The Development of Pd(II)-Catalysed Oxidative Heck Reactions and C-H Functionalisations

Sarah Elizabeth Walker

Submitted for the degree of Doctor of Philosophy

Heriot-Watt University

Institute of Chemical Sciences

February 2015

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information.
ABSTRACT

This thesis outlines the work undertaken on three projects focusing on the development of Pd(II)-catalysed oxidative Heck reactions and C-H functionalisations.

Chapter one reviews literature related to palladium catalysis, specifically the oxidative Heck reaction, its development and the most recent advances in this area.

Chapter two describes methodology developed to switch the outcome of the ligand- and base-free Pd(II)-catalysed reaction between cyclic enones and boronic acids from conjugate addition to oxidative Heck product, by simply changing the solvent. Additionally, factors which favour one reaction over the other are also discussed.

Chapter three outlines the successful development of a palladium-catalysed direct C-H functionalisation of benzoquinone. Both mono and difunctionalisations can be carried out selectively in excellent yields and a wide variety of functional groups are tolerated. Regioselectivity of the difunctionalisation reactions appears to be determined by the electronic properties of the boronic acid used. A successful one-pot procedure for the heterodifunctionalisation of benzoquinone is also outlined.

Chapter four details the development of oxidative Heck reactions on challenging 2,2-disubstituted cyclopentene-1,3-dione substrates with aryl boronic acids. An efficient enantioselective protocol provides a facile way to desymmetrise the all carbon quaternary stereocentre present in the cyclopentenedione substrates and includes the synthesis of (+)-preussidone.
ACKNOWLEDGEMENTS

Firstly I would like to thank Dr Ai-Lan Lee for the opportunity to work in the Lee Group and for her supervision during my PhD. Her guidance and support have been invaluable.

I would also like to thank members of the Lee Group past and present for making the lab an enjoyable place to work and for their support and friendship. Particular thanks go to Graeme Barker and Stacey Webster for proofreading, advice and encouragement, particularly during the final few months of my PhD work. Additionally, I would like to thank all those with whom I have collaborated on projects for their hard work and perseverance.

I would like to extend my thanks to all the staff at Heriot-Watt who have helped me during the course of my PhD particularly Dr Dave Ellis for providing an excellent NMR service and Dr Georgina Rosair for X-ray crystallography.

I am grateful to EPSRC for funding my PhD and to the Heriot-Watt Annual Fund for financial assistance to attend the 15th Tetrahedron Symposium in 2014. Additionally, I would like to acknowledge the RSC for the opportunity to attend the RSC Organic Division Poster Symposium which was also an excellent opportunity to present my work.

Finally, I would like thank my parents and Pete for their constant support and encouragement, not only during the last 3 ½ years but through many years prior to my PhD. I would not be submitting this thesis without their support and encouragement to challenge myself, persevere and make the most of every opportunity that has come my way.
ACADEMIC REGISTRY

Research Thesis Submission

Name:
Sarah Elizabeth Walker

School/PGI:
Institute of Chemical Sciences, School of Engineering and Physical Sciences

Version: (i.e. First, Resubmission, Final)
Final

Degree Sought (Award and Subject area)
Doctor of Philosophy (Chemistry)

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic versions submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian may require
5) I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of Candidate:
Date:

Submission

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in capitals):

1.1 Method of Submission
(Handed in to SSC; posted through internal/external mail):

1.2 E-thesis Submitted (mandatory for final theses)

Signature:
Date:
TABLE OF CONTENTS

Chapter 1: Introduction ... 1
1.1 Palladium catalysis ... 2
1.2 The oxidative Heck reaction .. 3
 1.2.1 Introduction ... 3
 1.2.2 Development of the oxidative Heck reaction .. 6
 1.2.3 Use of oxidants in the oxidative Heck reaction ... 7
 1.2.4 Ligand-based oxidative Heck reactions ... 10
 1.2.5 Use of base in the oxidative Heck reaction .. 14
 1.2.6 Anaerobic oxidative Heck reactions .. 17
 1.2.7 Oxidative Heck reactions on cyclic systems ... 19
 1.2.8 Asymmetric oxidative Heck reactions ... 24
1.3 Conclusions ... 30
1.4 References ... 31

Chapter 2: Ligand- and Base-Free Pd(II)-Catalysed Controlled Switching Between Oxidative Heck and Conjugate Addition Reactions ... 36
Chapter 2: Introduction ... 37
2.1 Conjugate addition versus Heck-type coupling ... 37
 2.1.1 Switching between conjugate addition and Heck-type coupling in rhodium-
 catalysed reactions with acyclic substrates ... 38
 2.1.2 Switching between conjugate addition and Heck-type coupling in rhodium-
 catalysed reactions with cyclic substrates .. 43
 2.1.3 Switching between conjugate addition and Heck coupling in palladium(0)-
 catalysed reactions ... 45
 2.1.4 Switching between conjugate addition and oxidative Heck coupling in palladium(II)-
 catalysed reactions .. 49
 2.1.5 Conclusion ... 50
2.2 Project aim ... 51
2.3 Previous work in the Lee group ... 53
2.4 Conjugate addition reaction .. 55
 2.4.1 Optimisation of reaction conditions .. 55
 2.4.2 Conjugate addition reaction – boroxine screen ... 57
 2.4.3 Conjugate addition reaction – substrate screen ... 59
 2.4.4 Conjugate addition alkene substrate screen optimisation ... 60
3.8 Mechanism ... 153
3.9 Conclusions .. 155
3.10 Future work ... 156
3.11 Experimental section .. 158
3.12 References ... 186

Chapter 4: Palladium(II)-Catalysed Asymmetric Oxidative Heck Reactions on
Cyclopentene-1,3-diones .. 189

Chapter 4: Introduction .. 190
4.1 Background .. 190
 4.1.1 Current methods to functionalise 2,2-disubstituted cyclopentene-1,3-diones.. 191
 4.1.2 Conclusion ... 195
4.2 Project aim ... 196
4.3 Development of a racemic oxidative Heck reaction on 2,2-disubstituted
cyclopentene-1,3-diones ... 198
 4.3.1 Substrate synthesis .. 198
 4.3.2 Oxidative Heck reaction – substrate screen... 202
 4.3.3 Oxidative Heck reaction – boronic acid screen... 205
4.4 Oxidative Heck reaction – developing the enantioselective protocol 209
 4.4.1 Enantioselective oxidative Heck reaction – initial ligand screen 211
 4.4.2 Enantioselective oxidative Heck reaction – further optimisation 212
 4.4.3 Enantioselective oxidative Heck reaction – substrate screen 227
 4.4.4 Enantioselective oxidative Heck reaction – boroxine screen 231
4.5 Synthesis of preussidone .. 237
4.6 Reaction mechanism and inducing enantioselectivity 243
4.7 Conclusions ... 245
4.8 Experimental section ... 247
4.9 References ... 310
Appendix – publications .. 313
ABBREVIATIONS

acac acetylacetonate
APCI atmospheric-pressure chemical ionisation
ar aryl group
(R)-BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
(R)-MeOBIPHEP (R)-(+) -2,2'-bis(diphenylphosphino) -6,6'-dimethoxy-1,1' -biphenyl
bipy 2,2'-bipyridine
Bn benzyl
Boc tert-butyloxy carbonyl
Box bis(oxazoline)
BQ 1,4-benzoquinone
br broad
°C degrees Celsius
Cbz carboxy benzyl
cod 1,5-cyclooctadiene
conv. conversion
d doublet
dba dibenzylidene acetone
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DCBQ 2,6-dichloro-1,4-benzoquinone
DCE 1,2-dichloroethane
DFT density functional theory
DMA N,N-dimethyl acetamide
DMF N,N-dimethyl formamide
dmphen 2,9-dimethyl-1,10-phenanthroline
DMSO dimethyl sulfoxide
dppe 1,2-bis(diphenylphosphino) ethane
dppp 1,3-bis(diphenylphosphino) propane
dr diastereomeric ratio
EDG electron donating group
ee enantiomeric excess
er enantiomeric ratio
equiv. equivalent
Et ethyl
EtOAc ethyl acetate
EWG electron-withdrawing group
h hours
Hz Hertz
HetAr heteroaromatic
HRMS high resolution mass spectrometry
i^Pr 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene
IR infra-red
J coupling constant
m multiplet
M molar
Me methyl
Mes mesityl (2,4,6-trimethylphenyl)
MHz Megahertz
min minutes
mM millimolar
mmol millimole
M. p. melting point
NHC N-heterocyclic carbene
NMM N-methylmorpholine
NMP N-methyl-2-pyrrolidone
NMR nuclear magnetic resonance
NOESY nuclear Overhauser effect spectroscopy
NSI nano-electrospray ionization
NY no yield
ND not determined
OAc acetate
OTf trifluoromethanesulfonate
OTs p-toluenesulfonate
Ph phenyl
phen 1,10-phenanthroline
PMB para-methoxybenzyl
ppm parts per million
Pr propyl
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyOx</td>
<td>pyridinooxazoline</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>quant.</td>
<td>quantitative</td>
</tr>
<tr>
<td>R</td>
<td>alkyl/aryl group</td>
</tr>
<tr>
<td>R_f</td>
<td>retention factor</td>
</tr>
<tr>
<td>RMM</td>
<td>relative molecular mass</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>(S,S)-chiraphos</td>
<td>(2S,3S)(−)-Bis(diphenylphosphino)butane</td>
</tr>
<tr>
<td>str</td>
<td>strong</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>TBAI</td>
<td>tetrabutylammonium iodide</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>temp.</td>
<td>temperature</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TfOH</td>
<td>trifluoromethanesulfonic acid (triflic acid)</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>v str</td>
<td>very strong</td>
</tr>
<tr>
<td>w</td>
<td>weak</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction
1.1 Palladium catalysis

The synthesis of C-C bonds has long been a challenge for organic chemists. In the latter part of the 20th century palladium catalysis emerged as an important route to the formation of such bonds.1-3 Since then, palladium has become one of the most important, versatile and widely-used transition metals in organic synthesis.1

The importance of this element, first isolated in 1802 by Wollaston,4 and its wide application in synthetic chemistry was reflected in the awarding of the 2010 Nobel Prize to Richard Heck, Ei-ichi Negishi and Akira Suzuki for their work on palladium(0)-catalysed cross-coupling reactions.5 The advances made by their work have revolutionised the way in which molecules are constructed and have provided methods for accessing challenging C-C bond forming processes.

Since the early work by Heck,6 Negishi7,8 and Suzuki,9 the use of palladium(0) as a catalyst has grown exponentially and a multitude of C-C bond forming reactions are available to organic chemists. Following on from the aforementioned work, additional coupling reactions pioneered by Stille,10 Sonogashira11 and Hiyama12 amongst others have come to the fore and within the last decade, the number of publications and patents featuring named metal-catalysed cross-coupling reactions has grown exponentially.5,13

In the early 1970s both Heck14 and Mizoroki15 published work independently on the reaction of an unsaturated halide with an alkene in the presence of base and a palladium(0) catalyst. This would later be known as the Mizoroki-Heck reaction. It differs from the other aforementioned Pd(0)-catalysed cross-coupling reactions in that a halide is coupled to an alkene without the need for prefunctionalisation of the latter substrate which is obviously advantageous when compared with other cross-coupling methods.

Following the seminal work of Mizoroki and Heck, further developments of the Heck reaction took place over subsequent decades including the discovery of the Heck-Matsuda reaction whereby aryl diazonium salts rather than an aryl halide are employed as a coupling partner.16,17 Numerous developments of the Heck reaction have taken place in the decades since the initial work was reported.18
1.2 The oxidative Heck reaction

1.2.1 Introduction

Prior to work published on the coupling of an aryl or vinyl halide to an alkene, Heck demonstrated that oxidative coupling of methyl acrylate 1 and phenyl mercuric chloride 2 could be achieved at room temperature using Li$_2$[PdCl$_4$] as a catalyst and copper(II) chloride as oxidant to regenerate palladium(II) from palladium(0) (Scheme 1). Heck published seven consecutive publications relating to this work but due to the toxicity of organomercurials, alternative methodologies were sought and hence work focussed on the use of aryl halides as coupling partners which became known as the Mizoroki-Heck reaction.

\[
\begin{align*}
\text{CO}_2\text{Me} & \quad \text{PhHgCl} \\
1 & \quad 2 \\
\text{Li}_2[\text{PdCl}_4] (0.1-1.0 \text{ M}) & \quad \text{CuCl}_2 \\
\text{MeOH, rt, 2 h} & \quad 57\%
\end{align*}
\]

Scheme 1: Oxidative coupling of phenylmercuric chloride and methyl acrylate

In 1975, in a paper reporting developments in the Pd(0)-catalysed Heck reaction to synthesise conjugated dienes 5, Dieck and Heck also reported the first Pd(II)-mediated oxidative Heck reaction using an organoborane substrate 4a and stoichiometric amounts of palladium(II) acetate (Scheme 2).

\[
\begin{align*}
\text{B(OH)}_2 & \quad \text{Pd(OAc)}_2 (100 \text{ mol}) \\
n\text{Bu} & \quad n\text{Bu} \\
4a & \quad \text{Bu} \quad \text{PdOAc} \\
0 \degree \text{C} & \quad \text{CO}_2\text{Me} \\
1 & \quad 5 \\
\text{nBu} & \quad \text{nBu} & \quad \text{CO}_2\text{Me} + \text{HOAc} + \text{Pd}
\end{align*}
\]

Scheme 2: First Pd(II)-mediated oxidative Heck reaction with organoborane reagents

Despite this early work indicating the potential of using Pd(II) rather than Pd(0) for cross-coupling reactions, it was not until a catalytic protocol was developed in 1994 by Cho and Uemura that the oxidative Heck reaction received more attention and became a growing tool for organic synthesis. Formally, the oxidative Heck reaction couples an alkene with an organoboron compound using a Pd(II) catalyst (Scheme 3, Equation 2).
An additional related Pd(II)-coupling is the Fujiwara-Moritani reaction. First reported in 1967 the reaction couples an arene with an alkene by way of CH activation (Scheme 3, Equation 3). This has also gained prevalence in recent years.

\[\text{Mizoroki-Heck: } \text{R}_1^1\cdot\text{X} + \text{R}_2 \xrightarrow{\text{cat. Pd(0)}} \text{R}_1^1\cdot\text{R}_2 \quad (1) \]

\[\text{Oxidative Heck: } \text{R}_1^1\cdot\text{M} + \text{R}_2 \xrightarrow{\text{cat. Pd(II)}; \text{oxidant}} \text{R}_1^1\cdot\text{R}_2 \quad (2) \]

\[\text{Fujiwara-Moritani: } \text{R}_1^1\cdot\text{H} + \text{R}_2 \xrightarrow{\text{cat. Pd(II)}; \text{oxidant}} \text{R}_1^1\cdot\text{R}_2 \quad (3) \]

\[\text{M} = \text{B(OH)}_2 \text{ or B(OR)}_2 \]

\[\text{X} = \text{I, Br, OTf} \]

Scheme 3: Differences between the Mizoroki-Heck, Fujiwara-Moritani and oxidative Heck reactions.

The oxidative Heck reaction differs from the Mizoroki-Heck reaction in the first step of the catalytic cycle (Scheme 4). Where oxidative addition of the aryl halide or triflate onto Pd(0) begins the Mizoroki-Heck cycle, the oxidative Heck mechanism commences with transmetallation of the aryl boron reagent onto Pd(II) to form intermediate II. Migratory insertion of the alkene substrate onto the active palladium species then occurs and \(\beta\)-hydride elimination of III occurs to form the product and palladium species IV. Reductive elimination of HX from IV then occurs, normally facilitated by a base to generate Pd(0) species V which is oxidised to reform the active Pd(II) catalyst I.
Despite being less developed, the oxidative Heck reaction has a number of advantages over the Mizoroki-Heck coupling. Using readily available organoboron reagents33 rather than aryl halides or triflates avoids the formation of stoichiometric quantities of halide salts used in the Mizoroki-Heck reaction. Additionally, oxidative Heck reactions often use mild reaction conditions, are tolerant of air and moisture and have proved to be capable of coupling challenging substrates such as cyclic enones and highly substituted alkenes.$^{29, 34-38}$ Given these advantages, the oxidative Heck reaction has become an attractive alternative option for cross-coupling compared to more established methods and has been the topic of several reviews in recent years.$^{29, 39, 40}$
1.2.2 Development of the oxidative Heck reaction

Since the initial discovery of the oxidative Heck reaction, a number of coupling partners have been employed as alternatives to organoboron compounds. Both Jung and Mori have used arylstannanes in oxidative Heck reactions. Additionally, organophosphonic acids, organoantimony, organobismuth and organosilicon reagents, amongst others have successfully been used as coupling reagents. However, organoboron reagents have become the organometallic reagent of choice for the oxidative Heck reaction due to their low toxicity, stability and availability. In recent years, considerable progress has been made in developing the oxidative Heck reaction, notably Larhed, Jung and Sigman have reported pioneering work in this area.

As previously mentioned, the first catalytic oxidative Heck reaction using arylboron compounds as coupling partners was reported by Uemura and Cho in 1994. A variety of mono- and disubstituted alkenes were screened, along with various aryl boronic acids (Scheme 5). Additionally, the investigation extended to alkenylboronic acids and sodium tetraphenyl borate as coupling reagents. Moderate conditions were used (25 °C, 20 h) using sodium acetate as a base and acetic acid as a solvent. Yields of up to 99% were obtained and the reaction proceeded with excellent E-selectivity.

\[
\text{ArB(OH)}_2 + \text{Pd(OMe)}_2 (5 \text{ mol}) \xrightarrow{\text{NaOAc (4 equiv.)}} \text{Ar}^+ \xrightarrow{\text{AcOH, rt}} \text{Ar}^{\text{R1}} \xrightarrow{\text{R2}} \text{R2}
\]

Scheme 5: First reported oxidative Heck reaction using arylboron compounds

In contrast to mechanisms proposed in subsequent papers published on the oxidative Heck reaction (mechanism illustrated in Scheme 4), Uemura and co-workers suggested the reaction is Pd(0) catalysed. Reduction of Pd(II) to Pd(0) is followed by a Mizoroki-Heck type catalytic cycle with oxidative addition of the boronic acid to the Pd(0) species. However, mechanistic studies were not carried out to confirm this hypothesis and later publications on reactions between arylboronic acids and alkenes suggest this is the first example of an oxidative Heck reaction.
In 2001, Mori and co-workers reported an oxidative Heck reaction of alkenes and organoboron reagents catalysed by Pd(II) (see Scheme 4 for catalytic cycle) as opposed to the Pd(0) pathway proposed by Uemura. Copper(II) acetate was used as a reoxidant and N,N-dimethylformamide as the solvent. A range of organoboron reagents (boronic acids 6, tetrphenylborate 9 and pinacol esters 10) and alkenes 11 were screened to give moderate to good yields of the desired coupling products 12 and good E-selectivity (Scheme 6).

Scheme 6: Pd(II)-catalysed oxidative Heck coupling of alkenes with arylboron compounds and Cu(OAc)_2 as an oxidant

Since these initial reports on the oxidative Heck reaction, various developments have been published which will be discussed in more detail in the following parts of this review.

1.2.3 Use of oxidants in the oxidative Heck reaction

A range of oxidants have been reported to be effective in the oxidative Heck reaction. Copper(II) salts and benzoquinone were perhaps the most widely used in earlier work, although silver acetate and nitroxides have also been used. Recent developments of the oxidative Heck reaction have resulted in the use of greener oxidants, avoiding producing metal salts or toxic hydroquinone as side products. Molecular oxygen and even air have been found to be effective for reoxidation of Pd(0) to Pd(II) in oxidative Heck reactions in recent studies.

In 2003, Jung and co-workers first reported the use of molecular oxygen as an oxidant in the oxidative Heck coupling of organoboron reagents with alkenes and demonstrated that oxygen would promote the palladium(II) catalytic pathway and suppress competing
Pd(0) catalysis (Scheme 7). Prior to this, Jung and co-workers had successfully used oxygen as the oxidant in the Pd(II) catalysed reaction between olefins and arylstannanes. Optimisation of reaction conditions was carried out using butyl acrylate and phenylboronic acid. A number of different mono-substituted olefin substrates 11 (and two disubstituted examples) were screened (electron-donating and electron-withdrawing) along with various heterocyclic and aryl boronic acids 6 and esters (10 and 13). Good to excellent yields of the coupling product 12 were obtained with high E-selectivity. Arylboronic esters 10 and 13 were found to perform well and less homocoupling of the arylboron compounds and phenol formation was observed compared to when boronic acids 6 were used.

![Scheme 7: First oxygen promoted oxidative Heck coupling of organoboron reagents and alkenes](image)

Jung expanded his work in this area by also investigating the oxidative Heck reaction of alkenes with alkenylboron compounds, again with molecular oxygen as an oxidant (Scheme 8). A variety of alkenylboron compounds and mono- and disubstituted alkene substrates 11 were tolerated to afford E,E-dienes 14 in high yields and selectivities. The geometry of the alkenylboron compounds was also retained during the catalytic process.
Scheme 8: Oxygen promoted oxidative Heck coupling of alkenyl boron compounds with alkenes

In 2006, Larhed and co-workers reported a successful open-air catalytic oxidative Heck reaction (Scheme 9). Using palladium(II) acetate (2 mol%) and 2,9-dimethyl-1,10-phenanthroline 15 as the ligand, arylation of electron-rich and deficient olefins 11 was carried out at room temperature, using NMM (N-methylmorpholine) and under open air without the need for an additional oxidant.

