the regeneration efficiency of the GAC sample, compared to TSA. However, the values obtained were not as high as expected, especially in the case of wet gas conditions the regeneration efficiency did not manage to reach 80%, which is the lowest acceptable limit for the feasibility of a real scale CO₂ capture unit. This was attributed to the most important disadvantage of microwave heating, namely the non-uniformity in temperature distribution of the heated material. In fact, this non-uniformity can be influenced by various parameters, such as material properties, frequency and bed geometry and as a result, temperature distribution maps (heat maps) were generated for the GAC bed. These maps showed that even if the T_{av} was equal to the target temperature, its distribution was indeed not uniform; the higher temperatures were observed in the centre of the sample, whereas the lowest values were recorded on the surface of the bed.

Regeneration efficiency was followed by a comparison of CO₂ desorption kinetics during MSA and TSA. In order to determine the best regeneration conditions, deciding on a suitable compromise between CO₂ recovery amount and desorption kinetics, four different desorption times were initially reported, each indicating a different CO₂ recovery percentage. It was concluded that a 70% recovery is a feasible adjustment and as a result this compromise was used for the remaining of this research, keeping consistency regarding the comparison between MSA and TSA technologies. It was proven that MSA managed to reduce the time needed for 70% desorption to take place.
by as much as 45%, which, was an important factor for the economics of the CO₂ capture process, since it directly affects the energy consumption. Furthermore, the influence of the moisture content in the feed gas mixture was also discussed. It was proven that in the case of MSA, moisture deposited on the surface of the material affects the heating process in a positive way, since a faster desorption process was observed, compared to the dry conditions. This was to be expected, since H₂O, being a dipole, is a very good microwave absorber, enhancing the heating process resulting in energy savings as well.

Energy consumption, was also compared for the case of 70% CO₂ recovery and it was proven that MSA is a more energy efficient process, compared to TSA. It was reported that an average of only 30-50% of the energy consumed during TSA is needed for MSA for the same conditions and regeneration temperature, justifying the project’s initial hypothesis. Same trends appeared for every temperature investigated, however \(E_{70}^{70°C} \) was considerably lower compared to \(E_{70}^{130°C} \). As a result, taking into consideration that the regeneration efficiency and the desorption kinetics were not considerably improved by a temperature increase, it can be concluded that 70°C is an adequate desorption temperature for MSA processes.

Lastly, the possibility to use the specific material in a cyclic process was examined, taking into consideration its changes in textural characteristics, CO₂ adsorption capacity and dielectric properties after 25 consecutive adsorption/desorption cycles under MSA and TSA. BET analysis proved that pores blockage, specific surface areas and micropore volumes reduction occur to a lesser extent when using MSA, compared to TSA, after 25 cycles. However, the CO₂ adsorption capacity of the sorbent is not drastically affected by the textural changes for both processes, with the decrease being more significant when TSA is applied. The above observations lead to the conclusion that MSA has the potential to be used in a cyclic process without significant destruction of the GAC sorbent and without affecting its CO₂ adsorption potential significantly. As a result, it was concluded that MSA is a favorable technology for the case of re-utilisation of the sorbent in the CO₂ capture process.

Following the conclusions from Chapter 4, Chapter 5 focused on the study of the adsorbent parameters, highlighting the importance of raw material, adsorbent shape and
surface modifications in the economics of the desorption process. Hence, five materials were chosen for investigation - four of which were carbon based with the last one being a silica-based sorbent. The aim of this chapter was to relate the performance of those sorbents with their physical, textural and chemical properties. As a result, sorbents that presented different geometries (large granules, such as Org and powders such as OrgP and SBA TEPA) and different chemical functionalities (basic NH₃ modified sorbents, such as GKAS-N and TEPA impregnated silica sorbents, such as SBA TEPA) and have previously shown remarkable CO₂ static adsorption capacities were chosen. These materials were also tested at the MSA and TSA rigs, taking into account only the most influential parameters derived from Chapter 4; the importance of anhydrous or wet conditions as well as the desorption temperature varied, while the total flow rate and the [CO₂]in remained constant throughout.

Characterisation studies showed that the GKAS sample did not present desirable dielectric properties, which had a noticeable influence in its performance during MSA. A possible explanation may be that this sorbent presented a completely different porosity network compared to the other carbon based sorbents; according to numerous modelling theories (Maxwell-Wagner-Sillars, Bruggeman-Hanai and Looyenga), porosity plays an important role on the dielectric constant of a material and depends on the size, shape and distribution of pores as well as on the volume fraction of air. This factor influenced the MSA regeneration performance of GKAS and as a result the desorption profiles generated from MSA and TSA were almost identical, leading to similar desorption kinetic values. However, enhanced regeneration efficiency and reduced energy consumption during MSA compared to TSA, were to be observed. On the other hand, the GKAS-N sample (generated from modifying the surface of GKAS using NH₃) performed better as a CO₂ sorbent compared to GKAS, in terms of CO₂ adsorption potential, regeneration efficiency, desorption kinetics and energy efficiency. This performance was even more enhanced when using MSA instead of TSA, taking advantage of its excellent dielectric nature.