Scheme 9: Open air oxidative Heck reaction of arylboronic acids and alkenes using dmphen as a ligand

A wide range of aryl and heterocyclic boronic acids 6 were tolerated in addition to alkenes 11 bearing ester, ether, amide and phenyl substituents. The reactions were carried out at both room temperature and 80 °C and yields were not temperature dependent for the majority of substrates. However, reaction times were considerably shorter at elevated temperature.
Since these initial reports, molecular oxygen has been a common oxidant in oxidative Heck reactions. Stahl and workers have published a number of reports examining the mechanistic aspects of oxidation in palladium catalysed reactions specifically focussing on benzoquinone and molecular oxygen.[59, 67, 70] Mechanistic studies indicated that the oxygenation and alkene-substitution reactions with Pd(0) have distinct similarities – the mechanism proposed by Stahl and co-workers for reactions between Pd(0) and benzoquinone, or dioxygen is shown in Scheme 10.[59]

![Scheme 10: Oxidation of palladium(0) by molecular oxygen or benzoquinone[59]

1.2.4 Ligand-based oxidative Heck reactions

The presence of ligands is necessary in many examples of the oxidative Heck reaction since in the absence of ligands, palladium(0) species aggregate to unreactive palladium clusters and thus retard the coupling reaction.[34] Ligands not only stabilise the catalyst and thus prevent the aggregation of palladium(0), but also increase the regio- and stereoselectivity of the reaction. Bidentate nitrogen ligands are the most versatile ligands for these reactions given their ability to facilitate the reoxidation of palladium(0) to palladium(II) by molecular oxygen, in addition to their low cost and high air- and moisture-stability in comparison to phosphine ligands.[29] Despite this, both nitrogen- and phosphine-based ligands have been used in the oxidative Heck reaction in recent years.

Larhed and co-workers were the first to report the use of a ligand to stabilise the catalyst in an oxidative Heck vinylation (Scheme 11).[53] It was found that using a palladium(II)
acetate catalyst, 2,9-dimethyl-1,10-phenanthroline ligand 15 (dmphen) and N-methylmorpholine as a base in the presence of oxygen in acetonitrile, coupling of various arylboronic acids 6 with electron-poor alkenes 11 could be achieved. Using dmphen as a ligand enabled the catalyst loading to be reduced from 10 mol% to 1 mol%. Good diastereo- and regioselectivity was observed with a number of alkenes and a diverse range of boronic acids were used with nitro, keto, bromo and iodo functionalities. Yields were excellent for electron-rich boronic acids and moderate to good when meta-substituted electron-poor boronic acids were used. However, para-substituted electron-poor arylboronic acids were inactive.

Scheme 11: Pd(II)-catalysed coupling of arylboronic acids and electron-poor alkenes using dmphen as a ligand

In 2004, Oh and co-workers developed a tetrazole ligand 17 for use in Heck reactions (Scheme 12). During the course of their investigations, aryl boronic acids rather than aryl halides were also investigated. The ligand was also found to be compatible with the relatively harsh oxidative Heck conditions used for the reaction (110 °C, base, DMF, 12 h) and moderate to good yields (16, up to 75%) were obtained with a range of aryl boronic acids 6 and methyl acrylate 1 as the substrate, with Mn(OAc)₂ as an additive.

Scheme 12: Oxidative Heck reaction using a tetrazole ligand
In a study by Jung and co-workers primarily focussing on developing a base-free oxidative Heck reaction (which is discussed in section 1.2.5, Scheme 17), using a ligand was found to help to stabilise the catalyst. Various bidentate phosphorus- and nitrogen-ligands were screened and although all of the ligands prevented catalyst precipitation, not all of the ligands gave good yields. For instance, using 2,2’-bipyridine gave good yields whereas 4,4’-bipyridine did not yield product. Pd-nitrogen chelating length, coordination angle and steric environment were all found to affect the reaction outcome.34

In 2006, White and co-workers reported a one-pot allylic C-H oxidation followed by a vinylic C-H arylation of α-olefins 18 (Scheme 13).72 The reaction was carried out using a Pd(II)/sulfoxide catalyst 19 which was found to be an effective ligand in earlier work carried out by the group which focussed solely on allylic C-H oxidation.73

![Scheme 13: Sequential allylic C-H oxidation/vinylic C-H arylation using a Pd(II)/sulfoxide catalyst](image)

This methodology was taken further and the first oxidative Heck step in the reaction was examined in more detail in a later publication.74 Using the aforementioned Pd(II)/sulfoxide catalyst 19, a chelate controlled intermolecular oxidative Heck reaction was carried out on a range of olefin substrates 21 with oxygen and nitrogen functionalities (Scheme 14). Selectivities were excellent for substrates where a 5 or 6-membered chelate ring could be formed with the catalyst, yielding internal alkene product 22 selectively. A distal carbonyl functionality that would require a 7-membered chelate ring exhibited similar selectivity to unsubstituted olefins and also forms 22 predominantly although selectivity dropped. A switch in selectivity was observed when β,γ-unsaturated esters were reacted with strongly electron-deficient aryl boronic acids. This provided a facile route to the corresponding α,β-unsaturated carbonyl compounds (23).
Despite the preference for nitrogen ligands in oxidative Heck reactions due to the propensity for phosphine ligands to oxidise, oxidative Heck reactions using phosphine ligands have been reported. In 2009, Larhed and co-workers reported the synthesis of styrenes via a vinylation of arylboronic acids and aryltrifluoroborates using a Pd(II)/dpp catalyst (Scheme 15). Using vinyl acetate as the substrate, no base or external oxidant was found to be necessary since β-acetate elimination during the catalytic cycle regenerated the active Pd(II) species. A number of nitrogen and phosphorus ligands were screened and dppp (1,3-bis(diphenylphosphino)propane) was found to be the most effective. Additionally, an inert atmosphere was not necessary and moderate to good yields were obtained of various styrene derivatives.

Scheme 14: Chelate-controlled intermolecular oxidative Heck reaction

Scheme 15: Vinylation of organoboron compounds using a Pd(II)/dpp catalyst
1.2.5 Use of base in the oxidative Heck reaction

Bases can play a key role in palladium-catalysed cross-coupling reactions (Scheme 16). By facilitating the transmetallation of organoboron compounds 6 to organopalladium species I via organoborate salts III the reaction is accelerated which in turn accelerates the coupling process to form 28. However, an additional consequence is the formation of homocoupling by-products 27 due to the high reactivity of the borate salts.\(^*\)\(^{29,78}\)

![Scheme 16: Role of base in the oxidative Heck reaction](image)

In order to avoid the formation of reactive borate salts and thus minimise homocoupling, Jung and co-workers developed a base-free oxidative Heck reaction.\(^{34}\) Jung reported that organoboron reagents and olefins could be successfully coupled under mild conditions, in the absence of base, using amine ligands to stabilise the catalyst. Molecular oxygen was used as the oxidant and DMF as the solvent. In this extensive study, a plethora of substrate (substituted olefins) and organoboron reagent (aryl and alkenyl) combinations were studied and coupling was achieved in excellent yields. Specifically, for the coupling of aryl or heterocyclic boronic acids 6 with tert-butyl acrylate 29, yields of up to 94% of the coupling product 30 were obtained under mild conditions and were not found to be affected by the electronics of the arylboron coupling partner. Initial optimisation studies found homocoupling of the boronic acid and formation of phenol to be an issue, yet when 2,9-dimethyl-1,10-phenanthroline 15

\(^*\)Alternatively, more recent investigations have indicated that the base could be activating the palladium intermediate I rather than the boronic acid to form the oxypalladate complex. See references 78 and 79 for further information.
was employed as a ligand, formation of these side products was minimised, yields were enhanced, and milder conditions could be employed (Scheme 17).

\[
\begin{align*}
\text{RB(OH)}_2 & + \text{Pd(OAc)}_2 (5 \text{ mol\%}) \\
&\text{dmphen 15 (5 mol\%) } \\
&\text{O}_2, \text{DMF, rt} \\
\rightarrow & \text{R-} \text{O} - \text{Bu} \\
&\text{9 examples} \\
&\text{49-94\%}
\end{align*}
\]

\textbf{Scheme 17: Base-free oxidative Heck reaction of arylboronic acids with tert-butylacrylate}^{34}

In 2007, Larhed and co-workers also reported a base-free oxidative Heck reaction with tert-butyl acrylate 29 and aryl boronic acids 6 (Scheme 18).54 Reactions were carried out under mild conditions, at room temperature and under air as the oxidant. An additional part of the study investigated the effect of microwave heating. \textit{Para}-Benzoquinone was used as the oxidant given that air was not a practical option. Microwave heating was found to maintain excellent yields and reduce reaction times to between 10 and 20 minutes. Both sets of reaction conditions were suitable for a wide range of olefin substrates bearing ester, aldehyde, amide, ether and sulfonyl groups and arylboronic acids with varying electronic properties (albeit mostly \textit{para}-substituted aryls).

\[
\begin{align*}
\text{Ar} & \text{CO}_2\text{-Bu} \\
&\text{24 examples} \\
&\text{up to 95\%}
\end{align*}
\]

\[
\begin{align*}
\text{Pd(OAc)}_2 (2 \text{ mol\%}) \\
&\text{dmphen 15 (2.4 mol\%)} \\
&\text{MeCN} \\
&\text{benzoquinone (1 equiv.)} \\
&100 \text{ \degree} \text{C (\muW)} \\
&\text{air, 10-20 min}
\end{align*}
\]

\[
\begin{align*}
\text{ArB(OH)}_2 & + \text{Pd(OAc)}_2 (2 \text{ mol\%}) \\
&\text{dmphen 15 (2.4 mol\%)} \\
&\text{MeCN, rt, air} \\
&\text{up to 72 h} \\
\rightarrow & \text{Ar} \text{CO}_2\text{-Bu} \\
&\text{24 examples} \\
&\text{up to 97\%}
\end{align*}
\]

\textbf{Scheme 18: Base-free oxidative Heck reaction of arylboronic acids with tert-butylacrylate under air}^{54}
Werner and Sigman also reported a mild, base-free oxidative Heck protocol in 2010.55 E-Styrenyl products 12 were obtained in excellent yields and selectivities from the corresponding alkene substrate 11 and boron ester coupling partner 31 (Scheme 19).

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {\text{Ar-B}};
 \node (b) at (0.5,0) {\text{O}};
 \node (c) at (1,0) {\text{O}};
 \node (d) at (1.5,0) {\text{11}};
 \node (e) at (2,0) {\text{R}};
 \node (f) at (2.5,0) {\text{Pd(iPr)(OTs)\textsubscript{2} 32 (6 mol\%)}};
 \node (g) at (3,0) {\text{Cu(OTf)\textsubscript{2} (20 mol\%)}};
 \node (h) at (3.5,0) {\text{DMA, O\textsubscript{2}}};
 \node (i) at (4,0) {\text{35-75 °C, 18-24 h}};
 \node (j) at (4.5,0) {\text{Ar}};
 \node (k) at (5,0) {\text{12 R}};
 \node (l) at (5.5,0) {18 examples up to 97\%};
 \node (m) at (6,0) {\text{R includes alkyl chain with ketone, amine, ester functionalities}};
 \node (n) at (6.5,0) {\text{Scheme 19: Base-free oxidative Heck reaction of electronically non-biased olefins and arylboronic esters55}};
\end{tikzpicture}
\end{center}

A wide variety of functional groups on the alkene substrate were tolerated (ketone, amide, alcohol, amine, ester), yet the substrates were also electronically nonbiased; the functional groups were located between 2 and 9 carbon atoms from the reactive alkene site demonstrating that high selectivity could be obtained even without specific electronic properties close to the reactive centre.55
1.2.6 Anaerobic oxidative Heck reactions

In addition to aerobic systems, investigation has been carried out in the area of reoxidant-free and base-free oxidative Heck reactions.

In 2008, Xiao and co-workers reported a new and efficient system for the oxidative Heck coupling of arylboronic acids with both electron-rich and electron-deficient olefins, in the absence of reoxidant and base, using acetone as a solvent (Scheme 20). Removing the need for an oxidant is an obvious favourable advancement in the development of the oxidative Heck reaction.

Xiao and co-workers hypothesised that following the release of the product 12 from Pd(II) during the oxidative Heck catalytic cycle, the X-Pd-H intermediate might be intercepted by an hydrogen acceptor, which would regenerate Pd(II) without forming Pd(0) and therefore avoiding the need for traditional oxidants or base.

Scheme 20: Oxidative Heck coupling with and without reoxidant
Various arylboronic acids 6 and alkenes 33 were screened using 1,3-bis(diphenylphosphino)propane (dppp) 26 as the ligand, acetone as the solvent and under a nitrogen atmosphere to afford products 34 in good to excellent yields (Scheme 21). A slight reduction in yield was observed when using ortho-substituted or electron-withdrawing boronic acids.

Scheme 21: Oxidative coupling of various boronic acids and substituted vinyl ethers.

On using electron-deficient alkenes as the substrate, yields significantly reduced. However, acids were found to accelerate the reaction and addition of trifluoroacetic acid (TFA, 30 mol%) to the reactions with electron-deficient olefins furnished the coupling product 36 in excellent yield with a range of boronic acids 6 and alkene substrates 35 (Scheme 22).

Scheme 22: Oxidative coupling of electron-deficient olefins and arylboronic acids.

Although mechanistic studies were not discussed in detail in the report, initial 1H NMR investigations did conclude that in those reactions with electron-deficient olefins, the substrate acts as the hydrogen acceptor and thus no base nor oxidant is required.

In addition to the aforementioned study by Xiao and co-workers, Larhed and co-workers also carried out a base and oxidant free oxidative Heck reaction, which was reported in 2009 and discussed in section 1.2.4 (Scheme 15). Using phosphine ligands, vinyl acetate was coupled with various arylboronic acid derivatives in up to 84% yield using microwave irradiation as the heat source.
1.2.7 Oxidative Heck reactions on cyclic systems

Pd(0)-catalysed Heck reactions generally do not proceed well with cyclic systems particularly with cyclic enones and their derivatives, requiring harsh reaction conditions34, 71, 80 in addition to having a tendency to form conjugate addition products instead.50, 81 This is not necessarily surprising given that they are sterically precluded from undergoing the final syn β-H elimination step in the catalytic cycle.50 This relationship between the formation of Heck-type coupling products \textit{versus} conjugate addition products will be explored in more detail in chapter 2.

In recent years, the oxidative Heck reaction has emerged as a promising alternative for performing Heck-type couplings on cyclic systems. The conditions are milder than for traditional Heck couplings, although there are still relatively few examples reported. In work published by Jung and co-workers investigating base-free oxidative Heck reactions (\textit{vide supra} section 1.2.5, Scheme 17),34 2-cyclohexen-1-one was also screened as a substrate. Initially, 1-hexenyl pinacolboron ester was found to couple with 2-cyclohexen-1-one \textit{37} in 82\% yield under base-free, mild conditions. Phenyl boronic acid \textit{6a} was also investigated as a coupling partner and yielded the oxidative Heck product \textit{38a} in 81\% yield (Scheme 23).34

\begin{center}
\textbf{Scheme 23:} Oxidative Heck coupling of 2-cyclohexen-1-one and phenyl boronic acid34
\end{center}

Jung and co-workers suggested that a base assisted β-hydride elimination (\textit{anti}-elimination) takes place with cyclic systems and where base is not present the ligand could also function as a base to help facilitate this process.34 However, subsequent work published by our group (see chapter 2),82 demonstrates that oxidative Heck reactions can be carried out under ligand- and base-free conditions. Therefore, syn β-hydride elimination is proposed as the final step of the catalytic cycle whereby isomerisation of a Pd-enolate intermediate allows this final step to take place. This is discussed further in chapter 2 (Scheme 61).
In 2010, Wu and co-workers reported a study of ligand- and base-free oxidative Heck reactions using a premade Pd(II)-ligand complex 39 (Scheme 24). Various alkenes and boronic acids were included in the study, including an example of a cyclic enone substrate (2-cyclohexen-1-one 37), although the yield of 38a is modest (47%).

Scheme 24: Ligand and base-free oxidative Heck reaction with 2-cyclohexen-1-one as a substrate

Minnaard and co-workers have also demonstrated an excellent base-free oxidative Heck protocol for functionalising 2-cyclohexen-1-one with aryl boronic acids using a Pd-diimine catalyst.

Using base-free conditions and a BIAN ligand 40 (bis(imino)acenaphthene), excellent yields were obtained of arylated cyclohexenones 38 using a variety of electron-donating, withdrawing and sterically hindered aryl boronic acids 6 (Scheme 25).

Scheme 25: Base-free oxidative Heck reaction of 2-cyclohexen-1-one and aryl boronic acids
An additional small substrate scope of other enones was reported which included one other cyclic substrate, 2,3-dihydropyridin-4(1H)-one 41 which was arylated in good 74% yield (Scheme 26).

Scheme 26: Base-free oxidative Heck reaction of 2,3-dihydropyridin-4(1H)-one and phenyl boronic acid.

Two separate research groups published reports in early 2012 on oxidative Heck reactions using coumarins and arylboronic acids. Shafiee and co-workers successfully coupled arylboronic acids to coumarin and chromene substrates in up to 92% yield under base-free conditions and using 1,10-phenanthroline as a ligand (Scheme 27). The reactions with coumarin substrates were highly regioselective and high yielding with a range of substrates 43 and boronic acids 6.

Scheme 27: Base-free oxidative Heck reaction of coumarins with aryl boronic acids.
Using various chromenone substrates 46 and a range of aryl boronic acids 6 also furnished the desired oxidative Heck products 47 in excellent yield and regioselectivity (Scheme 28).

![Scheme 28: Base-free oxidative Heck reaction of chromenones with aryl boronic acids](image)

In a publication by Duan and co-workers published at the same time, similar conditions are used to functionalise substituted coumarins. Given some competition with the conjugate addition reaction pathway was observed, this will be discussed in chapter 2 along with other publications examining the switching between conjugate addition and Heck-type products.

Georg and co-workers have studied the Pd(II)-catalysed arylation of cyclic enaminones 48. They have investigated a range of coupling partners in their C-H arylation work, initially using aryltrifluoroborates, followed by arylsilanes. More recently, work has focussed on developing a protocol using copper(II) additives and more readily accessible aryl boronic acids 6 (Scheme 29). Despite the oxidative Heck-type product 49 being formed, a CH activation mechanism is hypothesised whereby a palladium-enaminone species is formed first followed by transmetallation of the aryl group onto palladium from the boronic acid, or an arylcopper intermediate.
As is evident from the examples of oxidative Heck reactions on cyclic substrates discussed above, there are limited examples of oxidative Heck reactions on cyclic systems. Therefore there is plenty of scope to expand in this area and further advances would be highly desirable.

Scheme 29: Oxidative Heck-type coupling of cyclic enaminones with arylboronic acids

\[
\text{R}^5 = \text{aryls and heterocycles}
\]

25 examples
up to 90% yield
1.2.8 Asymmetric oxidative Heck reactions

The first examples of asymmetric Heck couplings were reported independently by Overman90 and Shibasaki91 in 1989 and carried out intramolecularly using cyclic substrates. Since this initial report, the enantioselective intramolecular Heck reaction has become a useful tool for synthetic chemists, for instance to construct all carbon quaternary stereocentres.92, 93 However, the intermolecular Heck reaction on acyclic substrates has been much more challenging, with the first reported example in 2000 by Uemura and co-workers which reported a modest 17\% enantiomeric excess.94

However, the enantioselective oxidative Heck reaction on acyclic substrates has shown considerable promise in recent years and reports have demonstrated that it can be carried out with excellent stereoselectivity, yields and often under mild conditions.29, 32 This can be attributed to the fact that oxidative Heck reactions proceed \textit{via} a cationic pathway (\textit{via} species 51, Scheme 30) rather than a neutral reaction pathway (\textit{via} species 50) to give higher levels of enantioselectivity.29

\begin{center}
\textbf{Scheme 30}: Cationic and neutral reaction pathways in the oxidative Heck reaction29
\end{center}

In 2005, Mikami and co-workers published the first asymmetric oxidative Heck reaction.95 Various chelating nitrogen- and phosphorus-ligands were screened and (S,S)-chiraphos 53 was found to be most effective (Scheme 31). Successful coupling was achieved of several cyclopentene-1-carboxylates 52 with 4-trifluoromethylphenyl boronic acid 6b with modest to good yields and modest enantioselectivity. However, the reaction scope was limited to coupling of trisubstituted alkenes 52 with the electron-withdrawing boronic acid 6b (a six-membered carboxylate and a cyano-substituted cyclopentene only provided trace product).95
In 2007, Jung and co-workers reported an asymmetric intermolecular oxidative Heck reaction on acyclic alkenes in good yield and decent enantioselectivity (Scheme 32).\(^{37}\) A ligand screen found that phosphine-based ligands were inefficient due to side reactions but nitrogen-ligands (bisoxazoline and pyridinyloxazoline) gave more promising results. After further optimisation a palladium-pyridinyloxazoline diacetate complex 56 was found to give the highest enantioselectivity and was used for a substrate screen with various electron-donating boronic acids 6. Good yields and modest enantioselectivities of the oxidative Heck product 57 were obtained (up to 75% ee and up to 79% yield).

Scheme 32: Pd(II)-catalysed asymmetric intermolecular Heck-type reaction of acyclic alkenes

Jung continued to develop the work on enantioselective oxidative Heck reactions and reported further developments using chiral palladium complexes comprising NHC-ligands to yield excellent enantioselectivities.\(^ {96, 97}\)
studies, a chiral dimeric tridentate NHC-amidate-alkoxide palladium(II) complex 58 was used as a catalyst in an oxidative Heck reaction using both acyclic and cyclic substrates (55 and 52) coupled with aryl boronic acids 6 (Scheme 33). Whilst moderate yields were obtained, excellent enantioselectivities were observed for acyclic and cyclic substrates with a range of boronic acids with varying steric and electronic properties.

Scheme 33: Asymmetric intermolecular oxidative Heck reactions with a tridentate NHC-ligand
In 2007, Gelman and co-workers reported an enantioselective oxidative Heck of 2,3-dihydrofuran 59 with various aryl boronic acids 6 and using Pd(OAc)$_2$ with (R)-BINAP 60 or (R)-MeOBIPHEP 61 as the chiral ligand (Scheme 34). Decent yields were obtained of the coupling product 62 (an isomer of the formal oxidative Heck product) with a range of both electron-withdrawing and electron-donating boronic acids. Enantioselectivity was independent of the electronic properties of the boronic acid yet the reaction was found to be sensitive to steric properties and almost no enantioselectivity was observed when ortho-substituted boronic acids were employed.

![Scheme 34: Enantioselective oxidative Heck reaction of arylboronic acids with 2,3-dihydrofuran](image)

More recently, Sigman and co-workers have used oxidative Heck arylation methods to install a remote chiral centre in a molecule. Following on from work investigating enantioselective Heck arylations, the study was expanded to investigate an enantioselective oxidative Heck protocol to arylate acyclic alkenyl alcohols 63 with aryl boronic acids 6 (Scheme 35). Using the chiral pyridine oxazoline ligand 64, remotely functionalised carbonyl products 65 and 66 were yielded in high enantioselectivity and site selectivity, preferentially forming the γ-substituted product 65 over arylation at the β-position to form product 66. A range of aryl and heterocyclic boronic acids 6 with varying steric and electronic properties were screened and good yields and excellent enantioselectivities were observed.
Scheme 35: Enantioselective oxidative Heck arylation of acyclic alkenyl alcohols and boronic acids

The reaction formed the corresponding carbonyl products through a redox-relay mechanism where the alkene migrates towards the alcohol through a β-hydride elimination/migratory insertion process which results in formal oxidation of the alcohol to the carbonyl product. Additionally, selectivity of the γ-substituted product 65 over the β-substituted product 66 was observed and was found to be controlled by remote dipole interactions of the alcohol functionality. Selectivity decreased when electron-rich aryl boronic acids were used and when smaller groups at the γ-position on the substrate were present. Conversely, enantioselectivity was found to be independent of the properties of the substrate and boronic acid.

This work by Sigman and co-workers was extended in 2014 to acyclic non-conjugated trisubstituted alkenyl alcohols 67 (Scheme 36). The report demonstrated that all-carbon quaternary stereocentres could be installed using this protocol at sites which are remote to other functional groups in the molecule (in this case, the alcohol moiety).
Scheme 36: Enantioselective intermolecular Heck-type reaction of trisubstituted alkenyl alcohols with aryl boronic acids

Excellent yields and enantioselectivities of the Heck-type coupling product 68 were obtained with a range of substrates 67 of differing chain lengths and boronic acids with various electronic properties. In this study, selectivity was found to be independent of the electronics of the boronic acid 6, and substitution occurred preferentially at the more substituted carbon atom. It was hypothesised that this was due to the palladium catalyst being positioned at the less hindered carbon atom after the migratory insertion step and therefore minimising steric strain.

The study also included substrates with preinstalled stereocentres (for example 69) and enantioselectivity was preserved during the reaction (Scheme 37).

Scheme 37: Enantioselective intermolecular Heck-type reaction of trisubstituted alkenyl alcohols with preinstalled stereocentres
1.3 Conclusions

In recent years, the oxidative Heck reaction has become a very useful tool for synthetic chemists and an attractive alternative to the Pd(0)-catalysed Heck reaction. Investigations have focussed on the development of base- and oxidant-free protocols in addition to the use of ligands which have permitted asymmetric reactions to be developed. Despite the progress in this area over the last 30 years, there is plenty of scope for further development, particularly using cyclic substrates and developing enantioselective protocols, which will be the focus of the experimental work in this thesis.
1.4 References

Chapter 2: Ligand- and Base-Free Pd(II)-Catalysed Controlled Switching Between Oxidative Heck and Conjugate Addition Reactions

The work detailed in this chapter was carried out by the author in collaboration with a number of other members of the Lee Group: Julian Boehnke, Dr Pauline E. Glen, Steven Levey, Lisa Patrick and Dr James A. Jordan-Hore. Where work was not carried out by the author, this is clearly stated.
Chapter 2: Introduction

2.1 Conjugate addition versus Heck-type coupling

As has been briefly described in chapter 1, traditional Pd(0)-Heck couplings generally do not work well with cyclic enones. These substrates tend to form conjugate addition products instead, most likely due to being stereochemically precluded from undergoing the final step in the catalytic cycle – syn β-H elimination.\(^1\) However, the oxidative Heck reaction has emerged as a more suitable method for forming Heck-type products with cyclic substrates, as outlined in chapter 1.\(^2\text{–}^6\)

Whilst formation of conjugate addition products as side products in Heck-type reactions and vice versa is relatively common,\(^7\text{–}^9\) there are limited studies which specifically focus on switching between products and the factors which may influence the reaction outcome to form one product over another. There are a select number of studies investigating rhodium- or Pd(0)-catalysed switching between conjugate addition and Heck-type products which will be discussed in this review. At the beginning of this project, there were no examples of switching between Pd(II)-catalysed oxidative Heck and conjugate addition reactions. However, after the conclusion of this project, a study was published on cyclic enaminone substrates which will be briefly discussed.\(^10\)
2.1.1 Switching between conjugate addition and Heck-type coupling in rhodium-catalysed reactions with acyclic substrates

Although there are few examples in the literature of controlled switching between Mizoroki-Heck/oxidative Heck and conjugate addition pathways using palladium catalysts, examples using rhodium catalysts are more common albeit most examples focus on acyclic rather than cyclic substrates. The Heck-type product \(36\) is formed following \(\beta\)-hydride elimination as the final step in the catalytic cycle whereas protonolysis affords the conjugate addition product \(71\) (Scheme 38).

![Scheme 38: Formation of conjugate addition or Heck-type coupling products in rhodium-catalysed reactions](image)

Mori and co-workers have studied the switching between Mizoroki-Heck type products and conjugate addition in the rhodium-catalysed reaction of \(\alpha,\beta\)-unsaturated carbonyl compounds \(74\) and silanediols \(73\) (Scheme 39).\(^{11}\)

![Scheme 39: Rhodium-catalysed reaction between \(\alpha,\beta\)-unsaturated carbonyl compounds and silanediols to form Mizoroki-Heck type products or conjugate addition products](image)
The study found that the reaction outcome could be controlled by the use of water as a cosolvent. Using THF as the reaction solvent afforded the Mizoroki-Heck type product 75 exclusively (74% yield). Unsurprisingly, adding more water to the reaction solvent promoted protonolysis to form the conjugate addition product 76 and using a 2:1 mixture of THF:H₂O afforded almost exclusively the conjugate addition product (53% 76 with 5% Mizoroki-Heck type product 75). Additionally, the study found that the 1,4-addition product was favoured with substrates bearing a more electron-deficient carbonyl group.

A study by Genêt and co-workers investigating rhodium-catalysed Mizoroki-Heck type reactions on acyclic α,β-unsaturated carbonyl compounds with potassium aryl trifluoroborates had similar findings to the aforementioned study by Mori. The addition of water to the reaction afforded exclusively the conjugate addition product.¹²

The outcome of rhodium-catalysed reactions between alkenes and aryl boronic acids has also been found to be substrate dependent. Lautens¹³ and Genêt¹⁴ have carried out work on such reactions in aqueous media (Scheme 40) and found that styrene substrates 78 yield the Heck-type coupling product 79 whereas vinyl heteroaromatic substrates for example 80 yield the conjugate addition product 81. In the study carried out by Genêt and co-workers, the substrate scope was expanded to cyclic enones 82, 37 and 85 which were found to yield exclusively the conjugate addition products 83, 84 and 86 respectively.¹⁴

Scheme 40: Rhodium-catalysed reaction of alkenes with aryl boronic acids
A study of rhodium-catalysed Heck-type coupling with acrylates carried out by Lautens and co-workers also found that the reaction outcome could be affected by the boron coupling partner (Scheme 41). In this study, the use of bulkier aryl boronic acids afforded the conjugate addition product 88 selectively whereas less bulky aryl groups formed Heck-type products 30.¹⁵

Scheme 41: Reaction of t-butyl acrylate with aryl boronic acids to yield either conjugate addition or Heck-type products

Using phenyl boronic acid, the Heck-type product 30 was predominantly formed in a 80:20 ratio (>99% yield) whereas using 2,6-dimethylphenyl boronic acid switched the ratio to 95:5 conjugate addition 88 to Heck-type product 30 (99% yield). Additionally, electron-withdrawing groups on the aryl boronic acid were found to increase the formation of conjugate addition product. From these studies and considering the mechanism, it was surmised that the presence of ortho-substituents on the aryl boronic acid perhaps hinder β-hydride elimination due to steric repulsion between the substituents and the rhodium centre and thus the propensity for protodemetallation is increased and formation of the conjugate addition product is the preferential reaction pathway.
Zou and co-workers also conducted an in depth study into Heck-type coupling versus conjugate addition of alkenes and aryl boronic acids catalysed by rhodium (Scheme 42).16 Their investigations examined how the choice of ligand, stoichiometry of the olefin and boronic acid, and pH of the biphasic solvent system could be tuned to selectively form either the Heck-type coupling product 90 or the conjugate addition product 89.

Scheme 42: Tuning of reaction conditions to afford Heck-type coupling or conjugate addition product in the Rh(I)-catalysed reaction between alkenes and boronic acids

Bidentate ligands, coupled with excess boronic acid were found to promote conjugate addition (and therefore suppress the β-hydride elimination step) whereas monodentate phosphines, base and excess alkene substrate promoted the Heck-type coupling reaction.
Van der Eycken and co-workers have also demonstrated that the outcome of the rhodium-catalysed reaction of arylboronic acids 6 with an α-acetamido acrylic ester 91 can be switched depending on the choice of olefin ligand (Scheme 43).⁸

Scheme 43: Effect of ligand on the rhodium-catalysed reaction between phenyl boronic acid and α-acetamido acrylic ester

Using [Rh(cod)Cl]₂ 77 as the catalyst, the conjugate addition product 92a was formed preferentially (77% yield, 82:18 conjugate addition:Heck-type product) whereas the Heck-type adduct 93a was the major product when Rh(acac)(ethene)₂ 94 was employed (34% yield, 21:79 conjugate addition:Heck-type product).
2.1.2 Switching between conjugate addition and Heck-type coupling in rhodium-catalysed reactions with cyclic substrates

Whilst acyclic substrates have been investigated in this area (*vide supra*), there are few examples of studies examining switching between conjugate addition and Heck-type products of cyclic substrates.

The first reported example of competitive 1,4-addition versus Heck-type coupling on cyclic systems using rhodium as a catalyst was reported by Shao and co-workers (Scheme 44).\(^\text{17}\)

![Scheme 44](image)

Scheme 44: Competing reaction pathways in the rhodium-catalysed reaction of unsaturated lactams with arylboronic acids

In initial optimisation work to establish suitable conditions for the 1,4-addition reaction using \(\alpha,\beta\)-unsaturated \(\gamma\)-lactams 97 and arylboronic acids 6 it was found that the protecting group (R) used had a marked effect on the ratio of conjugate addition to Heck-type coupling products. Using benzyl or \(p\)-methoxybenzyl protecting groups, the 1,4-addition 98 to Heck-type product 99 ratio was found to be approximately 3:1. However, using \(p\)-methoxyphenyl or Boc protecting groups formed exclusively the 1,4-addition product 98.

Franzén and co-workers have conducted a detailed investigation into the competition between conjugate addition and Heck-type coupling in the rhodium-catalysed reaction of organoboron reagents and cyclic substrates (Scheme 45).\(^\text{18}\) Using indole-olefin-oxazoline (IndOlefOx) ligands 100 and 5,6-dihydro-pyranone or Boc-protected pyrrolidone as the substrates they examined how choice of ligand, rhodium source,
organoboron compound, substrate, solvent and amount of base used affected the ratio of conjugate addition to Heck-type product.

Scheme 45: Conjugate addition versus Heck coupling of aryl boronic acids with 5,6-dihydropyranone

In studies using a lactone 101, it was found that the conjugate addition product 102a was formed exclusively (65% yield) when [Rh(cod)Cl]₂ 77 was used, and in the absence of ligand. Switching the catalyst to [Rh(ethene)₂Cl]₂ 95 and using the IndOlefOx ligand 100 yielded a ratio of 7:93 conjugate addition 102a to Heck-type product 103a (67% yield, 83% ee).

Selectivity when using a lactam substrate was also found to be dependent on reaction conditions, although the outcome of the reaction could not be switched quite so effectively compared to when the lactone substrate was used (Scheme 46).

Scheme 46: Conjugate addition versus Heck coupling of aryl boronic acids with lactam substrate 106

The conjugate addition product 107a (77% yield) was formed exclusively when toluene/H₂O (3:1) was used as the solvent, along with [Rh(cod)Cl]₂ 77, phenyl boronic acid 6a and in the absence of ligand. Changing the reaction conditions to [Rh(ethene)₂Cl]₂ 95 and ligand 104, accompanied with using Ph₄BNa 105 as the
coupling partner and dioxane/H$_2$O as the solvent yielded a 60:40 ratio of conjugate addition 107a (84% ee) to Heck-type coupling product 108a albeit in 20% yield.

Base was also found to affect the conjugate addition to Heck-type product ratio and unsurprisingly the amount of base used was directly proportional to the amount of Heck-type product formed with the lactone substrate. Surprisingly, base did not affect the product ratio when the lactam substrate was used.

2.1.3 Switching between conjugate addition and Heck coupling in palladium(0)-catalysed reactions

Whilst switching between palladium(II)-catalysed conjugate addition and oxidative Heck reactions had not been discussed in the literature upon commencing this project, there are a few studies which examine the switching between Heck and conjugate addition products using palladium(0) as the catalyst. In these cases, the final step of the catalytic cycle is either β-hydride elimination to afford the Heck coupling product 36 or reductive cleavage to form the conjugate addition product 71 (Scheme 47).19

![Scheme 47: Pd(0)-catalysed addition of aryl halides to α,β-unsaturated ketones to form conjugate addition or Heck products19](image-url)
In 2011, Minnaard and co-workers investigated switching between reaction pathways of aryl iodides 112 and \(\alpha,\beta \)-unsaturated enones 35 using a Pd(0) catalyst and an NHC ligand 109 (Scheme 48).\(^{19}\) They successfully steered the reaction to conjugate addition 111 or Mizoroki-Heck 110 products by simply switching the base used to afford good to excellent yields.

![Scheme 48: Switching between Heck coupling and conjugate addition products by changing the base used\(^{19}\)](image)

Using \(\text{Bu}_3\text{N} \) yielded the conjugate addition product 111 whereas switching the base to cesium pivalate formed exclusively the Mizoroki-Heck product 110. In order to form the conjugate addition product, arylation of the substrate 35 would take place followed by reduction of the palladium (Scheme 48). It was therefore hypothesised that \(\text{Bu}_3\text{N} \) would serve not only as a reductant but also to keep the alkyl palladium species coordinatively saturated thus preventing \(\beta \)-hydride elimination and then forming the conjugate addition product. Minnaard and co-workers suggest that protonolysis does not take place as the final step given that there is not a proton source. Instead, reductive cleavage occurs whereby \(\text{Bu}_3\text{N} \) provides a proton via \(\beta \)-hydride elimination.

As part of this work, two cyclic systems were investigated – 2-cyclohexen-1-one 37 and 2-cyclohepten-1-one 85 (Scheme 49). Moderate switching from conjugate addition 84c to Heck coupling product 38c was observed with cyclohexenone 37. However, no Heck product was formed when the 7 membered ring 85 was used as the substrate.
Scheme 49: Switching between Heck coupling and conjugate addition products with cyclic systems by changing the base used\(^{19}\)

In 2009, Santelli and co-workers observed the switching between Heck and conjugate addition products in another intermolecular reaction and using cyclic enone substrates (Scheme 50).\(^{20}\) Reacting aryl bromides 113 with 2-cyclopenten-1-one 82 they found that the base used affected whether the Heck 114 or conjugate addition product 83 was formed preferentially. Sodium carbonate afforded preferentially the conjugate addition product whereas switching to potassium fluoride changed the selectivity to form the Heck product as the major product. However, complete switching to one product over the other was not observed.

Scheme 50: Effect of base on the outcome of the Heck reaction of 2-cyclopenten-1-one and aryl bromides

Prior to this work, Pd(0)-catalysed Heck coupling on cyclic systems resulted in very low yields and/or the conjugate addition product being formed. However, Santelli developed the effective Pd(0)-catalysed method described above (Scheme 50) to
perform Heck couplings although conditions are still harsh and conjugate addition is also observed as a minor product.

An additional example of directing the reaction outcome to form the Heck or conjugate addition product is a study carried out by Friestad and Branchaud examining the intramolecular reaction of a cyclic enone and aryl iodide (Scheme 51).²¹

\[\text{Scheme 51: Intramolecular Pd(0)-catalysed reaction to yield Heck or conjugate addition product} \]

The study found that using silver nitrate as an additive suppresses formation of the conjugate addition product 117 and the Heck product 116 is formed in a 91:9 Heck to conjugate addition ratio. Switching the reaction solvent to THF-d₈ and in the absence of any additive, the conjugate addition pathway is favoured and product 117 is formed preferentially over the Heck product 116 in 92:8 ratio. Whilst the authors did not give possible reasons for the formation of the conjugate addition product preferentially when THF-d₈ was used as the solvent, the use of additives to switch the outcome to Heck product was considered with the mechanism in mind.

The authors surmised that given that regeneration of Pd(0) in Heck reactions occurs via the equilibrium shown (Scheme 52), addition of silver nitrate would scavenge HX and therefore promote formation of the Heck product.

\[\text{Scheme 52: Regeneration of Pd(0) using Et₃N} \]
2.1.4 Switching between conjugate addition and oxidative Heck coupling in palladium(II)-catalysed reactions

At the beginning of this project, to our knowledge there were no examples in the literature which focussed on the switching between Pd(II)-catalysed oxidative Heck and conjugate addition reactions. However, during the course of this thesis, and after the work detailed in this chapter had been completed and published, a study was published by Georg and co-workers, demonstrating that this is an area of interest for other research groups. Georg and co-workers carried out an oxidative Heck reaction on cyclic enaminones 118 with aryl boronic acids 6 and discovered that the outcome of the reaction could be switched from oxidative Heck 119 to conjugate addition products 120 by the addition of acid (Scheme 53).

![Scheme 53: Pd(II)-catalysed reaction of cyclic enamines with aryl boronic acids](image)

In the absence of acid, the ratio of oxidative Heck 119 to conjugate addition product 120 was 2.8:1. On adding acid, the major product switched to the conjugate addition product 120 with ratios of >20:1 conjugate addition to oxidative Heck product formed when trifluoroacetic acid was used. Unsurprisingly, the acidity of the acid used was directly proportional to the amount of conjugate addition product formed (protonolysis being favoured over syn β-hydride elimination).
2.1.5 Conclusion

In conclusion, competition between conjugate addition and Heck-type coupling in transition metal catalysed reactions has been documented in the literature for some years. However, specific studies examining the switching between reaction pathways and reasons for preferentially forming one product over another are rare. A small number of studies examine switching in rhodium catalysed reactions whereas investigations using palladium are scarce. Upon commencing this project, no specific studies using palladium(II) were present in the literature. Given that Pd(II)-catalysed oxidative Heck reactions have become a burgeoning area of research in recent years, a study investigating the factors which affect whether oxidative Heck or conjugate addition products are preferentially formed would be advantageous and a key advancement in this field of research.
2.2 Project aim

Extensive studies have been carried out in the Lee group into the Pd(II)-catalysed conjugate addition reaction of boronic acids and cyclic enones. Using a cationic, ligand-free Pd(II) catalytic system, with NaNO₃ as an additive, conjugate addition to sterically hindered cyclic enones (γ-, γγ-, and βγ- substituted) has successfully been carried out in up to quantitative yields and high diastereomeric ratio (Scheme 54). These substrates are particularly challenging given their steric bulk which would make them unsuitable for rhodium catalysed conjugate addition methodology. The reaction developed in the Lee group tolerates a range of aryl boroxines 6 (the dehydrated trimer of the commercial boronic acid) as the coupling partner and various substituted cyclic enone substrates 121. Following optimisation of reaction conditions, the catalyst used for the reaction was either Pd(MeCN)₄(OTf)₂ or an in situ generated catalyst Pd(OTf)₂ (using Pd(OAc)₂ and triflic acid) which was found to give higher yields for more sterically hindered substrates (Scheme 54).

Scheme 54: Previous work in the Lee group - Pd(II)-catalysed conjugate additions to hindered cyclohexenones

During the course of the studies into conjugate addition reactions, a solvent screen was conducted and the oxidative Heck product was found to be present when the reaction was conducted in more polar solvents. This was not necessarily surprising given that the conditions for oxidative Heck and conjugate addition reactions are often similar and therefore forming one product selectively over the other can be difficult.
Given that there are no reported studies on the switching between oxidative Heck and conjugate addition reactions using Pd(II), the discovery that the selectivity of the reaction switches when the solvent is changed prompted the group to investigate this switch further and examine the factors which influence the formation of one product over another (Scheme 55).

Scheme 55: Project aim – to investigate the switching between oxidative Heck and conjugate addition reactions
2.3 Previous work in the Lee group

As previously mentioned in section 2.2, the solvent screen conducted during the work in the Lee group on conjugate addition reactions indicated that more polar solvents favoured the oxidative Heck product over the conjugate addition product in the Pd(II) catalysed reaction between cyclic enones and aryl boroxines. The catalyst used for the solvent screen was generated in situ using Pd(OAc)$_2$ and triflic acid. 2-Cyclohexen-1-one 37 was chosen as the substrate and tris(p-methoxyphenyl)boroxine 6c as the coupling partner given that these reagents together had given good results in previous work. Results from the screen are shown below (Table 1).

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield 84c (%)b</th>
<th>Yield 38c (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ClCH$_2$CH$_2$Cl</td>
<td>94c</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>ClCH$_2$CH$_2$Cl + DMF (4 equiv.)</td>
<td>79c</td>
<td>20c</td>
</tr>
<tr>
<td>3</td>
<td>DMF</td>
<td>-</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>Acetone</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>MeCN</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>Dimethyl acetamide</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>MeOH</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>N-methylpyrrolidinone</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>DMSO</td>
<td>-</td>
<td>33c</td>
</tr>
<tr>
<td>10d</td>
<td>DMSO</td>
<td>-</td>
<td>84c</td>
</tr>
</tbody>
</table>

a Commercial aryl boronic acid was heated under vacuum to generate boroxine. b Determined by 1H NMR analysis of crude mixture, unless otherwise stated. c Isolated yield. d 50 °C, 48 h

Table 1: Solvent screen for the reaction between 2-cyclohexen-1-one and tris(p-methoxyphenyl)boroxine

When more polar solvents were used, it became apparent that there was a tendency to form oxidative Heck product 38c. However, conversions remained poor with the
exception being when DMSO was used as the solvent. DMSO was found to form the oxidative Heck product \(38c\) exclusively in 33\% conversion at room temperature (Entry 9). Pleasingly, warming the reaction to 50 °C and increasing the reaction time improved the conversion considerably and 84\% isolated yield of oxidative Heck product was obtained (Entry 10).