As a result, the existence of large pore volume inside a sorbent seems to enhance microwave heating, while the introduction of polar NH₃ to the material’s surface is another parameter that affects positively the MSA process.
The next parameter that was investigated was the influence of the shape of the sorbent on the performance of MSA and TSA. As such, the samples Org (large granules) and OrgP (powder, grinded Org) were evaluated. Characterisation showed that both samples presented encouraging dielectric properties as well as microwave absorption potential. However, due to the differences in shape, the density of the bed varied, resulting in the creation of a different shaped bed packing inside the reactor, with the OrgP being more compact-shaped compared to Org. This compact packing resulted in a better temperature distribution inside the bed when heating it with MSA, compared to both Org (large granules) and GAC (fine granules). As a result, it can be concluded that materials with small particle size (powder form), are favoured by the microwave heating, since they create a more compact sorbent bed that is heated faster and more uniformly, compared to a structure that consists of large granules (>1mm) or pellets.

On the other hand, in the case of wet gas applications, large granules or pellets (Org) should be considered as better candidates, compared to powdered materials (OrgP), since the moisture content seems to affect both adsorption and MSA processes; during adsorption, a fine powder tends to agglomerate when adding moisture to the gas mixture, prior to its CO₂ saturation resulting in faster equilibrium times. On the other hand, in the case of larger particles (>1mm), there was no sign of agglomeration, since there is enough space for the H₂O to be deposited between the large granular particles inside the sorbent bed. Moreover, in the case of MSA regeneration, apart from the difficulty in regenerating an agglomerated material, another reason for the better performance of the large granules is associated with the differences in permeabilities. During microwave heating of granular materials, moisture movement to the surface occurs by both liquid and vapour mass flow. For low permeability, which is the case for small particles (GAC and OrgP), vapour pressure can build up inside the fixed bed and water droplets can be expelled, affecting the CO₂ desorption regeneration efficiency of the sample. As a result, it is safe to conclude that in the case of a wet flue gas, sorbents with large particle sizes (large granules >1mm, or pellets) may be preferred.

However, it was reported that MSA managed to intensify the CO₂ desorption process in both cases (Org and OrgP) compared to TSA in terms of regeneration efficiency, kinetics and energy use, since both materials showed excellent dielectric character. However the low CO₂ static as well as dynamic adsorption capacities that Org and OrgP
presented, is a factor that needs to be studied further. One interesting future study could be the modification of Org and OrgP with NH\textsubscript{3} functionalities (as in the case of GKAS and GKAS-N) in order to enhance their CO\textsubscript{2} adsorption/desorption potential, however this study is beyond the aims of this research.

The last material that was examined for MSA and TSA processes was an impregnated lithium based silica in powder form (SBA TEPA). The selection of this material was based on previous reports describing it as an excellent CO\textsubscript{2} sorbent that can overcome the barriers set from the post-combustion process parameters, namely low CO\textsubscript{2} partial pressures and elevated temperatures. This sorbent showed very good results regarding CO\textsubscript{2} dynamic adsorption capacities, which were also enhanced by the presence of moisture, being in accordance with previous evidence. However, the regeneration of this material is regarded as the decisive step for the use of this sorbent, since the CO\textsubscript{2} desorption process is time- and energy-consuming when using TSA, compared to the carbon based sorbents. Unfortunately, SBA TEPA is not an efficient microwave absorbent either and therefore the packed bed was not heated effectively even after mixing the sorbent with a ratio of 1:3 with SiC, a material that presents excellent dielectric properties. As a result, the evaluation of MSA for this sorbent was not feasible.

Taking into consideration the above discussion, it can be concluded that MSA has the potential to replace the TSA technology in the CO\textsubscript{2} capture process for every case studied in this research. MSA managed to intensify the performance of CO\textsubscript{2} desorption, in terms of sorbent’s regeneration efficiency, desorption kinetics and energy consumption. Moreover, it was shown that consecutive MSA cycles do not destroy the sample, allowing the sorbent to last longer compared to TSA. Furthermore, lower desorption temperatures (70°C) can be applied when using MSA, having a significant effect on the economics of the process. Additionally, in order to increase the microwave heating efficiency, materials with increased porosity networks, leading to higher dielectric properties and microwave absorption capacities should be chosen. Lastly, in the presence of moisture in the exhaust gas, materials with larger size (pellets or large granules) need to be selected for an MSA process.
6.2. Recommendations for future work

As discussed above, the concept of MSA is not new, since microwave heating has been used in the past to regenerate various types of adsorbents, including silica gel, zeolites, activated carbons and polymeric adsorbents, mostly focusing on VOC removal or moisture drying. However, the use of microwave energy in the CO$_2$ capture technology to replace the conventional TSA and/or PSA processes is a quite unique approach and as a result there is a lot of research that needs to be done prior to commercialisation of this technology.