This promising result, coupled with formation of the conjugate addition product \(84c\) in 94\% yield when dichloroethane was used as the solvent (Table 1, Entry 1), formed the basis of this project (Scheme 56).

![Scheme 56: Initial results demonstrating switching between oxidative Heck and conjugate addition reactions by switching solvent*](image)

The initial result for formation of the oxidative Heck product \(38c\) exclusively when DMSO was used as the solvent (Table 1, Entry 10) was the starting point for further optimisation of the oxidative Heck reaction.

The aim of the project was to firstly investigate this switching further by optimising the reaction conditions. Once optimisation had been completed, substrate and boronic acid screens would be carried out using optimised conditions for both the oxidative Heck and conjugate addition reactions. Additionally, it was hoped that during the course of our investigations we would be able to shed some light on possible reasons for the switching between reaction outcomes when different solvents are used.

2.4 Conjugate addition reaction

Work carried out by Steven Levey, MChem project student
2.4.1 Optimisation of reaction conditions

Our first investigations into optimisation of the conjugate addition reaction conditions focussed on establishing whether the premade catalyst \([\text{Pd(MeCN)}_4(\text{OTf})_2]\) or the \textit{in situ} generated catalyst \([\text{Pd(OTf)}_2]\) would be best for our studies. Both had been utilised and found to be effective in the aforementioned conjugate addition work in the Lee group\(^{24}\) yet it was important to establish which would be more suited to this project. A screen of both catalysts was carried out using 2-cyclohexen-1-one \(37\) as the substrate and triphenyl boroxine \(6a\) as the boronic acid coupling partner. Previous work into conjugate addition reactions had found that using aryl boroxines (the dehydrated trimer of the corresponding boronic acid) rather than aryl boronic acids was vital for good conversion. Additionally, given that sodium nitrate had been a useful additive in previous conjugate addition work by reducing the formation of the phenol of the boroxine and also the homo-coupled product,\(^{24}\) the effect of sodium nitrate on conversion was also investigated by varying the number of equivalents used.

\[
\begin{align*}
&\text{37} & + & \begin{array}{c}
\text{B-O} \\
\text{Ph}
\end{array} & \xrightarrow{\text{Pd(II) catalyst}} & \text{84a} \\
\text{In situ catalyst: Pd(OAc)}_2 (5 \text{ mol%}), \text{TfOH (9.9 mol%)}
\end{align*}
\]

\text{Premade catalyst: Pd(MeCN)}_4(\text{OTf})_2 (5 \text{ mol%})

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Entry & Boroxine 6a: & Substrate 37 & Catalyst & Eqiv. NaNO\(_3\) & Time (h) & Yield \\
 & \text{Sub} & & & & & \\
 & 37 & & & & & \\
\hline
1 & 2:1 & In situ & 0 & 18 & 33% conv. \\
2 & 2:1 & In situ & 1 & 40 & 33% conv. \\
3 & 2:1 & Premade & 1 & 42 & 69\(^b\) \\
4 & 3:1 & Premade & 2 & 40 & 77\(^b\) \\
\hline
\end{tabular}
\caption{Initial optimisation reactions}
\end{table}

\(^a\) Equivalents of single aryl group used in the reaction rather than trimer. \(^b\) Isolated yield

Firstly, reactions with the \textit{in situ} catalyst were carried out; one in the absence of sodium nitrate and another with 1 equivalent of the additive. Conversions were poor for both reactions (Table 2, Entries 1 and 2) and even leaving the reaction for longer did not increase conversion (Entry 2). Conversions were calculated by examining the amount
of starting material remaining in the reaction mixture by 1H NMR. However, during later optimisation studies for the oxidative Heck reaction, it became apparent that the volatility of 2-cyclohexen-1-one was affecting conversion calculations. In this case, the volatility of 2-cyclohexen-1-one would actually cause the conversion to be lower than reported for Entries 1 and 2 (Table 2) and therefore it can still be assumed that the \textit{in situ} generated catalyst performs poorly with the above reaction conditions.

Next, our attention turned to examining the premade catalyst. Given that sodium nitrate did not seem to have a detrimental effect on yield in reactions using the \textit{in situ} catalyst, and knowing that it can help to prevent homocoupling of the boronic acid, we decided to carry out screening of the premade catalyst with sodium nitrate. Using 1 equivalent of sodium nitrate and the premade catalyst in the above reaction gave an isolated yield of 69% (Entry 3). Increasing the equivalents of boroxine 6a, and also sodium nitrate increased the yield of 84a to 77% (Entry 4) which was a very promising result.

Despite our best result to date being a 94% yield with the \textit{in situ} formed catalyst (Pd(OTf)$_2$ generated from Pd(OAc)$_2$ and triflic acid) and tris(p-methoxyphenyl)boroxine, previous studies have shown that this particular boroxine is very reactive. Therefore it was prudent to conduct optimisation work using a less reactive boroxine (such as triphenyl boroxine) in order for the optimised reaction conditions to be appropriate for a wide range of boroxines with different electronic and steric properties.
2.4.2 Conjugate addition reaction – boroxine screen

Having optimised the conjugate addition reaction conditions and found that the premade catalyst [Pd(MeCN)$_4$(OTf)$_2$] gives the best result with 3 equivalents of boroxine 6a (note: actually 1 equivalent of the boroxine trimer but 3 equivalents of the single aryl group of the trimer) and 2 equivalents of sodium nitrate, a boroxine screen was carried out (Table 3). Reactions were monitored by TLC and reaction times varied depending on the boroxine used.

![Conjugate addition reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aryl</th>
<th>Time (h)</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td>40</td>
<td>84a 77</td>
</tr>
<tr>
<td>2</td>
<td>6c</td>
<td>24</td>
<td>84c 74</td>
</tr>
<tr>
<td>3</td>
<td>6d</td>
<td>24</td>
<td>84d 67</td>
</tr>
<tr>
<td>4</td>
<td>6e</td>
<td>42</td>
<td>84e 68</td>
</tr>
<tr>
<td>5</td>
<td>6f</td>
<td>42</td>
<td>84f 76</td>
</tr>
<tr>
<td>6</td>
<td>6g</td>
<td>20</td>
<td>84g 72</td>
</tr>
<tr>
<td>7*</td>
<td>6h</td>
<td>17</td>
<td>84h 75</td>
</tr>
<tr>
<td>8</td>
<td>6i</td>
<td>66</td>
<td>84i 59</td>
</tr>
<tr>
<td>9</td>
<td>6j</td>
<td>23</td>
<td>84j 44 O$_2$ atmosphere - 71</td>
</tr>
</tbody>
</table>

Table 3: Boroxine Screen Results
The boroxine screen showed that the reaction is tolerant of a range of boroxines bearing groups with differing steric and electronic properties and substitution at ortho-, meta- and para- positions on the aryl ring. Electron-rich boroxines (6a, 6c-f) give good to excellent yields (Table 3, Entries 1 to 5). The yields generally decrease somewhat when electron-withdrawing boroxines are used (6g-i and 6l, Entries 6, 7, 8, 11) which may be caused by higher propensity of electron-withdrawing boroxines to form the homocoupled aryl dimers compared to their electron-donating counterparts. Pleasingly, oxidisable tris(2-fluorenyl)boroxine (6n) gives a moderate yield (Entry 13) and tris(2-naphthyl)boroxine (6m) performs well under our conditions (Entry 12).

Tris(p-bromophenyl)boroxine and tris(p-iodophenyl)boroxine (6j and 6k) gave poor yields with the optimised reaction conditions (Entries 9 and 10), presumably due to the tendency for palladium(0) to insert into carbon-halogen bonds. Given that palladium(0) is not formed during conjugate addition reactions, its formation in this instance could arise from homocoupling of the boronic acid. Both these reactions were repeated under an oxygen atmosphere to reoxidise any palladium(0) to palladium(II). Whilst this unfortunately did not increase the yield when tris(p-iodophenyl)boroxine (6k) was used (42% to 32%, Entry 10), pleasingly the yield of 84j increased significantly from 44% to

Table 3: Conjugate addition reaction boroxine screen

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reactant</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6k</td>
<td>20</td>
</tr>
<tr>
<td>11*</td>
<td>6l</td>
<td>23</td>
</tr>
<tr>
<td>12*</td>
<td>6m</td>
<td>17</td>
</tr>
<tr>
<td>13*</td>
<td>6n</td>
<td>23</td>
</tr>
</tbody>
</table>

*Commercial boronic acid was heated under vacuum to generate boroxine. Equiv. refers to the equivalents of boronic acid, or single aryl group of the boroxine trimer.

The boroxine screen was carried out primarily by the author. However, Dr Pauline Glen and Julian Boehnke assisted in the latter stages of the screen and their results are indicated by an asterisk (*).
71%. The bromo functionality provides a handle for further functionalisation, for instance via Pd(0) cross-coupling reactions.

2.4.3 Conjugate addition reaction – substrate screen

Having successfully screened a range of aryl boroxines, our attention next turned to investigating alkene substrate scope in the conjugate addition reaction. The author’s contribution to this part of the project mainly focussed on optimisation work for electron-rich substrates in addition to substrate synthesis where necessary. As previously mentioned, various members of the Lee group contributed to this project and a large proportion of the substrate screen was carried out by other students. However, all the results obtained by both the author and other members of the Lee group are shown for completeness (Table 6).

Substrate synthesis

The cyclic alkene substrates required for the substrate screen were either commercially available or synthesised by oxidation of the cycloalkane precursor or via Robinson annulations. For instance, using a known synthetic route published by Hagiwara et al.,\(^{26}\) a Michael addition was carried out with decanal 123 and methyl vinyl ketone 124 using diethylamine as the base (Scheme 57) to give the precursor 125 in reasonable (60%) yield.

![Scheme 57: Synthesis of 2-(3-oxobutyl)decanal](image-url)
A Robinson annulation of the substrate precursor 125 was then carried out using potassium hydroxide and n-buty1 ammonium hydroxide to form the desired product 126 in moderate yield (Scheme 58, 44%).

\[
\text{Scheme 58: Synthesis of 4-octylcyclohex-2-en-1-one}
\]

2.4.4 Conjugate addition alkene substrate screen optimisation

Similar reaction conditions to the boroxine screen were adopted for the alkene substrate screen. However, previous optimisation in the group had established that using 2 equivalents of the boroxine were optimal and sufficient to give good yields. Additionally, earlier studies had indicated that the \textit{in situ} catalyst (generated from Pd(OAc)\(_2\) and TfOH) performed better with more sterically hindered substrates, and the premade catalyst Pd(MeCN)\(_4\)(OTf)\(_2\) was more suited to more electron-rich systems. With this in mind, the substrate screen was carried out using the most appropriate catalyst for each individual substrate (Scheme 59). Reactions were monitored by TLC analysis and took between 18 and 48 hours to reach completion.

\[
\text{Scheme 59: Reaction conditions used for conjugate addition substrate screen}
\]

\[\text{A: Pd(OAc)\(_2\) (5 mol \%), TfOH (9.9 mol \%)} \text{ or } \text{B: (MeCN)\(_4\)Pd(OTf)\(_2\) (5 mol \%)}\]

\[\text{CICH}_2\text{CH}_2\text{Cl, 18-48 h, 25 °C} \]

\[\text{Alkene + 6c (2 equiv.) \rightarrow Product with MeO group} \]

\[\text{The remaining substrates shown in Table 6 which were not commercially available were synthesised by other members of the Lee Group.}\]
For cyclohexenone substrates 37, 129, 130 and 126 (see Table 6), the optimised reaction conditions (conditions A) were found to give good yields. However, turning our attention to relatively more electron-rich substrates such as 101, the yields reduced somewhat and further optimisation was deemed necessary.

Using 5,6-dihydro-2H-pyran-2-one 101 as the substrate and increasing the equivalents of boroxine 6c to three, a number of reactions were carried out using different reaction times, temperatures and equivalents of sodium nitrate. The standard reaction conditions used for the substrate screen (25 °C, no sodium nitrate) gave a conversion of 70% using dibenzyl ether as the internal standard (Table 4, Entry 1) and therefore we wanted to investigate if this could be increased. Adding 2 equivalents of sodium nitrate did not show any improvement to conversion (Entry 2). Warming the reaction mixture to 30 °C and leaving the reaction for 48 hours actually saw a reduction in conversion (Entry 3). However, on using these conditions and adding sodium nitrate to the reaction mixture, the conversion increased, giving the best conversion of all the conditions screened (76%, Entry 4) and an isolated yield of 68% product 102c.

![Chemical reaction diagram]

Table 4: Optimisation of reaction conditions for substrate 102c

Another substrate included in the substrate screen was chromone 127 (Table 5). Given that we expected this substrate to also be challenging due to its more electron-rich nature (relative to 37), 3 equivalents of boroxine were used. Two reactions were carried out, with 0 and 2 equivalents of sodium nitrate (Table 5). Monitoring by TLC analysis indicated no product formation even after two days. The reactions were then warmed to 50 °C to hopefully induce product formation yet even after a further 5 days, there was
still no evidence of product. A possible reason for this is that the substrate is too electron-rich for our reaction conditions.

![Chemical reaction diagram]

Table 5: Conjugate addition on chromone as the substrate

<table>
<thead>
<tr>
<th>Entry</th>
<th>Equiv. NaNO₃</th>
<th>Time (h)</th>
<th>% conv. to 128c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>48</td>
<td>0</td>
</tr>
</tbody>
</table>

With these results in hand, a substrate screen was completed and for more electron-rich substrates the conditions found to be suitable for 5,6-dihydro-2H-pyran-2-one conditions were used (Table 6).
<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Catalyst</th>
<th>Equiv. boroxine</th>
<th>Time (h)</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>A</td>
<td>2</td>
<td>24</td>
<td>84c 94%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A</td>
<td>2</td>
<td>24</td>
<td>133c 76%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>A</td>
<td>2</td>
<td>24</td>
<td>134c 75%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>A</td>
<td>2</td>
<td>18</td>
<td>135c 94% 8:1 dr</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>B</td>
<td>3</td>
<td>48</td>
<td>102c 68%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>B</td>
<td>3</td>
<td>24</td>
<td>136c 88%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>B</td>
<td>3</td>
<td>48</td>
<td>137c 60%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>A</td>
<td>2</td>
<td>24</td>
<td>83c 61%</td>
</tr>
</tbody>
</table>
Table 6: Conjugate addition reaction substrate screen

The substrate screen demonstrated the versatility of the reaction conditions to a range of different substrates. Substrates bearing alkyl groups at different positions on the cyclohexenone ring (37, 129 and 130, Table 6, Entries 1-3) performed well with the *in situ* generated catalyst (conditions A) and gave very good to excellent yields. Even an alkyl chain at the γ position close to the reactive alkene centre (126, Entry 4) gave an excellent yield, with good diastereomeric ratio.

As previously discussed, after further optimisation more electron-rich substrates gave good to excellent yields of the conjugate addition product using conditions B (101, 131 and 132, Entries 5-7) with the exception of chromone (127, Entry 9). Additionally, reducing the ring size and using 2-cyclopenten-1-one 82 as the substrate also formed the conjugate addition product in good 61% yield (Entry 8).

<table>
<thead>
<tr>
<th>9<sup>a</sup></th>
<th>![Substrate Structure]</th>
<th>B</th>
<th>3</th>
<th>7 days 25-50°C</th>
<th>No reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Substrate Structure]</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a2 equiv. NaNO₃ added. ^b30 °C. ^c1 equiv. NaNO₃ added; author’s work shown in red.
2.5 Oxidative Heck reaction

2.5.1 Reaction optimisation

Following on from the initial promising result for the oxidative Heck reaction carried out by Steven Levey (Scheme 60), our attention next turned to the oxidative Heck reaction on cyclic enones with aryl boronic acids.

Scheme 60: Initial oxidative Heck result by Steven Levey

Initial optimisation work on the oxidative Heck reaction building on Steven Levey’s result (Scheme 60) was unfortunately hampered by irreproducible results and poor yields. Part of the reason for this was attributed to the volatility of 2-cyclohexen-1-one and conversions calculated from 1H NMR analysis based on the remaining starting material in the reaction as a reference were deemed to be unreliable and conversions misleading. Therefore, these results are not included in this chapter, although some useful knowledge was gained from these initial studies with regards to suitable reaction conditions. Once the reasons for the unreliability of results had become clear, conversions or yields for all further reactions were calculated either using an internal standard (dibenzyl ether or 4-nitrobenzaldehyde), or by isolating the product.

Despite this setback, our initial studies did enable us to establish some reasonable reaction conditions for the oxidative Heck reaction which we could then optimise further.

The initial catalyst loading of 5 mol% used in the original solvent screen (Table 1), was deemed appropriate for optimisation work. For optimisation, the premade catalyst Pd(MeCN)$_4$(OTf)$_2$ was used. In initial studies, it was found to be as effective as the in situ generated catalyst and therefore it was decided that for ease of handling (avoiding
the need to use triflic acid) this catalyst was used for optimisation work. Also, in the initial solvent screen (Table 1), molecular oxygen was used as the chosen oxidant and therefore used for optimisation studies. In order to monitor reactions easily by NMR, d$_6$-DMSO was used as the solvent at a concentration of 0.25 M.

As previously mentioned, prior investigations in the group had found that using sodium nitrate as an additive tends to reduce the formation of both the boronic acid dimer, and also the phenol derived from the boronic acid. Therefore, optimisation was carried out using 2 equivalents of this additive.

Our initial optimisation work, despite being hampered by irreproducible results and poor yields, had indicated that a higher temperature than 50 °C used in the initial solvent screen was perhaps needed to give a good conversion to oxidative Heck product. Therefore, we used a temperature of 90 °C to first conduct a screen to examine what effect changing the stoichiometry of substrate and boroxine would have on conversion (Table 7).

We examined a variety of stoichiometries of substrate to boroxine, using 2-cyclohexen-1-one 37 as the substrate and triphenylboroxine 6a as the coupling partner (Table 7).

![Chemical Reaction Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Equiv. 37</th>
<th>Equiv. 6a</th>
<th>% conv. to 38aa</th>
<th>% conv. to 84aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>33</td>
<td>0</td>
</tr>
</tbody>
</table>

aDetermined by 1H NMR analysis using dibenzyl ether as internal standard.

Table 7: Optimisation of reaction stoichiometry
Unfortunately, none of the reactions carried out gave good conversion to the oxidative Heck product 38a. However, no evidence of conjugate addition product 84a was seen for any of the reactions and the oxidative Heck product 38a was formed exclusively. Conversions were similar for both 3:1 boroxine 6a to substrate 37 and also using the reverse stoichiometry of 1:3 boroxine to substrate (Entries 1 and 5). The conversions increased to over 30% when 4 and 5 equivalents of substrate were used but were still poor (Entries 6 and 7).

From these results we decided to use a stoichiometry of 1 equivalent substrate to 3 equivalents of boroxine (3 equivalents of the single aryl group of the boroxine trimer) for further optimisation studies. Although using an excess of substrate (4 or 5 equivalents, Entries 6 and 7, Table 7) does give a higher conversion, we decided that it was prudent to use the boronic acid as the excess reagent given the tendencies for boronic acids to homocouple which would obviously reduce yield considerably if the boronic acid were to be the limiting reagent.
Oxidative Heck reaction optimisation – solvent screen

Despite attempted further optimisation of the oxidative Heck reaction, conversions were still not comparable to the initial result obtained when DMSO was used as a solvent (84% yield, Table 1, Entry 10 note: however this result did use the more active aryl boroxine 6c and the in situ generated catalyst). Therefore, optimisation studies were continued with another solvent screen. For practical reasons, the temperature was lowered from previous optimisation work (see Table 7) to 50 °C and a range of solvents investigated, examining the ratio of oxidative Heck to conjugate addition product as well as the conversion (Table 8). Additionally, it was decided that for this screen the amount of sodium nitrate used as an additive would be reduced to 1 equivalent and a stoichiometry of 2:1 boroxine 6a (aryl group of the boroxine trimer) to substrate 37 would be used.

![Reaction diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>% conv. to 38a (^a)</th>
<th>% conv. to 84a (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d<sub>6</sub>-DMSO</td>
<td>68</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>DMF</td>
<td>Could not calculate</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NMP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Acetone</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>Methanol</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>Acetonitrile</td>
<td>21</td>
<td>79</td>
</tr>
</tbody>
</table>

\(^a\) Determined by \(^1\)H NMR analysis

Table 8: Oxidative Heck reaction optimisation solvent screen

Despite the poor conversions to date in optimisation studies, the solvent screen confirmed that DMSO was the best solvent in terms of yield of oxidative Heck product 38a and for selectivity over the conjugate addition product 84a (Entry 1, Table 8).

\(^1\) No internal standard was used in the solvent screen. Therefore the ratios of conjugate addition to oxidative Heck products are accurate but the overall conversions may include some degree of error given that overall conversions are based on the amount of 2-cyclohexen-1-one 37 left in the reaction after 22 hours.
Unfortunately some conjugate addition product was still formed but a conversion of 68% to oxidative Heck product using a lower temperature of 50 °C (compared to 90 °C used in Table 1) certainly indicated progress in the optimisation studies.

Oxidative Heck reaction optimisation – investigating the equivalents of sodium nitrate

Given that 50 °C and DMSO were established as the best temperature and solvent for the reaction, our attention turned to examining the equivalents of sodium nitrate used in the reaction. Using a stoichiometry of 2:1 boroxine 6a to substrate 37, and the conditions shown below, reactions were carried out using 0, 1 and 2 equivalents of sodium nitrate to see what effect the additive would have on conversion (Table 9).

![Chemical reaction diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Eq. NaNO₃</th>
<th>% conv. to 38a</th>
<th>% conv. to 84a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>57</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>53</td>
<td>16</td>
</tr>
</tbody>
</table>

* Determined by ¹H NMR analysis using dibenzyl ether as internal standard.

Table 9: Optimising the equivalents of sodium nitrate

Despite previous investigations in the group indicating that sodium nitrate improved yield by suppressing homocoupling,

this screen showed that within error, the use of sodium nitrate in the reaction does not make much of a difference to conversions to oxidative Heck product 38a. Therefore, sodium nitrate was omitted from further optimisation reactions.

Following this result we decided that it would be sensible to reoptimise the equivalents of boronic acid given that our original screen investigating stoichiometries used 2 equivalents of sodium nitrate and this may well have affected results (Table 7).
Oxidative Heck reaction optimisation – investigating the stoichiometry of substrate and boroxine

![Chemical reaction](image)

Table 10: Investigating the reaction stoichiometry and reaction time with 0 equivalents sodium nitrate

<table>
<thead>
<tr>
<th>Entry</th>
<th>Equiv. 6a</th>
<th>Time (h)</th>
<th>% conv. to 38a<sup>a</sup></th>
<th>% conv. to 84a<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>47</td>
<td>62</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>47</td>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>22</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>22</td>
<td>59</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>22</td>
<td>44</td>
<td>24</td>
</tr>
</tbody>
</table>

^aDetermined by ¹H NMR analysis using 4-nitrobenzaldehyde as internal standard.

Initial reactions (Table 10, Entries 1 and 2), indicated that 2 equivalents gave the best conversion to oxidative Heck product 38a and interestingly, increasing the equivalents resulted in a considerable drop in conversion. These reactions were conducted over two days in an effort to increase conversion. Taking the best result (Entry 1), the reaction time was reduced and further reaction stoichiometries were investigated; 1.5, 2 and 2.5 equivalents of boroxine, over 22 hours. Again, 2 equivalents of boroxine not only gave the best conversion to oxidative Heck product 38a but also the lowest conversion to conjugate addition product 84a (Entry 4).
Following on from investigating optimal stoichiometry (Table 10), an increase in conversion was still desirable and therefore different temperatures were investigated to see if this would make a difference (Table 11). Given that the conversion to oxidative Heck product 38a was comparable when 2 equivalents of boroxine were used over a reaction time of both 47 and 22 hours (Table 10, Entries 1 and 4), it was decided that a reaction time of one day would be used for the temperature screen (Table 11).

Table 10, Entry 4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temp. (°C)</th>
<th>% conv. to 38a(^a)</th>
<th>% conv. to 84a(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 10, Entry 4</td>
<td>50</td>
<td>59</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>25</td>
<td>9</td>
</tr>
</tbody>
</table>

\(^a\)Determined by \(^1\)H NMR analysis using 4-nitrobenzaldehyde as internal standard.

The temperature screen showed that both an increase and decrease in temperature from 50 °C caused a drop in conversion to oxidative Heck product. Therefore, it was decided that 50 °C would be the optimal reaction temperature to use for further optimisation work.

Oxidative Heck reaction optimisation – temperature screen

\[
\text{Ph} + \text{Ph} \xrightarrow{\text{Pd(MeCN)}_4(OTf)_2 (5 \text{ mol\%)}} \text{Ph} + \text{Ph} \\
\text{37} + \text{6a} \quad \text{2 equiv.} \\
\text{d}_6-\text{DMSO, 0.25 M} \\
\text{x °C, O}_2, \text{23 h}
\]
Oxidative Heck reaction optimisation – portionwise addition of catalyst and boroxine

Given that conversions still remained moderate in our optimisation work and needed improvement, investigation of catalyst loading and portionwise addition of catalyst and boronic acid was finally investigated. Obviously it would be desirable to carry out the reaction with minimal catalyst loading but given the difficulties experienced in trying to increase conversions we decided to also investigate an increase in catalyst loading to see if this would have a positive effect on conversions (Table 12).

Various combinations of catalyst loading, the number of portions of catalyst and boroxine 6a added in addition to reaction time were investigated and compared to the best result to date which gave 62% conversion to oxidative Heck product 38a and 24% conversion to conjugate addition product 84a (Table 10, Entry 1). This result is included in Table 12 (Entry 1) for ease of comparison.

Firstly, a portionwise addition approach of catalyst and boroxine was adopted and an additional 5 mol% catalyst and 2 equivalents of triphenyl boroxine 6a were added to the reaction mixture after 19 h (Entry 2). Pleasingly, whilst conversion to conjugate addition product 84a remained the same as when only one portion of 5 mol% catalyst was added (Entry 2 versus Entry 1), the conversion to oxidative Heck product 38a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Portion 1</th>
<th>Portion 2</th>
<th>Reaction time</th>
<th>% conv.</th>
<th>38a</th>
<th>84a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mol% catalyst</td>
<td>Added at x h</td>
<td>mol% catalyst</td>
<td>Equiv. 6a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>47</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>19</td>
<td>5</td>
<td>2</td>
<td>41</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>2</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8.5</td>
<td>5</td>
<td>2</td>
<td>24</td>
<td>62</td>
</tr>
</tbody>
</table>

*Table 10, Entry 1. *Determined by 1H NMR analysis using 4-nitrobenzaldehyde as internal standard.

Table 12: Portionwise addition of catalyst and boroxine
increased to 70%. This result clearly indicated that additional catalyst and boroxine added part way through the reaction certainly helped to increase conversion. Using this portionwise addition approach we then investigated if the catalyst loading could be reduced by adding 3 mol% catalyst at the beginning of the reaction and a further portion of 3 mol% catalyst and 2 equivalents boroxine after 19 hours (Entry 3). This unfortunately did not give comparable conversions and also the ratio of oxidative Heck to conjugate addition product became 1:1 indicating that a higher catalyst loading was necessary.

Next, given that our best result to date was using 2 portions of 5 mol% catalyst (Entry 2), we then investigated using a higher catalyst loading at the beginning of the reaction (in this case, 11 mol%, Entry 4) to see if adding 10 mol% catalyst over 2 portions rather than 1 was strictly necessary. The conversion to oxidative Heck product \(38a\) did in fact reduce to 55%, compared to 70% when the portionwise addition method was adopted (Entry 4 versus Entry 2). Interestingly, no conjugate addition product \(84a\) was formed in this reaction. Despite the formation of oxidative Heck product exclusively, it was decided that the portionwise addition method which gave the best conversion to oxidative Heck product would be the best method to pursue.

The final reaction in this study was to investigate whether a drop in reaction time from two days to one day would affect the conversion. Using the portionwise addition method, and adding the additional portions of catalyst and boroxine after 8.5 hours reduced the yield of oxidative Heck product \(38a\) to 62%, although the conversion to conjugate addition product \(84a\) was comparable to the 2 day reaction (Entry 5 versus Entry 1).

From these optimisation reactions, the best conditions were found to be portionwise addition of catalyst, where two portions of catalyst (5 mol%) were added; one at the start of the reaction and the second after 19 hours (Table 12, Entry 2). The reaction was then left for another 21 hours before work up and purification of the product. These conditions were then used for a boroxine screen.
2.5.2 Oxidative Heck reaction – boroxine screen

Using the best reaction conditions from our optimisation work (Table 12, Entry 2), a range of boroxines were screened with differing steric and electronic properties (Table 13).

![Chemical structure diagram]

Table 13: Oxidative Heck reaction initial boroxine screen

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aryl</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td>38a 68</td>
</tr>
<tr>
<td>2</td>
<td>6d</td>
<td>38d 60</td>
</tr>
<tr>
<td>3</td>
<td>6c</td>
<td>38c 58</td>
</tr>
<tr>
<td>4</td>
<td>6e</td>
<td>38e 46</td>
</tr>
<tr>
<td>5</td>
<td>6f</td>
<td>38f 47</td>
</tr>
<tr>
<td>6</td>
<td>6i</td>
<td>38i ~50% conv. a</td>
</tr>
<tr>
<td>7 b</td>
<td>6j</td>
<td>38j Complex mixture of products</td>
</tr>
<tr>
<td>8</td>
<td>6g</td>
<td>38g 60% conv. c</td>
</tr>
</tbody>
</table>

a Large amount of dimer formed. Conversion calculated according to remaining starting material as internal standard coelutes with product so could not be used. b O2 atmosphere. c Determined by 1H NMR analysis using dibenzyl ether as internal standard.
This screen gave good results with a number of boroxines and despite the conjugate addition product being present in the catalyst loading studies shown in Table 12, for this screen no conjugate addition product formation was evident (except for Entry 1 which is the oxidative Heck product isolated from Entry 2, Table 12), demonstrating full switching to oxidative Heck product 38. Yields were moderate however, in comparison to the less challenging conjugate addition reaction. With some of the oxidative Heck reactions being hampered by poor conversions and low yields (Table 13, Entries 4-8), we thought that it may be useful to investigate how the yields are affected when the boronic acid is used in the reaction, rather than the boroxine. Whilst previous studies had indicated that the boroxine trimer of the corresponding boronic acid was necessary for conjugate addition reactions, this had not been investigated with regards to our work on oxidative Heck reactions.
In order to investigate whether using the boroxine or boronic acid in the oxidative Heck reactions gave different results, we carried out two reactions; one with boronic acid (recrystallised from water) and the second with boroxine (formed by taking the commercial boronic acid and heating under vacuum). The reactions were run over 24 hours using triphenyl boroxine/phenyl boronic acid as the coupling partner (Table 14). A ratio of 1:2 substrate 37 to boronic acid 6a was used, which for the boroxine equated to 0.66 equivalents of the trimer (i.e. 2 equivalents of the single aryl group of the boroxine).

![Reactions](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Boronic acid/boroxine</th>
<th>% conv.(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

*\(^a\)Determined by \(^1\text{H}\) NMR analysis using dibenzyl ether as internal standard.

Table 14: Comparison of aryl boroxine to aryl boronic acid in the oxidative Heck reaction

Interestingly, when boronic acid was used in the reaction, the conversion was considerably higher than when boroxine was used. Using this result, we then decided to repeat the oxidative Heck reactions which had given poor conversions and low yields in order to see if the yields could be improved when boronic acid (recrystallised from water) was used as the coupling partner (Table 15).
<table>
<thead>
<tr>
<th>Entry</th>
<th>Aryl</th>
<th>Isolated yield (%) using boroxine</th>
<th>Isolated yield (%) using boronic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>38a 68</td>
<td>38a 59</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>38d 60</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>38e 46</td>
<td>38e 66</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>38f 47</td>
<td>38f 57</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-</td>
<td>38m 68</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-</td>
<td>38n 48<sup>a</sup></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-</td>
<td>38l 53<sup>b</sup></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-</td>
<td>38h 43<sup>b</sup></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>38i 50% conv.</td>
<td>38i 50% conv.<sup>b</sup></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Complex mixture of products</td>
<td>38j 24<sup>b,c,d</sup></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-</td>
<td>38e 66<sup>d,e</sup></td>
</tr>
</tbody>
</table>

^a34% conjugate addition product isolated. ^bThree portions of 5 mol% catalyst. ^c1.5 equiv. benzoquinone used. ^dSome conjugate addition product evident in the reaction but not quantified. ^eCommercial aryl boronic acid + water (1.5 equiv.).

Table 15: Oxidative Heck reaction – boronic acid screen

Additional members of the Lee group also worked on this screen, mainly undergraduate ERASMUS student Julian Boehnke; results attributed to the author are shown in red in Table 15.
Generally, an improvement in yield was seen when aryl boronic acids were used rather than aryl boroxines (Entries 3 and 4). Despite phenyl boronic acid giving a slightly lower yield of oxidative Heck product than when the corresponding boroxine was used (Entry 1), it was decided that boronic acids rather than boroxines would be used to complete this screen.

The boronic acid screen shows that a range of boronic acids are tolerated in the reaction and moderate to good yields of oxidative Heck product can be obtained. Aryl boronic acids bearing substituents at the ortho-, meta- and para- positions and polyaromatics (6a, d, e, f and m) give the desired oxidative Heck product using our optimised reaction conditions (Entries 1-5). Readily oxidisable 2-fluorene boronic acid 6n also tolerates the reaction conditions and gives a moderate yield of oxidative Heck product 38n (Entry 6), although 34% conjugate addition product was also isolated in this case.

For a number of electron-poor boronic acids (6h, i, j and l) which are known to be challenging coupling partners, a third portion of catalyst was needed in order to push the reaction to completion or give a decent yield (Entries 7-10). Additionally, p-bromophenyl boronic acid 6j proved to be challenging, presumably for the same reasons as specified in the conjugate addition work; the propensity for palladium(0) to insert into C-Br bonds. By adding benzoquinone as an additional oxidant, a yield of 24% oxidative Heck product 38j was obtained with a small quantity of conjugate addition product. Despite the yield not being comparable to other oxidative Heck products, being able to introduce the bromo functionality is advantageous as it provides a handle for further reactions such as Pd(0) cross-couplings.

To complete our investigations an additional reaction was carried out whereby commercial boronic acid (taken straight from the bottle) was used in the reaction along with 1.5 equivalents of water in order to force the equilibrium towards the aryl boronic acid in situ. This reaction gave the oxidative Heck product 38e in good yield (66%, Entry 11) which is comparable to the yield obtained when recrystallised boronic acid is used (Table 15, Entry 3). However, when the arylboronic acid was used, some conjugate addition product was also formed rather than exclusively oxidative Heck product 38e. Despite this, the yield of oxidative Heck product when the aryl boronic acid is used is still considerably higher than when the aryl boroxine is used, even though with the latter coupling partner solely oxidative Heck product was formed.
2.5.3 Oxidative Heck reaction – substrate screen

The next part of this project was to investigate the substrate scope of the oxidative Heck reaction. This substrate screen was carried out by other members of the Lee group, but it is included for completeness.

The catalyst was chosen according to the type of substrate; the *in situ* generated catalyst (conditions A, Table 16) was found to be best for more sterically hindered substrates and the premade catalyst Pd(MeCN)$_4$(OTf)$_2$ (conditions B, Table 16) was suited to more electron-rich substrates. Optimisation of the reaction conditions also found that 5 mol% catalyst was sufficient for the majority of substrates. Results from the substrate screen using tris(p-methoxyphenyl)boroxine 6c are shown below (Table 16). The same substrates were used for this screen as were used in the conjugate addition work so that direct comparisons could be drawn between oxidative Heck and conjugate addition results and demonstrate the switching between reaction products which occurs when a different solvent is used. Comparison between results for oxidative Heck and conjugate addition reactions for each substrate will be discussed in more detail in section 2.5.4.
Table 16: Oxidative Heck reaction substrate screen

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Catalyst</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>A</td>
<td>38c 84%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A</td>
<td>138c 57%</td>
</tr>
<tr>
<td>3<sup>a,b</sup></td>
<td></td>
<td>A</td>
<td>139c 60%</td>
</tr>
<tr>
<td>4<sup>b</sup></td>
<td></td>
<td>A</td>
<td>140c 38% conv.</td>
</tr>
<tr>
<td>5<sup>b</sup></td>
<td></td>
<td>A</td>
<td>103c 66%</td>
</tr>
<tr>
<td>6<sup>b,c</sup></td>
<td></td>
<td>B</td>
<td>141c 50%</td>
</tr>
<tr>
<td>7<sup>b,c</sup></td>
<td></td>
<td>B</td>
<td>142c 80%</td>
</tr>
<tr>
<td>8<sup>d</sup></td>
<td></td>
<td>A</td>
<td>114c 32%</td>
</tr>
</tbody>
</table>

^a70 °C, 3:1 substrate:boroxine. ^bNaNO₃ added (1-2 equiv). ^c10 + 5 mol% catalyst, 2 + 0.5 equiv. boroxine. ^d5 + 5 mol% catalyst, 2 + 2 equiv. boroxine, 1:1 conjugate addition:oxidative Heck.
With the exception of cyclopenten-2-one 82 which gave a 1:1 ratio of oxidative Heck to conjugate addition product (Entry 8), all of the substrates formed the oxidative Heck product in good to excellent yield. Yields were decent to very good for sterically hindered substrates (129 and 130, Entries 2 and 3). A slightly higher temperature was found to be necessary to give product 139c, in addition to using reverse stoichiometry of the substrate to boroxine (3:1). γ-Substituted cyclohexenones 126 give quite poor conversion, presumably due to the proximity of the substituent to the reactive alkene centre (Entry 4). More electron-rich substrates (101, 131 and 132, Entries 5-7) also give reasonable to very good yields of the oxidative Heck product.
2.5.4 Substrate screen – comparison between oxidative Heck and conjugate addition results

In order to compare yields of oxidative Heck to conjugate addition products for each substrate, the yields for both reactions are compiled and shown below (Figure 1).

Using various cyclic enone substrates and tris(p-methoxyphenyl)boroxine, we have successfully been able to switch the reaction outcome from conjugate addition product to oxidative Heck product by changing the solvent from dichloroethane to DMSO.

A wide range of substrates with various steric and electronic properties are tolerant of both sets of reaction conditions. Generally yields are good to excellent for conjugate addition products.
addition reactions. A slight decrease in yield is seen for oxidative Heck reactions (with the exception of 132) but this is unsurprising given that cyclic enones are challenging substrates for oxidative Heck reactions. Our studies found that whilst substituents close to the reactive alkene centre do not hinder the conjugate addition reaction, they do retard the oxidative Heck somewhat (Figure 1). Additionally, we have found that the premade catalyst (MeCN)_4Pd(OTf)_2 is suited to more electron-rich substrates for both conjugate addition and oxidative Heck reactions whilst the in situ generated catalyst [Pd(OTf)_2] performs well for more sterically hindered substrates.
2.5.5 Boronic acid screen – comparison between oxidative Heck and conjugate addition results

Having conducted a boronic acid screen for both conjugate addition and oxidative Heck reactions, the results for both reactions are shown in the figure below for comparison (Figure 2).

![Diagram showing comparative results of oxidative Heck and conjugate addition reactions using boronic acid screen.]

As previously discussed in section 2.4.2 (Table 3), conjugate addition reactions of 2-cyclohexen-1-one 37 with a range of boroxines gave good to excellent yields using the premade catalyst \((\text{MeCN})_4\text{Pd(OTf)}_2\). Using the same catalyst and aryl boronic acids...
rather than the corresponding boroxine, oxidative Heck reactions proceeded in moderate to excellent yields. The majority of boronic acids with the exception of 2-fluorene boronic acid 6n demonstrated efficient switching from conjugate addition to oxidative Heck product on changing the reaction solvent. Yields showed a similar trend to the substrate screen in that they were lower for the oxidative Heck reactions, which again reflects the fact that this reaction is more challenging than conjugate addition. Despite this, a clear switching from exclusively conjugate addition product to oxidative Heck product can be observed from these results.
2.5.6 Catalyst studies – carried out by J. Boehnke

In order to shed light on factors which affect the switching between oxidative Heck and conjugate addition reactions, we decided to investigate the identity of the catalyst in DMSO. By adding four equivalents of DMSO to a solution of the catalyst (MeCN)$_4$Pd(OTf)$_2$ in chloroform and growing a crystal from the solution, the complex (DMSO)$_4$Pd(OTf)$_2$ was identified by X-ray analysis. The complex has 2 S-bound and 2 O-bound DMSO molecules in a cis geometry (Figure 3).

![Figure 3: Crystal structure of (DMSO)$_4$Pd(OTf)$_2$](image)

Formation of the complex shown in Figure 3 confirmed our hypothesis that the more polar and coordinating DMSO (as opposed to non-polar dichloroethane) possibly ligates to palladium during the oxidative Heck reaction. This ligation perhaps stabilises the cationic palladium centre in a way that promotes the oxidative Heck reaction pathway rather than formation of the conjugate addition product. These two pathways are discussed below (section 2.5.7).
2.5.7 Mechanism

Scheme 61: Proposed catalytic cycle for oxidative Heck and conjugate addition reactions

The mechanisms for both oxidative Heck and conjugate addition reactions begin with the same two steps: transmetallation of the arylboron species onto palladium, followed by migratory insertion of the alkene substrate (e.g. 37) to give intermediate I (Scheme 61). It is at this point in the catalytic cycle that the two mechanisms diverge to form either the oxidative Heck (38) or conjugate addition product (84).

Intermediate I can undergo protonolysis either directly or more likely via enolate II to form the conjugate addition product 84. Alternatively, in order for the oxidative Heck product to be formed, syn β-hydride elimination needs to be facilitated. Intermediate I is sterically precluded from undergoing syn β-hydride elimination and thus epimerisation of I to III via II takes place before this final step to form the oxidative Heck product 38.

*Alternatively, a boron enolate species could be formed during the mechanistic cycle as opposed to the palladium enolate shown in Scheme 61.
From our studies, we have found that more polar solvents favour oxidative Heck reactions and therefore must promote the *syn* β-hydride elimination step over protonolysis, whereas the conjugate addition pathway is more favoured when dichloroethane is used as a solvent. Following on from X-ray analysis of the catalyst Pd(MeCN)$_4$(OTf)$_2$ in DMSO as discussed above (section 2.5.6), the ligation of DMSO to palladium may be stabilising the metal centre in such a way that *syn* β-hydride elimination is promoted, by affecting the equilibrium between I, II and III.

It is possible that DMSO ligation forms a softer Pd centre which prefers the softer C-bound enolate III over the O-bound enolate II, thus promoting the epimerisation to III to allow *syn* β-hydride elimination.

A second possible reaction pathway to give the oxidative Heck product 38 would be *via* conjugate addition followed by oxidation. However, after subjecting conjugate addition product 84 to the oxidative Heck reaction conditions, only trace oxidative Heck product was formed thus confirming that the oxidative Heck products are indeed formed *via* the proposed pathway.
2.6 Conclusions

We have successfully developed methodology to efficiently switch the outcome of the ligand- and base-free Pd(II)-catalysed reaction between cyclic enones and boronic acids from conjugate addition to oxidative Heck product by changing the solvent. The reaction is tolerant of a variety of aryl boronic acids and substrates and proceeds in good yields. We found that whilst aryl boroxines are required for the conjugate addition reaction, aryl boronic acids are preferred for the oxidative Heck reaction. We have also investigated reasons for this switch and our studies have found that more polar solvents promote oxidative Heck over conjugate addition. Dichloroethane was the most suitable solvent for conjugate addition reactions whereas the oxidative Heck product was formed preferentially when DMSO was used. Possible reasons for this include ligation of DMSO to palladium which perhaps stabilises the metal centre and facilitates the syn β-hydride elimination step leading to formation of the oxidative Heck over conjugate addition product.
2.7 Experimental Section

\(^1\)H NMR spectra were recorded on Bruker AV 300 and AV 400 spectrometers at 300 and 400 MHz respectively and referenced to residual solvent. \(^{13}\)C NMR spectra were recorded using the same spectrometers at 75 and 100 MHz respectively. Chemical shifts (\(\delta\) in ppm) were referenced to tetramethylsilane (TMS) or to residual solvent peaks (CDCl\(_3\) at \(\delta_H\) 7.26 ppm, \(\delta_C\) at 77.00 ppm, (CD\(_3\))\(_2\)CO at \(\delta_H\) 2.05 ppm, \(\delta_C\) at 29.84 ppm or C\(_6\)D\(_6\) at \(\delta_H\) 7.16 ppm, \(\delta_C\) at 128.06 ppm). \(J\) values are given in Hz and s, d, dd, t, q, qn and m abbreviations correspond to singlet, doublet, doublet of doublet, triplet, quartet, quintet and multiplet. Mass spectra were obtained at the EPSRC UK National Mass Spectrometry Facility at Swansea University. Infrared spectra were obtained on Perkin-Elmer Spectrum 100 FT-IR Universal ATR Sampling Accessory, deposited neat or as a chloroform solution to a diamond/ZnSe plate. Br, v str, str, w represent broad, very strong, strong and weak respectively. Flash column chromatography was carried out using Matrix silica gel 60 from Fisher Chemicals and TLC was performed using Merck silica gel 60 F254 pre-coated sheets and visualised by UV (254 nm) or stained by the use of aqueous acidic KMnO\(_4\) or aqueous acidic ceric ammonium molybdate as appropriate.