At first, one important point of interest for future research may be the properties of the sorbent material. This research focused only on basic surface modifications (NH$_3$ and TEPA), however, it would be interesting to investigate other impregnation pathways as well. Moreover, a deeper analysis on the dielectric properties of the materials and how they can be modified may optimise the microwave heating process further. As discussed in Chapter 5, it was evident that there is a connection between porosity and dielectric properties; various modelling theories have been introduced as an attempt to predict this correlation, including the Maxwell-Wagner-Sillars, Bruggeman-Hanai and Looyenga treatments. However, there is no model theory in the field of CO$_2$ separation using porous materials that are then regenerated via microwave heating. Furthermore, the possibility of introduction of a microwave susceptible material (such as SiC) inside a bed packed with a microwave reflective material may also be studied further.

Moreover, from an engineering point of view, it is well established that there are specific steps in order to move from the conceptual design to commercialisation, including research (lab scale), development, demonstration (pilot plant) and finally mature commercial technology. There are various reasons that still prevent the scalability of microwave technology to industrial applications; these include the effect of scale parameters (surface to volume ratio and heat loss effects), costly equipment, non-effective temperature/power and pressure control systems, changes in microwave absorption potential of the target object when scaling-up, narrow penetration depth of the radiation into the target object, non-precise prediction of process energy consumption from lab-scale microwave experiments and difficulties in forecasting the efficiency of the magnetron at high powers. As a result, there is a need for custom design for every process, which is also considerably different from the lab-scale
equipment (where typically a general-use multimode cavity is used) and the reproducibility of the results is difficult to be achieved taking into account only the lab-scale experiments (Tinga and Sutton, 1993). Consequently, a research project simulating large scale MSA plants, combined with a full techno-economic assessment of the proposed technology, may also be of interest.

Lately, there has been a lot of interest in simulating microwave heating applications inside multi-mode cavities for microwave heating applications using softwares such as COMSOL and ANSYS (Salvi et al., 2010, Santos et al., 2010, Pitchai, 2011). Computational studies can facilitate an initial prediction of temperature distributions for different geometries and reactor columns, as this is an important field of study that directly affects the efficient performance of the MSA process. Moreover, correlations between microwave heating performance and material textural characteristics may also need to be analytically studied. Furthermore, simulations may provide evidence of whether a process could be reproducible in a large scale system as well (Rosa et al., 2012). Moreover, process simulation tools, such as ASPEN HYSYS or ASPEN Plus, may also contribute to the prediction of the performance of MSA in a larger scale from a process perspective. These simulations, combined with experimental data that were presented in this thesis, may support scalability predictions of the MSA process in the CCS technology.
References

Appendix 1 – Dielectric properties

Method: Samples were placed in standard Eppendorf tubes and placed on-axis in a 2.5 GHz TM_{010} cylindrical cavity. Three samples were prepared for each material, each of nominal volume of approximately 200 µl. The error bars shown in the following graphs are those obtained by the standard errors of the three measurements. The silica based samples are much lower loss than the carbon samples and so are shown plotted on separate graphs to bring out the differences between them.

![Graph A.1](image1)

Figure A.1: Contribution to the resonant bandwidth (in MHz) for all 18 samples

![Graph A.2](image2)

Figure A.2: Frequency shift (in MHz) for all of the samples
Table A.1: Average masses of the samples of each material

<table>
<thead>
<tr>
<th>Material</th>
<th>Average Mass (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBA TEPA</td>
<td>64</td>
</tr>
<tr>
<td>GAC</td>
<td>119</td>
</tr>
<tr>
<td>GAC MW</td>
<td>125</td>
</tr>
<tr>
<td>GKAS MW</td>
<td>99</td>
</tr>
<tr>
<td>GKAS-N MW</td>
<td>109</td>
</tr>
<tr>
<td>GAC CH</td>
<td>115</td>
</tr>
<tr>
<td>GKAS CH</td>
<td>102</td>
</tr>
<tr>
<td>GKAS-N CH</td>
<td>105</td>
</tr>
<tr>
<td>Org</td>
<td>149</td>
</tr>
<tr>
<td>OrgP</td>
<td>149</td>
</tr>
</tbody>
</table>

Notes:

(i) 3 samples of each material prepared, standard error ± 2 mg

(ii) Volume of sample approximately constant, 200 µl.