Petrol ether refers to petroleum ether (40–60 °C). Dichloroethane (DCE) was purchased from Alfa Aesar and used without further purification. d\(_6\)-Dimethylsulfoxide (d\(_6\)-DMSO) was purchased from Cambridge Isotope Laboratories. 2-Cyclohexen-1-one was purchased from Fluka and Sigma Aldrich. All oxidative Heck reactions were run under an O\(_2\) atmosphere provided by a balloon filled with O\(_2\) supplied by BOC. All arylboronic acids were purchased from Sigma-Aldrich, Fluorochem or Acros. Commercially available boronic acids contain varying amounts of their corresponding anhydride.

Preparation of boroxine: Where the boroxine was used for reactions, it was prepared by heating the relevant boronic acid under vacuum until the crystalline solid became flocculent, silica like particles. RMM of the boroxine used in calculations is actually 1/3 RMM to represent one Ar-B-O unit given the boroxine exists in trimeric form.
Substrate synthesis

2-(3-Oxobutyl)decanal (125)\(^{26,28}\)

Decanal (8.35 mL, 6.93 g, 0.0443 mol) was added to a dried, sealed vessel. Diethylamine (0.92 mL, 0.65 g, 8.89 mmol) was added followed by dry THF (475 mL) *via* canula. The resulting solution was stirred and 3-buten-2-one (5.34 mL, 4.61 g, 0.066 mmol) was added followed by THF (10 mL). The reaction mixture was left to stir at 80 °C for 70 hours after which it was left to cool, concentrated under reduced pressure and purified by flash column chromatography using a gradient eluent system 20:1→7:1 hexane:ethyl acetate to afford a yellow oil 125 (6.00 g, 0.0265 mol, 60%).

R\(_f\) 0.42 (5:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 9.54\) (d, \(J = 2.8\) Hz, 1H, H\(_a\)), 2.56 – 2.33 (m, 2H, H\(_c\)), 2.30 – 2.18 (m, 1H, H\(_b\)), 2.12 (s, 3H, H\(_d\)), 1.94 – 1.56 (m, 4H, alkyl CH\(_2\)), 1.51 – 1.36 (m, 2H, alkyl CH\(_2\)), 1.36 – 1.15 (m, 10H, alkyl CH\(_2\)), 0.86 (t, \(J = 6.7\) Hz, 3H, H\(_b\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 207.8\) (C), 204.8 (C), 51.1 (CH), 40.6 (CH\(_2\)), 31.7 (CH\(_2\)), 29.9 (CH\(_3\)), 29.5 (CH\(_2\)), 29.3 (CH\(_2\)), 29.1 (CH\(_2\)), 28.9 (CH\(_2\)), 26.9 (CH\(_2\)), 22.5 (CH\(_2\)), 22.2 (CH\(_2\)), 14.0 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2924 str, 2855 str, 1719 str, 1458 w.
4-Octyl-2-cyclohexen-1-one (126)26,28

2-(3-Oxobutyl)decanal 125 (6.00 g, 0.0265 mol) was dissolved in THF (59 mL) and Et₂O (226 mL). Potassium hydroxide (5%) solution (208 ml) was added followed by nBu₄NOH 40% solution in H₂O (14 mL, 13.9 g, 0.0214 mol). The resulting solution was heated to reflux under N₂ for 5 hours before it was removed from heat and stored in a freezer overnight then returned to reflux for a further 1 hour. On completion, the reaction was left to cool, washed with brine (20 mL) and the aqueous phase was washed with Et₂O (3 x 20 mL). The organic phase was dried over MgSO₄, concentrated under reduced pressure and purified by flash column chromatography using a gradient eluent system 18:1→15:1 petroleum ether:EtOAc to afford a yellow oil 126 (2.43 g, 0.0117 mol, 44%).

Rᵣ 0.53 (7:1 petroleum ether:EtOAc); 1H NMR (300 MHz, CDCl₃): δ = 6.93 – 6.81 (m, 1H), 6.03 – 5.92 (m, 1H), 2.64 – 2.26 (m, 3H), 2.24 – 1.97 (m, 1H), 1.79 – 1.59 (m, 1H), 1.58 – 1.14 (m, 14H), 0.98 – 0.78 (m, 3H); 13C NMR (75 MHz, CDCl₃): δ = 200.0 (C), 155.4 (CH), 128.8 (CH), 36.9 (CH₂), 36.0 (CH), 34.5 (CH₂), 31.8 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.2 (CH₂), 28.6 (CH₂), 26.9 (CH₂), 22.6 (CH₂), 14.1 (CH₃); $ν_{\text{max/ cm}^{-1}}$ 2924 str, 2854 str, 1679 str, 1457 w.
Synthesis of conjugate addition products

3-Phenylcyclohexanone (84a)29

Pd(MeCN)\textsubscript{4}(OTf)\textsubscript{2} (7.0 mg, 12.3 μmol) and NaNO\textsubscript{3} (42.8 mg, 0.504 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture stirred for 5 minutes. 2-Cyclohexen-1-one 37 (24.6 mg, 0.251 mmol) was weighed and added \textit{via} pasteur pipette, washing the pipette with additional DCE (4 ml) to afford a dark orange solution. Phenyl boroxine (78.6 mg, 0.756 mmol) was added and the mixture was sonicated for 2 minutes. The reaction mixture was left to stir at 25 °C for 40 h. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using an eluent system 10:1 hexane:EtOAc to afford 84a as a yellow oil (33.5 mg, 0.193 mmol, 77%).

R\textsubscript{f} 0.32 (5:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl\textsubscript{3}): δ = 7.38 – 7.33 (m, 2H, Ar-H), 7.28 – 7.23 (m, 3H, Ar-H), 3.09 – 2.98 (m, 1H, CHAr), 2.65 – 2.35 (m, 4H, CH\textsubscript{2}), 2.22 – 2.09 (m, 2H, CH\textsubscript{2}), 1.94 – 1.73 (m, 2H, CH\textsubscript{2}); 13C NMR (75 MHz, CDCl\textsubscript{3}): δ = 211.0 (C), 144.3 (C), 128.6 (CH), 126.6 (CH), 126.5 (CH), 48.9 (CH\textsubscript{2}), 44.7 (CH), 41.2 (CH\textsubscript{2}), 32.7 (CH\textsubscript{2}), 25.5 (CH\textsubscript{2}); \nu_{\text{max}}/\text{cm}^{-1} 2938 str, 2865 str, 1711 v str, 1497 m, 1451 m, 756 w, 700 str.
3-(4-Methoxyphenyl)cyclohexanone (84c)30

Pd(MeCN)$_4$(OTf)$_2$ (7.4 mg, 12.9 μmol) and NaNO$_3$ (43.0 mg, 0.506 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture stirred for 5 minutes. 2-Cyclohexen-1-one 37 (24.3 mg, 0.253 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 ml) to afford an orange solution. Tris(4-methoxyphenyl)boroxine (100.6 mg, 0.751 mmol) was added and the mixture was sonicated for 2 minutes. The reaction mixture was left to stir at 25 °C for 24 h. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using an eluent system 10:1 hexane:EtOAc to afford 84c as a yellow oil (38.5 mg, 0.188 mmol, 74%).

1H NMR (400 MHz, CDCl$_3$): δ = 7.13 (d, J = 8.8 Hz, 2H, Ar-H), 6.86 (d, J = 8.8 Hz, 2H, Ar-H), 3.78 (s, 3H, OCH$_3$), 3.02–2.90 (m, 1H, CHAr), 2.56 (ddt, J = 14.0, 4.6, 1.9 Hz, 1H, COCHHCHAr), 2.52–2.47 (m, 1H, COCHHCHAr), 2.47–2.30 (m, 2H, CH$_2$), 2.20–1.97 (m, 2H, CH$_2$), 1.86–1.67 (m, 2H, CH$_2$); 13C NMR (100 MHz, CDCl$_3$): δ = 211.1 (C), 158.3 (C), 136.6 (C), 127.5 (CH), 114.0 (CH), 55.2 (CH$_3$), 49.2 (CH$_2$), 43.9 (CH), 41.1 (CH$_2$), 33.0 (CH$_2$), 25.5 (CH$_2$); ν_{max}/cm$^{-1}$ 2935, 1707, 1611, 1512, 1245.

Note: A higher yield of product 84c (94%) was obtained by Steven Levey using conditions optimised for the conjugate addition substrate screen (IR data and NMR spectra obtained by S. Levey). This result is detailed in section 2.4.4 and additionally in the publication of this work.22 However, the lower yield obtained by the author and the method used is given in this section for completeness.
3-(4-Hydroxyphenyl)cyclohexanone (84d)³¹

Pd(MeCN)₄(OTf)₂ (6.8 mg, 12.0 μmol) and NaNO₃ (42.7 mg, 0.502 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture stirred for 5 minutes. 2-Cyclohexen-1-one 37 (23.7 mg, 0.247 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 mL) to afford an orange solution. 4-Hydroxyphenyl boroxine (89.5 mg, 0.746 mmol) was added and the solution was sonicated for 2 minutes, during which the solution turned bright pink. The reaction mixture was left to stir at 25 °C for 24 h. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using a gradient eluent system 10:1→3:1 hexane:EtOAc to afford 84d as a yellow amorphous solid (31.3 mg, 0.165 mmol, 67%).

¹H NMR (300 MHz, CDCl₃): δ = 7.07 (d, J = 8.5 Hz, 2H, Ar-H), 6.81 (d, J = 8.5 Hz, 2H, Ar-H), 5.72 (s, 1H, OH), 3.01 – 2.89 (m, 1H, CHAr), 2.64 – 2.30 (m, 4H, CH₂), 2.23 – 1.95 (m, 2H, CH₂), 1.90 – 1.65 (m, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃): δ = 212.3 (C), 154.5 (C), 136.3 (C), 127.6 (CH), 115.5 (CH), 49.1 (CH₂), 43.9 (CH), 41.2 (CH₂), 32.9 (CH₂), 25.4 (CH₂); ν_{max}/cm⁻¹ 3322 br str, 2940 w, 1693 v str, 1516 v str, 1446 str, 1222 v str.
3-<i>m</i>-Tolyl-cyclohexanone (84e)³²

![Chemical Structure](image)

Pd(MeCN)₄(OTf)₂ (7.1 mg, 12.5 μmol) and NaNO₃ (42.0 mg, 0.494 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture was stirred for 5 minutes. 2-Cyclohexen-1-one 37 (24.0 mg, 0.250 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 ml) to afford a dark orange solution. <i>m</i>-Tolyl boroxine (88.5 mg, 0.750 mmol) was added and the mixture was sonicated for 2 minutes. The reaction mixture was left to stir at 25 °C for 42 h. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using an eluent system 12:1 hexane:EtOAc to afford 84e as a yellow oil (32.2 mg, 0.171 mmol, 68%).

R_f 0.36 (5:1 hexane:EtOAc); ¹H-NMR (300 MHz, CDCl₃): δ = 7.29 – 7.23 (m, 1H, Ar-H), 7.10 – 7.04 (m, 3H, Ar-H), 3.06 – 2.95 (m, 1H, CHAr), 2.66 – 2.38 (m, 4H, CH₂), 2.38 (s, 3H, CH₃), 2.22 – 2.08 (m, 2H, CH₂), 1.95 – 1.72 (m, 2H, CH₂);¹³C NMR (75 MHz, CDCl₃): δ = 211.1 (C), 144.3 (C), 138.2 (C), 128.5 (CH), 127.4 (CH), 127.3 (CH), 123.5 (CH), 49.0 (CH₂), 44.7 (CH), 41.2 (CH₂), 32.8 (CH₂), 25.6 (CH₂), 21.4 (CH₃); ν_{max}/cm⁻¹ 2936 str, 2865 str, 1711 v str, 1222 str, 782 str, 702 str.
3-o-Tolylcyclohexanone (84f)

Pd(MeCN)$_4$(OTf)$_2$ (7.1 mg, 12.5 μmol) and NaNO$_3$ (42.5 mg, 0.500 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture was stirred for 5 minutes. 2-Cyclohexen-1-one 37 (24.3 mg, 0.253 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 mL). The solution was stirred for 25 minutes to afford a green solution. o-Tolyl boroxine (88.3 mg, 0.748 mmol) was added and the mixture was sonicated for 2 minutes. The reaction mixture was left to stir at 25 °C for 42 h. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using a gradient eluent system 12:1→10:1 hexane:EtOAc to afford 84f as a yellow oil (35.7 mg, 0.190 mmol, 76%).

R$_f$ 0.38 (5:1 hexane:EtOAc); 1H-NMR (300 MHz, CDCl$_3$): $\delta = 7.26 – 7.22$ (m, 2H, Ar-H), 7.19 – 7.11 (m, 2H, Ar-H), 3.27 – 3.17 (m, 1H, CHAr), 2.54 – 2.37 (m, 4H, CH$_2$), 2.33 (s, 3H, CH$_3$), 2.22 – 2.12 (m, 1H, CH$_2$), 2.05 – 1.99 (m, 1H, CH$_2$), 1.92 – 1.72 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$): $\delta = 211.2$ (C), 142.2 (C), 135.0 (C), 130.6 (CH), 126.4 (CH), 126.3 (CH), 125.0 (CH), 48.3 (CH$_2$), 41.2 (CH$_2$), 40.2 (CH), 31.9 (CH$_2$), 25.7 (CH$_2$), 19.2 (CH$_3$); ν_{max}/cm$^{-1}$ 3021 str, 2937 str, 2865 str, 1709 v str, 1223 str, 752 str.
3-(4-(Methoxycarbonyl)phenyl)cyclohexanone (84g)

Pd(MeCN)$_4$(OTf)$_2$ (7.1 mg, 0.012 mmol) and NaNO$_3$ (42.9 mg, 0.505 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture was stirred for 5 minutes. 2-Cyclohexen-1-one 37 (24.2 mg, 0.252 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 mL). 4-Methoxycarbonylphenyl boroxine (90.4 mg, 0.558 mmol) was added and the solution was left to stir at 25 °C for 20 hours. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using an eluent system 10:1 hexane:EtOAc to afford a yellow oil 84g (42.0 mg, 0.181 mmol, 72%).

R$_f$ 0.26 (5:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.99 (d, J = 8.3 Hz, 2H, Ar-H), 7.28 (d, J = 8.3 Hz, 2H, Ar-H), 3.89 (s, 3H, OCH$_3$), 3.14 – 2.98 (m, 1H, CH-Ar), 2.65 – 2.29 (m, 4H, CH$_2$), 2.22 – 2.01 (m, 2H, CH$_2$), 1.96 – 1.67 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$): δ = 210.3 (C), 166.8 (C), 149.4 (C), 130.0 (CH), 128.6 (C), 126.6 (CH), 52.0 (CH$_3$), 48.4 (CH$_2$), 44.6 (CH), 41.1 (CH$_2$), 32.4 (CH$_2$), 25.4 (CH$_2$); ν_{max}/cm$^{-1}$ 2952 str, 2861 str, 1717 v str, 1281 v str, 1109 str, 769 str, 706 str.
3-(2-Nitrophenyl)cyclohexanone (84i)39

$$\begin{align*}
\text{Pd(MeCN)}_4(\text{OTf})_2 & \quad (7.3 \text{ mg, } 12.8 \mu\text{mol}) \quad \text{and} \quad \text{NaNO}_3 & \quad (42.8 \text{ mg, } 0.504 \text{ mmol}) \quad \text{were added to a flask followed by DCE (1 mL) and} \\
\text{the resulting mixture stirred for 5 minutes. 2-Cyclohexen-1-one } 37 & \quad (24.0 \text{ mg, } 0.250 \text{ mmol}) \quad \text{was weighed and added } \textit{via} \text{ pasteur pipette,} \\
\text{washing the pipette with additional DCE (4 mL) to afford an orange solution. 3-} & \quad \text{Nitrophenyl boroxine (112 mg, 0.752 mmol) was added and the mixture was sonicated} \\
\text{for 2 minutes. The reaction mixture was left to stir at } 25 \degree \text{C for 66 h. On completion, the} & \quad \text{reaction mixture was concentrated under reduced pressure and purified by flash column} \\
\text{chromatography using an eluent system 5:1 hexane:EtOAc to afford } 84i & \quad \text{as a yellow} \\
\text{amorphous solid (32.2 mg, 0.147 mmol, 59%).} & \\
\end{align*}$$

$^1\text{H-NMR (300 MHz, CDCl}_3\text{): } \delta = 8.10 - 8.07 \text{ (m, 2H, Ar-H), 7.56 - 7.47 \text{ (m, 2H, Ar-H),} \\
3.18 - 3.07 \text{ (m, 1H, CHAr), 2.65 - 2.34 \text{ (m, 4H, CH}_2\text{), 2.22 - 2.10 \text{ (m, 2H, CH}_2\text{), 1.97 -} \\
1.74 \text{ (m, 2H, CH}_2\text{); } ^{13}\text{C NMR (75 MHz, CDCl}_3\text{): } \delta = 209.8 \text{ (C), 148.4 \text{ (C), 146.3 \text{ (C),} \\
133.0 \text{ (CH), 129.6 \text{ (CH), 121.8 \text{ (CH), 121.4 \text{ (CH), 48.4 \text{ (CH}_2\text{), 44.2 \text{ (CH), 40.9 \text{ (CH}_2,} \\
32.4 \text{ (CH}_2\text{), 25.3 \text{ (CH}_2\text{); } v_{\text{max/cm}^{-1}} 2940 \text{ w, 2867 \text{ v str, 1708 \text{ v str, 1522 \text{ v str, 1347 \text{ str.}}}}$
3-(4-Bromophenyl)cyclohexanone (84j) \(^{34}\)

Pd(MeCN)\(_4\)(OTf)\(_2\) (7.6 mg, 13.3 μmol) and NaNO\(_3\) (42.1 mg, 0.495 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture was stirred for 5 minutes. 2-Cyclohexen-1-one 37 (24.6 mg, 0.256 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 mL) to afford an orange solution. 4-Bromophenyl boroxine (137 mg, 0.751 mmol) was added and the mixture was sonicated for 2 minutes. The reaction mixture was left to stir at 25 °C for 23 hours under an atmosphere of oxygen. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using a gradient eluent system 10:1→8:1 hexane:EtOAc to afford 84j as a yellow oil (46.1 mg, 0.182 mmol, 71%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 7.44\) (d, \(J = 8.4\) Hz, 2H, Ar-H), 7.09 (d, \(J = 8.4\) Hz, 2H, Ar-H), 3.02 – 2.92 (m, 1H, CH-Ar), 2.60 – 2.31 (m, 4H, CH\(_2\)), 2.18 – 1.99 (m, 2H, CH\(_2\)), 1.88 – 1.68 (m, 2H, CH\(_2\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 210.5\) (C), 143.2 (C), 131.7 (CH), 128.3 (CH), 120.3 (C), 48.7 (CH\(_2\)), 44.1 (CH), 41.1 (CH\(_2\)), 32.6 (CH\(_2\)), 25.4 (CH\(_2\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2940 w, 2865 w, 1715 v str, 1490 str, 821 str.
3-(4-Iodophenyl)cyclohexanone (84k)

Pd(MeCN)$_4$(OTf)$_2$ (7.1 mg, 0.012 mmol) and NaNO$_3$ (41.6 mg, 0.489 mmol) were added to a flask followed by DCE (1 mL) and the resulting mixture was stirred for 5 minutes. 2-Cyclohexen-1-one 37 (23.7 mg, 0.247 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 mL) to afford an orange solution. 4-Iodophenyl boroxine 15 (174 mg, 0.754 mmol) was added and the resulting light brown solution was sonicated for 2 minutes. The solution was left to stir at 25 °C for 20 hours. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using an eluent system 10:1 hexane:EtOAc to afford a yellow amorphous solid 84k (30.8 mg, 0.103 mmol, 42%).

R$_f$ 0.33 (5:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.64 (d, $J = 8.3$ Hz, 2H, Ar-H), 6.97 (d, $J = 8.3$ Hz, 2H, Ar-H), 3.01 – 2.90 (m, 1H, CH-Ar), 2.60 – 2.31 (m, 4H, CH$_2$), 2.19 – 2.03 (m, 2H, CH$_2$), 1.88 – 1.72 (m, 2H, CH$_2$); 13C NMR (101 MHz, CDCl$_3$): δ = 210.4 (C), 143.9 (C), 137.7 (CH), 128.6 (CH), 91.8 (C), 48.63 (CH$_2$), 44.2 (CH), 41.1 (CH$_2$), 32.6 (CH$_2$), 25.4 (CH$_2$); ν_{max}/cm$^{-1}$ 2935 w, 2863 w, 1709 v str, 1486 str, 817 str; HRMS (APCI) calculated for [M+H]$^+$ 301.0084, C$_{12}$H$_{14}$OI found: 301.0088.
4-(4′-Methoxyphenyl)tetrahydro-2H-pyran-2-one (102c)18

\[\text{O} \]

\[\begin{array}{c}
\text{O} \\
\text{OMe} \\
\text{a}
\end{array}\]

\[\begin{array}{c}
\text{O} \\
\text{OMe} \\
\text{a}
\end{array}\]

Pd(MeCN)\textsubscript{4}(OTf)\textsubscript{2} (7.6 mg, 13.3 \(\mu\)mol) was added to a flask followed by DCE (1 mL) and the resulting solution stirred for 5 minutes. 5,6-Dihydro-2\(H\)-pyran-2-one 101 (90%, 27.7 mg, 0.254 mmol) was weighed and added via pasteur pipette, washing the pipette with additional DCE (4 ml). 4-Methoxyphenylboroxine (100.0 mg, 0.746 mmol) was added followed by NaNO\textsubscript{3} (43.3 mg, 0.509 mmol) and the solution was sonicated for 30 seconds. The solution was left to stir at 30 °C for 48 h. On completion, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography using an eluent system 12:1→3:1 hexane:EtOAc to afford a colourless amorphous solid 102c (35.6 mg, 0.173 mmol, 68%).

\[\begin{array}{c}
\text{1H NMR (300 MHz, CDCl}_3\text{): } \delta = 7.18 – 7.06 (m, 2H, Ar-H), 7.01 – 6.82 (m, 2H, Ar-H), 4.57 – 4.29 (m, 2H, CH\textsubscript{2}), 3.79 (s, 3H, CH\textsubscript{3}), 3.27 – 3.10 (m, 1H, CHAr), 2.89 (ddd, \(J = 17.6, 5.9, 1.7\) Hz, 1H, \(H_a\)), 2.58 (dd, \(J = 17.6, 10.6\) Hz, 1H, \(H_a'\)), 2.22 – 1.89 (m, 2H, CH\textsubscript{2})); 13C NMR (75 MHz, CDCl\textsubscript{3}): \delta = 170.8 (C), 158.6 (C), 134.8 (C), 127.4 (CH), 114.2 (CH), 68.6 (CH\textsubscript{2}), 55.3 (CH\textsubscript{3}), 37.7 (CH\textsubscript{2}), 36.6 (CH), 30.4 (CH\textsubscript{2}); \nu_{\text{max}}/\text{cm}^{-1} 2960, 1727, 1513, 1246, 1220, 1071, 1030, 830.\end{array}\]
Synthesis of oxidative Heck products

3-Phenyl-2-cyclohexen-1-one (38a)\(^{29}\)

Pd(MeCN)\(_4\)(OTf)\(_2\) (4.1 mg, 7.2 μmol) and d\(_6\)-DMSO (0.10 mL) were added to a flask and the reaction was stirred for 10 minutes. 2-Cyclohexen-1-one 37 (12.3 mg, 0.128 mmol) was added via pasteur pipette, washing the pipette with additional d\(_6\)-DMSO (0.40 mL). Phenylboroxine (26.7 mg, 0.257 mmol) was added and the solution changed colour from orange to yellow. A condenser was fitted and the reaction left to stir at 50 °C under a balloon of O\(_2\). After 19.5 h, additional portions of Pd(MeCN)\(_4\)(OTf)\(_2\) (3.7 mg, 6.47 μmol) and phenylboroxine (26.4 mg, 0.254 mmol) were added and the reaction left to stir at 50 °C under an O\(_2\) atmosphere for another 22 h. On completion, EtOAc (20 mL) was added and the reaction mixture was washed with brine (20 mL) and the aqueous phase washed with EtOAc (3 × 20 mL). The organic phase was dried over MgSO\(_4\), concentrated under reduced pressure and purified by flash column chromatography using a gradient eluent system 12:1 hexane:EtOAc to afford 38a as a yellow oil (15.0 mg, 0.0871 mmol, 68%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 7.61 – 7.49\) (m, 2H, Ar-H), 7.47 – 7.38 (m, 3H, Ar-H), 6.42 (t, \(J = 1.5\) Hz, 1H, C=CCH), 2.78 (td, \(J = 6.2, 1.5\) Hz, 2H, CH\(_2\)), 2.49 (t, \(J = 6.2\) Hz, 2H, CH\(_2\)), 2.16 (qn, \(J = 6.2\) Hz, 2H, CH\(_2\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 200.0\) (C), 159.8 (C), 138.8 (C), 130.0 (CH), 128.7 (CH), 126.1 (CH), 125.4 (CH), 37.3 (CH\(_2\)), 28.1 (CH\(_2\)), 22.8 (CH\(_2\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2939 w, 1663 str, 1603 str, 1445 w, 758 str, 693 str.
3-(4-Methoxyphenyl)-2-cyclohexen-1-one (38c)29

![Chemical structure](image)

Pd(MeCN)₄(OTf)₂ (4.2 mg, 7.3 μmol) and d₆-DMSO (0.20 mL) were added to a flask. 2-Cyclohexen-1-one 37 (12.6 mg, 0.131 mmol) was added via pasteur pipette, washing the pipette with additional d₆-DMSO (0.30 mL). Tris(p-methoxyphenyl)boroxine (33.7 mg, 0.252 mmol) was added and the solution changed colour from orange to yellow. A condenser was fitted and the reaction left to stir at 50 °C under an O₂ atmosphere. After 21 h, additional portions of Pd(MeCN)₄(OTf)₂ (4.3 mg, 7.5 μmol) and tris(p-methoxyphenyl)boroxine (33.4 mg, 0.249 mmol) were added and the reaction left to stir at 50 °C under an O₂ atmosphere for a further 22 h. On completion, EtOAc (20 mL) was added and the reaction mixture was washed with brine (20 mL) and the aqueous phase washed with EtOAc (3 × 20 mL). The organic phase was dried over MgSO₄, concentrated under reduced pressure and purified by flash column chromatography using 10:1 petrol ether:EtOAc to afford a orange amorphous solid 38c (15.5 mg, 0.077 mmol, 58%).

Rᵣ 0.50 (5:1 hexane:EtOAc); \(^1 \text{H} \text{NMR} \) (300 MHz, CDCl₃): \(\delta = 7.50 \) (d, \(J = 8.9 \) Hz, 2H, Ar-H), 6.91 (d, \(J = 8.9 \) Hz, 2H, Ar-H), 6.37 (s, 1H, C=CH), 3.82 (s, 3H, OCH₃), 2.73 (m, 2H, CH₂), 2.45 (t, \(J = 6.2 \) Hz, 2H, CH₂), 2.12 (qn, \(J = 6.2 \) Hz, 2H, CH₂); \(^{13} \text{C} \text{NMR} \) (75 MHz, CDCl₃): \(\delta = 199.8 \) (C), 161.1 (C), 159.0 (C), 130.6 (C), 127.5 (CH), 123.5 (CH), 114.0 (CH), 55.3 (CH₃), 37.1 (CH₂), 27.7 (CH₂), 22.7 (CH₂); \(\nu_{\text{max}}/\text{cm}^{-1} \) 2941 str, 1644 str, 1595 str, 1570 str, 1512 str, 1232 str, 1185 str.

Note: A higher yield of product 38c (84%) was obtained by Steven Levey using conditions optimised for the oxidative Heck substrate screen. This result is detailed in sections 2.3 and 2.5.3 and additionally in the publication of this work.22 However, the lower yield obtained by the author and the method used is given in this section for completeness.
3-(4-Hydroxyphenyl)-2-cyclohexen-1-one (38d)

Pd(MeCN)$_4$(OTf)$_2$ (4.4 mg, 7.7 μmol) and d$_6$-DMSO (0.20 mL) were added to a flask and the reaction was stirred for 10 minutes. 2-Cyclohexen-1-one 37 (12.6 mg, 0.131 mmol) was added via pasteur pipette, washing the pipette with additional d$_6$-DMSO (0.30 mL). 4-Hydroxyphenylboroxine (31.1 mg, 0.259 mmol) was added and the solution turned a brown/green colour. A condenser was fitted and the reaction left to stir at 50 °C under an O$_2$ atmosphere. After 19 h, additional portions of Pd(MeCN)$_4$(OTf)$_2$ (4.3 mg, 7.52 μmol) and 4-hydroxyphenylboroxine (31.0 mg, 0.259 mmol) were added and the reaction left to stir at 50 °C under an O$_2$ atmosphere for another 21 h. On completion, EtOAc (20 mL) was added and the reaction mixture was washed with brine (20 mL) and the aqueous phase washed with EtOAc (3 × 20 mL). The organic phase was dried over MgSO$_4$, concentrated under reduced pressure and purified by flash column chromatography using a gradient eluent system 10:1 to 2.5:1 petroleum ether:EtOAc to afford 38d as a red amorphous solid (14.7 mg, 0.0781 mmol, 60%).

1H NMR (300 MHz, CDCl$_3$): δ = 7.48 (d, J = 8.7 Hz, 2H, Ar-H), 6.88 (d, J = 8.7 Hz, 2H, Ar-H), 6.39 (t, J = 1.5 Hz, 1H, C=CH), 5.45 (s, 1H, OH), 2.75 (td, J = 6.0, 1.5 Hz, 2H, CH$_2$), 2.54 – 2.45 (m, 2H, CH$_2$), 2.21 – 2.08 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$): δ = 201.2 (C), 160.7 (C), 158.4 (C), 130.2 (C), 128.0 (CH), 123.0 (CH), 115.8 (CH), 37.0 (CH$_2$), 27.8 (CH$_2$), 22.7 (CH$_2$); $\nu$$_{\text{max}}$/cm$^{-1}$ 3175 (br), 2944, 1703, 1633, 1571, 1512, 1441, 1352, 1266, 1245, 1177, 1136, 824 str; HRMS (APCI) calculated for [M+H]$^+$ 189.0912, C$_{12}$H$_{13}$O$_2$ found: 189.0910.
3-\textit{m}-Tolylcyclohex-2-enone (38e)4

\[\text{Pd(MeCN)}_4(\text{OTf})_2 (4.2 \text{ mg, 7.3 } \mu\text{mol}) \] and \(\text{d}_6\)-DMSO (0.20 mL) were added to a flask. 2-Cyclohexen-1-one 37 (12.5 mg, 0.130 mmol) was added via pasteur pipette, washing the pipette with additional \(\text{d}_6\)-DMSO (0.30 mL). Tris(\textit{m}-tolyl)boroxine (30.1 mg, 0.255 mmol) was added and the solution changed colour from orange to yellow. A condenser was fitted and the reaction left to stir at 50 °C under an O\textsubscript{2} atmosphere. After 21 h, additional portions of Pd(MeCN)\textsubscript{4}(OTf)\textsubscript{2} (4.1 mg, 7.2 \(\mu \)mol) and tris(\textit{m}-tolyl)boroxine (30.6 mg, 0.225 mmol) were added and the reaction left to stir at 50 °C under an O\textsubscript{2} atmosphere for a further 19 h. On completion, EtOAc (20 mL) was added and the reaction mixture was washed with brine (20 mL) and the aqueous phase washed with EtOAc (3 × 20 mL). The organic phase was dried over MgSO\textsubscript{4}, concentrated under reduced pressure and purified by flash column chromatography using 10:1 petrol ether:EtOAc to afford a yellow oil 38e (11.1 mg, 0.060 mmol, 46%).

1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta = 7.38 – 7.22 \) (m, 4H, Ar-H), 6.43 (t, \(J = 1.4 \) Hz, 1H, C=CH\textsubscript{2}), 2.80 (td, \(J = 6.1, 1.4 \) Hz, 2H, CH\textsubscript{2}), 2.51 (t, \(J = 6.1 \) Hz, 2H, CH\textsubscript{2}), 2.42 (s, 3H, CH\textsubscript{3}), 2.18 (qn, \(J = 6.1 \) Hz, 2H, CH\textsubscript{2}); 13C NMR (75 MHz, CDCl\textsubscript{3}): \(\delta = 200.2 \) (C), 160.2 (C), 138.9 (C), 138.5 (C), 130.9 (CH), 128.8 (CH), 126.9 (CH), 125.5 (CH), 123.4 (CH), 37.4 (CH\textsubscript{2}), 28.3 (CH\textsubscript{2}), 23.0 (CH\textsubscript{2}), 21.6 (CH\textsubscript{3}); HRMS (APCI) calculated for [M+H]+ 187.1117, C\textsubscript{13}H\textsubscript{15}O\textsubscript{1} found: 187.1116.

Note: A higher yield of product 38e (66%) was obtained by Pauline Glen using freshly recrystallised boronic acid after further optimisation of the oxidative Heck reaction conditions. This optimisation is detailed in Table 15 and additionally in the publication of this work.22 However, the lower yield obtained by the author and the method used is given in this section for completeness.
3-o-Tolylcyclohex-2-enone (38f)4

Pd(MeCN)\textsubscript{4}(OTf)\textsubscript{2} (4.1 mg, 7.2 μmol) and d\textsubscript{6}-DMSO (0.20 mL) were added to a flask. 2-Cyclohexen-1-one 37 (12.8 mg, 0.133 mmol) was added via pasteur pipette, washing the pipette with additional d\textsubscript{6}-DMSO (0.30 mL). Tris(o-tolyl)boroxine (29.9 mg, 0.254 mmol) was added and the solution changed colour from orange to yellow. A condenser was fitted and the reaction left to stir at 50 °C under an O\textsubscript{2} atmosphere. After 21 h, additional portions of Pd(MeCN)\textsubscript{4}(OTf)\textsubscript{2} (4.2 mg, 7.3 μmol) and tris(o-tolyl)boroxine (30.2 mg, 0.224 mmol) were added and the reaction left to stir at 50 °C under an O\textsubscript{2} atmosphere for a further 23 h. On completion, EtOAc (20 mL) was added and the reaction mixture was washed with brine (20 mL) and the aqueous phase washed with EtOAc (3 × 20 mL). The organic phase was dried over MgSO\textsubscript{4}, concentrated under reduced pressure and purified by flash column chromatography using 10:1 petrol ether:EtOAc to afford a yellow oil 38f (11.6 mg, 0.062 mmol, 47%).

1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta = 7.33 – 7.09 \) (m, 4H, Ar-H), 6.02 (t, \(J = 1.6\) Hz, 1H, C=CH\textsubscript{2}), 2.62 (td, \(J = 6.0, 1.6\) Hz, 2H, CH\textsubscript{2}), 2.59 - 2.48 (m, 2H, CH\textsubscript{2}), 2.34 (s, 3H, CH\textsubscript{3}), 2.24 – 2.12 (m, 2H, CH\textsubscript{2}); 13C NMR (75 MHz, CDCl\textsubscript{3}): \(\delta = 199.7\) (C), 163.7 (C), 140.9 (C), 134.1 (C), 130.8 (CH), 128.8 (CH), 128.5 (CH), 127.0 (CH), 126.0 (CH), 37.5 (CH\textsubscript{2}), 31.4 (CH\textsubscript{2}), 23.3 (CH\textsubscript{2}), 20.2 (CH\textsubscript{3}); HRMS (APCI) calculated for [M+H]+ 187.1117, C\textsubscript{13}H\textsubscript{15}O\textsubscript{1} found: 187.1115.

Note: A higher yield of product 38f (57%) was obtained by Pauline Glen using freshly recrystallised boronic acid after further optimisation of the oxidative Heck reaction conditions. This optimisation is detailed in Table 15 and additionally in the publication of this work.22 However, the lower yield obtained by the author and the method used is given in this section for completeness.
2.8 References

Chapter 3: C-H Functionalisation of Benzoquinone

All work detailed in this chapter was carried out by the author except where specified. The author would like to thank J. Jordan-Hore for his contribution to the project, particularly with optimisation work.
Chapter 3: Introduction

3.1 Background

Quinones are ubiquitous in the natural world and many compounds comprising the 1,4-benzoquinone moiety as a subunit exhibit a wide range of pharmacological applications including antibiotic, antitumour and antimalarial properties (for examples see Figure 4, 143-147). Additionally, quinones are also widely used in organic chemistry and have found uses as oxidants, ligands, dyes and in molecular electronics.

Figure 4: Examples of natural products with pharmacological properties comprising the quinone moiety

Despite the prevalence of the quinone moiety in biologically active compounds and its use in synthetic organic chemistry, the functionalisation of benzoquinone has proven challenging and often lengthy requiring multistep syntheses. In synthetic chemistry, benzoquinone is more often than not used as a ligand or oxidant rather than the substrate. Whilst palladium(0) cross-couplings have been employed as one method to functionalise quinones (requiring prefunctionalisation of the quinone substrate), examples of direct functionalisation methods are much less common. Despite the
arylation of α,β-unsaturated carbonyl compounds being commonly achieved by Heck coupling, benzoquinone has so far not been a suitable substrate for this methodology.

Indeed Felpin and co-workers recently highlighted the challenge in functionalising quinones via conventional Heck coupling processes:

“Although almost every kind of olefin is compatible with the Heck process, benzoquinone-type partners are still reluctant to react under Heck protocols...”

This review will highlight examples in the literature of the functionalisation of quinones using traditional Pd(0) cross-coupling methodology, alternative palladium-catalysed or palladium-mediated functionalisation examples, in addition to direct methods.

3.1.1 Functionalisation of benzoquinone by Pd(0) cross-coupling

Given the aforementioned challenges in applying classical C-C bond forming syntheses to benzoquinone, functionalisation has traditionally been accomplished via a multistep process. Prefunctionalisation of the quinone with Br, I or OTf, followed by a Stille, Negishi or Suzuki coupling reaction has proven a common method yet chemo- and regio-selectivity issues during halogenations pose a challenge.

Scheme 62: Functionalisation of benzoquinone by Pd(0) cross-coupling

Echavarren and co-workers have published a number of reports on the Stille coupling of naphthoquinones with organostannanes. The Stille coupling was adopted as part of synthetic routes to a number of biologically active compounds bearing the quinone moiety, or their precursors. As an alternative to using bromoquinone electrophiles, in 1997 Echavarren and co-workers also reported a Stille coupling with naphthoquinone triflates 151 and organostannanes 152 (Scheme 63). Yields were moderate (up to 67%) with a range of substrate and organostannane combinations.
Scheme 63: Functionalisation of naphthoquinone by a Stille coupling reaction

In 1998, Bäckvall and co-workers employed a double Negishi coupling to synthesise symmetrical 2,5-disubstituted quinones. Prior to this, only one other example of the synthesis of such compounds had been reported. The multistep approach to the target molecules used dimethoxybenzene as a starting compound (Scheme 64). Bromination followed by Negish coupling was carried out and the final quinone product was formed by oxidative demethylation using ceric ammonium nitrate.

Scheme 64: Synthesis of 2,5-disubstituted benzoquinones via double Negish coupling

The Negish coupling was carried out with various alkyl, vinyl and aryl zinc reagents to form the difunctionalised dimethoxybenzene in 30-93% yield. A selection of these Negish coupling products, were then used for the final step to generate the difunctionalised benzoquinone product in 65-95% yield.
Alternatively, Suzuki couplings have also been used as an effective synthetic route to functionalised quinones.26, 27 In 2009, Hu and co-workers reported the functionalisation of 2,5-disubstituted benzoquinones 159 using two sequential Suzuki couplings in order to install two different aryl rings on the quinone core (Scheme 65).28 The first arylation step to form 160 proceeded in up to 82\% yield with a range of aryl boronic acids 6 with various steric and electronic properties.

\begin{center}
\textbf{Scheme 65:} First Suzuki coupling step to synthesise 3,6-disubstituted 2,5-
dioxybenzoquinones
\end{center}
The second Suzuki coupling was carried out using a mono-arylated benzoquinone (162, Scheme 66) from the first step and various aryl and heterocyclic boronic acids 6 as coupling partners. The reaction conditions were reoptimised to maximise yields and decent to excellent yields (59-82%) were obtained of the difunctionalised product 163.

Scheme 66: Second Suzuki coupling step to synthesise 3,6-disubstituted 2,5-dioxybenzoquinones

Despite the aforementioned Pd(0) cross-coupling methods furnishing the desired functionalised quinones in decent yields, obviously the need to prefunctionalise the quinone substrate is a drawback to the methodology. Therefore, more direct methodology for functionalising quinones has obvious advantages.
3.1.2 Palladium-catalysed direct functionalisation of benzoquinone

As previously mentioned, benzoquinone is more often used as an oxidant,8-10 or a ligand11-15 as opposed to the substrate in palladium catalysed reactions. Direct functionalisation of quinones using palladium is rare and restricted to a few examples, mainly with naphtho- and anthraquinone substrates as these substrates have a lower redox potential than benzoquinone.4 The oxidative properties of benzoquinone9 tend to hinder its ability to act as a substrate in these types of reactions. Additionally, whilst selectivity is not problematic for traditional Pd(0) cross-couplings (once the prefunctionalisation step has been completed), forming the mono- or difunctionalised products selectively has posed a challenge in some of the methodology discussed below.

In 1979, Pardhasaradhi and Choudary reported the use of stoichiometric palladium(II) to arylate 1,4-naphthoquinone 164 using benzene, naphthalene or thiophene as the arylating agents to yield the arylated naphthoquinone products 165, albeit in low yields (3-26%, Scheme 67).29

![Scheme 67: Substitution of aryl moieties on naphthoquinone using stoichiometric palladium(II)](image)

Itahara has also reported a direct functionalisation of quinones using stoichiometric Pd(OAc)\textsubscript{2} (Scheme 68).30 The report which was published in 1985, details the oxidative coupling of both 1,4-benzoquinone and various naphthoquinones with a variety of aryl compounds. Whilst the study included limited examples of using benzoquinone as the substrate, 1,4- and 1,2-naphthoquinones were extensively studied and heterocyclic compounds (furan, thiophene, pyrrole and indole derivatives) were also used as (hetero)arylating agents. Yields were moderate to good yet when benzoquinone was used as a substrate selectivity was an issue, with a mixture of mono- (167) and difunctionalised (158 and 168) products obtained.30 The proposed mechanism involved transmetallation of the aryl group onto palladium followed by migratory insertion of the palladium species onto the substrate. Reductive elimination yields the product and Pd(0).
Scheme 68: Functionalisation of benzoquinone using stoichiometric Pd(OAc)$_2$

Csákÿ and co-workers have published a number of reports on the arylation of quinones. In 2009 they reported the successful arylation of naphtho- and anthraquinones catalysed by Pd(II) (Scheme 69).31 The arylation formally comprised a conjugate addition reaction followed by an oxidation in a two step process. Regioselectivity was dependent on both the electronic nature of the substrate and also the reaction conditions used. Generally, a mixture of the 2- and 3-substituted products (170 and 171) was obtained but for a few examples, exclusive formation of one regioisomer over the other was observed.

Scheme 69: Arylation of naphtho- and anthraquinones using Pd(II)

More recently, Csákÿ expanded work on the palladium(II) catalysed arylation of quinones by examining benzoquinone based substrates, using a similar catalytic protocol to earlier work (Table 17).32 Functionalised benzoquinones (167) were used as the main substrates for the study, and a large part of the study comprised testing the efficacy of the products (158 and 168) as possible new drugs for the treatment of Alzheimer’s disease.32
Table 17: Pd(II)-catalysed bis-arylation of arylated benzoquinones

Up to 90% yields were obtained with a range of arylboronic acids (electron-donating and withdrawing). Regioselectivity depended on the conditions used; employing a bidentate phosphine ligand \(\text{172} \) (conditions A) gave the 2,5 di-arylated benzoquinone \(\text{158} \) as the major product (Table 17, Entries 1-7) whereas ligandless conditions B yielded predominantly the 2,6 di-arylated product \(\text{168} \) (Entries 8-14). Despite the
regioselectivity being tuned according to reaction conditions, a switch to solely one product over the other was not reported. Selectivities ranged from 50:50 in 60% overall yield (i.e. no selectivity, Table 17, Entry 7) to 85:15 2,5:2,6 product in 90% yield (Table 17, Entry 1) in the two step process.

In 2012, Moon and Hong reported a Pd(II)-catalysed direct route to isoflavone quinones (Scheme 70). Benzoquinone and a range of chromones were coupled in up to 92% yield. A number of substituted benzoquinones were also screened and although yields were moderate to very good, regioselectivity was poor and mixtures of the 2,5 and 2,6 products were obtained. The reaction was carried out under acidic conditions at 100 °C.

![Scheme 70: Direct Pd(II)-catalysed cross-coupling of quinones and chromone](image)

Moon and Hong proposed a mechanism whereby electrophilic palladation of the chromone takes place first followed by insertion of this palladated-species into the quinone. Subsequent reductive elimination forms the coupling product.

3.1.3 Direct functionalisation of quinones using non palladium-catalysed methods

The Meerwein arylation has proven to be a popular method for direct functionalisation of quinones. In 1934, Kvalnes reported the arylation of benzoquinone using a wide variety of aryl diazonium salts. Since this initial report, the Meerwein arylation has become one of the more popular methods to functionalise quinones given that direct functionalisation is possible using this methodology and no prefunctionalisation of the quinone substrate is necessary (Scheme 71). However, the use of aryldiazonium...
salts poses problems given that they can be unstable, explosive and difficult to synthesise.¹⁷

Scheme 71: Meerwein arylation to functionalise benzoquinone

Felpin and co-workers have recently reported the arylation of benzoquinone using Meerwein arylation methodology.¹⁶,³⁶ However, handling of hazardous aryl diazonium salts is avoided by using the corresponding anilines. Following the generation of the aryl diazonium salts in situ from the aniline starting materials, a Meerwein arylation is carried out using benzoquinone as a substrate.¹⁷,³⁷

In the original work by Felpin and co-workers (2012), the direct arylation of benzoquinone 166 was carried out in the presence of tert-butyl nitrite with a range of different anilines 175 bearing electron-donating and withdrawing groups in up to 77% yield (Scheme 72).³⁷ This methodology was advantageous over the traditional Meerwein arylation route as the reaction proceeded under neutral conditions without the need for any acid or base. From experimental observations, a free-radical pathway was proposed for the mechanism and it was observed that reaction rates were shorter and yields higher when electron-withdrawing anilines were employed.

Scheme 72: Direct arylation of benzoquinone using anilines

In 2013, Felpin and co-workers reported further studies into the C-H arylation of benzoquinone with anilines and published the first example of a Meerwein arylation using a heterogeneous catalyst.¹⁷ Studies found that using graphite-supported copper
oxide nanoparticles, the reaction efficiency could be improved and a wider variety of functional groups could be tolerated than in previous studies.

As this review has highlighted, quinones are traditionally functionalised via multistep processes requiring prefunctionalisation of the quinone moiety followed by traditional cross-couplings or the use of hazardous diazonium salts to carry out Meerwein arylations. Recently however, direct methods have been reported by Baran and co-workers amongst others which employ less hazardous reagents in direct functionalisation protocols, thus providing a more facile route to functionalised quinones.

In 2011, Baran and co-workers reported a silver-catalysed direct functionalisation of benzoquinones to form the corresponding monofunctionalised products (Scheme 73). By using boronic acids and a strong oxidant (K$_2$S$_2$O$_8$), a radical mechanism was proposed for the reaction which proceeded under mild conditions and with a range of aryl and alkyl boronic acids 6 to furnish the monofunctionalised products 167 in up to 98% yield. Despite this example marking significant progress in developing methodology for the direct functionalisation of benzoquinone, the use of a strong oxidant limits the scope of the reaction. Additionally, whilst aryl halides are tolerated, no examples of heterocycle or alkene functionalisations are reported. Also, very electron-withdrawing aryl and very hindered alkyl boronic acids in addition to oxidisable functional groups are not tolerated using this method. A few select examples of substituted benzoquinone substrates (bearing alkyl, methoxy and chloro substitutents) and naphthoquinone were included in a small quinone substrate screen with para-methylphenyl boronic acid. Whilst yields were good (up to 87%), in cases where regioselectivity could be an issue, the selectivity was indeed poor.

\[
\begin{align*}
\text{O} & \quad + \quad \text{RB(OH)}_2 \\
166 & \quad \text{AgNO}_3 \ (5 \text{ mol\%}) \\
& \quad \text{K}_2\text{S}_2\text{O}_8 \ (3 \text{ equiv.}) \\
& \quad \text{1:1 DCM:H}_2\text{O} \\
& \quad \text{rt, air, 3-12 h} \\
& \quad \text{35 examples} \\
& \quad <98\% \text{ yield}
\end{align*}
\]

Scheme 73: Silver nitrate catalysed CH functionalisation of quinones with boronic acids
The application of this methodology was subsequently exhibited in a number of reports published by Baran and co-workers showing the versatility of the functionalisation reaction in the synthesis of various natural products.\(^{40-42}\)

In 2012, an iron-mediated direct arylation of quinones with arylboronic acids was reported by Yu and co-workers (Scheme 74).\(^{43}\) Using iron sulfide (a cheaper alternative to silver nitrate) as the catalyst (albeit 0.5 equivalents) and potassium persulfate as the oxidant, various aryl boronic acids \(6\) with a range of steric and electronic properties were coupled with benzoquinone \(166\) in up to 97% yield of the monofunctionalised product \(167\). Yu and co-workers proposed that the coupling may proceed through a radical mechanism, similar to Baran’s mechanistic proposal. Additionally, a number of substituted benzoquinones bearing alkyl, chloro and methoxy substituents in addition to naphthoquinone were used as substrates and yielded the desired coupling products although yields were significantly reduced compared to when unsubstituted benzoquinone \(166\) was used as a substrate.

\[
\begin{align*}
\text{O} & \quad + \quad \text{ArB(OH)}_2 \\
\text{O} & \quad 166 \\
\text{O} & \quad 6
\end{align*}
\]

\[
\begin{align*}
\text{FeS (0.5 equiv.)} & \quad \text{K}_2\text{S}_2\text{O}_8 (3 \text{ equiv.}) \\
\text{1:1 DCM:H}_2\text{O} & \quad 25 \text{ °C, air, 24 h}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{Ar} \\
\text{O} & \quad 167
\end{align*}
\]

\[13 \text{ examples <97% yield}\]

Scheme 74: Iron-mediated direct arylation of benzoquinone with aryl boronic acids

Since the aforementioned reports of direct functionalisation of benzoquinone by Baran and Yu, other examples of direct functionalisation of quinones have come to the fore using similar methodologies.\(^{44-46}\) Using analogous conditions to Baran, Malayappasamy and co-workers adopted the AgNO\(_3\)/K\(_2\)S\(_2\)O\(_8\) catalytic system to alkylate benzoquinones using cyclopropanols.\(^{44}\) Also, Komeyama and co-workers used a FeSO\(_4\)/K\(_2\)S\(_2\)O\(_8\) catalytic system to arylate benzoquinone using arylboronic acids and trifluoroborate salts.\(^{45}\)
3.1.4 Conclusion

Despite the emergence of a number of reports on the functionalisation of quinones in recent years, there is still plenty of scope for investigation in this area. When traditional Pd(0) cross-coupling methodologies are used, benzoquinone acting as an oxidant rather than a substrate is a major challenge. Even when reactions can be carried out using benzoquinone as the substrate, for instance using Pd(II) catalysts, control of mono- versus difunctionalisation and selectivity of the latter continues to pose a challenge.

Although recent advances have been made following Baran’s seminal work in 2011 (using silver- and iron-based catalysts), limitations still exist; the reactions are limited to mono-arylations and very electron-withdrawing aryls, heterocycles, alkenes and oxidisable functional groups are not tolerated. Therefore, improvements to substrate scope, functional group tolerance and control of mono- versus difunctionalisation would be advantageous.
3.2 Project aim

Extensive investigations have been carried out within the Lee group on Pd(II)-catalysed conjugate addition and oxidative Heck reactions (for example see chapter 2).47, 48 During the course of investigations into oxidative Heck reactions on challenging substrates such as cyclic enones, the question was raised as to whether our cationic Pd(II) system developed previously, could be applied to benzoquinone.

In this project, we aim to develop a practical, direct C-H functionalisation of benzoquinone, which can be controlled to give mono- (167) or difunctionalised (158 or 168) products (Scheme 75). In particular, we hope to develop a method whereby a wide variety of functional groups (R) are tolerated, including both electron-donating and electron-withdrawing aryls, heteroaryls, alkyls and alkenes, given that current approaches have a limited substrate scope.

Scheme 75: Project aim – Pd(II)-catalysed mono- and difunctionalisation of benzoquinone
Finally, we would also like to develop a direct method for functionalising benzoquinone with two different groups, ideally in a one-pot procedure (Scheme 76). Such a methodology would constitute an advancement in the field and allow benzoquinones to be functionalised practically and readily in one step.

Scheme 76: Project aim – Pd(II)-catalysed hetero-difunctionalisation of benzoquinone

*For numbering purposes, 2,5 difunctionalised benzoquinones will be numbered 158 and 2,6 difunctionalised benzoquinones will be numbered 168 throughout this thesis regardless of whether they are homo- or heterodifunctionalised. In order to identify the functional groups, letters will be added after the appropriate number.
3.3 Monofunctionalisation of benzoquinone

3.3.1 Initial optimisation studies

Initial studies on the functionalisation of benzoquinone were carried out by J. Jordan-Hore. The cationic Pd(II) catalyst \([\text{Pd(OTf)}_2]\) used within the Lee group for previous work was initially probed to see if it would be effective in catalysing the functionalisation of benzoquinone with aryl boronic acids as the coupling partner. Optimised conditions were found for both mono- and difunctionalisation by J. Jordan-Hore (Scheme 77). These were then used in initial work to examine the scope of the reaction.

\[
\text{Monofunctionalisation}
\]

\[
\begin{align*}
\text{O} & + \text{ArB(OH)}_2 & \xrightarrow{\text{Pd(MeCN)}_2\text{OTf}_2 \text{ (5 mol\%)} \ , \ \text{O}_2 \ , \ \text{rt. acetone (0.05M)}} & \text{O} \\
166 & & 6 & 167 \\
6 \text{ equiv.} & 1 \text{ equiv.} & \text{Ar} = \rho\text{-MeOC}_6\text{H}_4 & 90\% \text{ yield}
\end{align*}
\]

\[
\text{Difunctionalisation of benzoquinone}
\]

\[
\begin{align*}
\text{O} & + \text{ArB(OH)}_2 & \xrightarrow{\text{Pd(MeCN)}_2\text{OTf}_2 \text{ (5 mol\%)} \ , \ \text{O}_2 \ , \ \text{DCE (0.05M)}, 0^\circ\text{C}, 18\text{h}} & \text{O} \\
166 & & 6 & 158 \\
1 \text{ equiv.} & 2 \text{ equiv.} & \text{Ar} = \rho\text{-MeOC}_6\text{H}_4 & 88\% \text{ yield}
\end{align*}
\]

\textbf{Scheme 77:} Initial optimised reaction conditions (by J. Jordan-Hore) for the functionalisation of benzoquinone

Unfortunately, initial work carried out by the author using these optimised reaction conditions was hampered by irreproducible results and poor yields. The conditions gave a complex mixture of products, particularly for the difunctionalisation reactions, and yields were inconsistent. For instance, on repeating the original promising monofunctionalisation result (Scheme 77, Equation 1), a 32% yield of monofunctionalisation product 167 was obtained compared to the initial result where 90% yield was observed. On turning our attention to the difunctionalisation reactions, the maximum yield obtained of product 158 was 58% compared to 88% in initial optimisation work (Scheme 77, Equation 2). As a result of our findings, extensive
optimisation studies were continued (by J. Jordan-Hore) examining catalyst, solvent and temperature resulted in suitable reaction conditions being found. The less active catalyst Pd(OCOCF$_3$)$_2$ was found to be effective, coupled with acetone or water as solvents and reactions became more reproducible. In retrospect, part of the problems encountered could be attributed to benzoquinone acting as both the substrate and an oxidant. Additionally, the mono- and/or difunctionalised products formed were also likely to be acting as oxidants or further reacting thus giving the poor, irreproducible yields experienced and an indiscriminate reaction outcome.

Pleasingly, the newly optimised reaction conditions gave good yields of the desired products, in air and at room temperature (Scheme 78). Additionally, the appropriate boronic acid can be used straight from the bottle in this case rather than being dehydrated to boroxine form, or recrystallised to form the boronic acid, which was a necessity in previous work in order to achieve good yields.48

Another challenge during optimisation was the competing homodifunctionalisation reaction. However, by optimising the stoichiometry of reagents it was possible to suppress the difunctionalisation reaction so that the monofunctionalised product was formed exclusively.

In addition to being the substrate, benzoquinone was found to act as an oxidant also (see Scheme 88 for possible reaction pathways and roles of the oxidant). Taking these factors into account, three equivalents of benzoquinone to one of boronic acid were found to be optimal for the monofunctionalisation reaction (Scheme 78).

\begin{center}
\begin{tikzpicture}[scale=0.8]

\node[draw,shape=circle,fill=black,minimum size=0.5cm] (a) at (0,0) {\textbf{166}};
\node[draw,shape=circle,fill=black,minimum size=0.5cm] (b) at (2,0) {\textbf{6}};
\node[draw,shape=circle,fill=black,minimum size=0.5cm] (c) at (4,0) {\textbf{167}};

\node[draw,shape=circle,fill=black,minimum size=0.5cm] (d) at (0,-0.5) {\textbf{\textit{R}}};

\path[->,blue] (a) edge node[above] {Pd(OCOCF$_3$)$_2$ (7.5 mol\%)} node[below] {acetone or water (0.07 M)} (b);
\path[->,blue] (b) edge node[above] {rt, 18-24 h} (c);
\end{tikzpicture}
\end{center}

\textbf{Scheme 78:} Optimised reaction conditions for the Pd(II)-catalysed mono functionalisation of benzoquinone
3.3.2 Boronic acid screen

Using the optimised conditions for the monofunctionalisation reaction, a boronic acid screen was conducted (Scheme 79). Given that initial optimisation work had demonstrated that the reaction could be carried out in both water and acetone, all monofunctionalisation reactions shown were carried out in both solvents. Yields in blue indicate reactions carried out in acetone, and those in red correspond to using water as the solvent. Where only one value is given, the other solvent gave poor conversion and the product was not isolated.

\[
\begin{align*}
\text{Q} & = \begin{array}{c} \text{O} \\ \text{166}^a \\
\end{array} + \begin{array}{c} \\
\text{RB(OH)}_2 \end{array} \\
& \xrightarrow{\text{Pd(OCOCF}_3\text{)}_2} \begin{array}{c} \text{Q} \text{O} \\
\text{167} \\
\end{array} \quad \text{acetone or water} \\
& \text{rt, 18-24 h}
\end{align*}
\]

Yields in blue indicate reactions carried out in acetone, and those in red correspond to using water as the solvent. Where only one value is given, the other solvent gave poor conversion and the product was not isolated.

\[\begin{array}{cccccc}
\text{167c} & \text{80\%;*} & \text{88\%}^b \\
\text{167d} & \text{64\%;*} & \text{58\%}^c \\
\text{167o} & \text{70\%}^d \\
\text{167e} & \text{90\%} \\
\text{167p} & \text{78\%;*} & \text{48\%} \\
\text{167b} & \text{41\%;*} & \text{64\%} \\
\text{167q} & \text{80\%;*} \\
\text{167j} & \text{82\%} \\
\text{167l} & \text{50\%;*} & \text{89\%} \\
\text{167r} & \text{66\%;*} & \text{75\%} \\
\text{167i} & \text{71\%;*} & \text{53\%} \\
\text{167s} & \text{<5\%;*} & \text{68\%} \\
\text{167n} & \text{81\%;*} & \text{53\%} \\
\text{167t} & \text{52\%;*} & \text{26\%}^f \\
\text{167u} & \text{62\%;*} & \text{60\%}^f \\
\text{167v} & \text{41\%;*} \\
\text{167w} & \text{45\%;*} & \text{75\%}^f \\
\end{array}\]

\[\begin{array}{cccccc}
\text{167x} & \text{63\%}^g \\
\text{167y} & \text{92\%}^s \\
\text{167z} & \text{67\%;*} \\
\text{167a'} & \text{83\%;*} \\
\end{array}\]

\[\begin{array}{cccccc}
\text{a} & \text{BQ (3 equiv.)}, \text{RB(OH)}_2 (1 \text{ equiv.}). & \text{b} & \text{87\% with 1 mol\% cat.} & \text{c} & \text{6 Equiv. BQ used}. & \text{d} & \text{Gram scale reaction also 70\%}. & \text{e} & \text{50 °C, 48 h}. & \text{f} & \text{40 °C, 48 h, 2 × 7.5 mol\% catalyst}. & \text{g} & \text{Reaction carried out by J. Jordan-Hore.} \\
\end{array}\]

Scheme 79: Boronic acid screen
Results from the boronic acid screen showed that the reaction is tolerant of a range of boronic acids with various steric and electronic properties. Electron-donating boronic acids gave good to excellent yields in water and acetone (p-OMe-C₆H₄-, m,p-(OMe)₂-C₆H₄- and m-Me-C₆H₄-, 167c, 167o and 167e). Para-OH-C₆H₄- boronic acid in acetone was found to be incredibly reactive and J. Jordan-Hore observed formation of the homodifunctionalised product under the standard conditions. However, this reaction was suppressed by using an additional 3 equivalents of benzoquinone to give the desired monofunctionalised product in 64% yield (167d). Electron-withdrawing boronic acids also give good yields (p-CF₃-C₆H₄- 167b, p-F-C₆H₄- 167q, m-Cl-C₆H₄- 167l and p-CO₂Et-C₆H₄- 167r) despite the electronics of these boronic acids making transmetallation more challenging. Meta-NO₂-C₆H₄- boronic acid performed well but needed a longer reaction time and higher temperature to yield product 167i. Aryl boronic acids bearing groups with differing electronic properties also fare well (m-Cl-p-OMe-C₆H₄-, 167p) in both solvents and sterically hindered mesityl boronic acid performs well in water but gives trace product in acetone (167s).

The reaction also tolerates boronic acids with readily oxidisable positions such as 2-fluorene (167n, which would not be compatible with other methods using strong oxidants) and is tolerant of carbon-bromine bonds (p-Br-C₆H₄ boronic acid, 167j), which may be expected to be problematic given their susceptibility to insertion of Pd(0). Additionally, a cyclic alkenyl boronic acid (167a’) is also tolerated, which, given the propensity of benzoquinone to undergo Diels-Alder type reactions (and that during initial optimisation acyclic alkene boronic acids produced a complex mixture of products, presumably due to further reactions of the product), also demonstrates the tolerance of the reaction to a wide range of functional groups.

Despite their known propensity to undergo protodeboronation readily, heterocyclic boronic acids were also investigated and were suited to our conditions, albeit needing a longer reaction time of 40 hours for the reaction to go to completion. 3-Thienyl boronic acid performed well in both water and acetone (167u). 3-Furan boronic acid also gave the desired monofunctionalised product (167t) although the yield was poorer than its sulphur counterpart. Pyrrole boronic acids also formed product but yields were mixed and depended on the protecting group and solvent used (167v and 167w). Considering the challenge presented in monofunctionalising benzoquinone with heterocycles and the absence of examples in the literature of this transformation, our results demonstrate a significant advancement in this area.
During initial investigations carried out by J. Jordan-Hore, acyclic alkyl boronic acids were found to be susceptible to β-hydride elimination. However, gratifyingly, cycloalkyl boronic acids are able to functionalise benzoquinone with slight alterations to the standard reaction conditions. By using a slightly higher reaction temperature than that used for aryl boronic acids and leaving the reaction for 2 days with an additional portion of catalyst added after 24 hours, moderate (cyclohexyl 167x and cyclobutyl 167z boronic acids) to excellent (cyclopentyl boronic acid, 167y) yields are obtained in acetone as the solvent.

It is not clear why some boronic acids fare better in water as a solvent whilst others give higher yields in acetone. There does not seem to be an obvious trend in results which can be attributed to the solvent used. However, as a general rule, aryl boronic acids react well in water (results in red) and often give higher yields in this solvent rather than acetone (results in blue). On the other hand, heterocyclic, cycloalkyl and cycloalkenyl boronic acids give higher yields in acetone, and in some cases (such as for the cycloalkyl and alkenyl boronic acids), do not yield product when water is used as a solvent.

During the course of our studies we also wanted to investigate if our reaction could be scaled up and still give good yields. Using m,p-(OMe)$_2$-C$_6$H$_3$-boronic acid 6o, we carried out a gram scale reaction which gratifyingly gave a comparable yield to that obtained when the reaction was carried out using the standard scale for our optimised reaction conditions (Scheme 80).

![Scheme 80](image)

Scheme 80: Gram-scale reaction of benzoquinone with m,p-(OMe)$_2$-C$_6$H$_3$-boronic acid

Despite our success in functionalising benzoquinone with a wide range of boronic acids, regrettably, we found that some boronic acids were not suited to our reaction conditions or methodology. Boronic acids which did not give the desired product are shown below (Scheme 81). Boronic acids which were only probed in either acetone or water are
shown in blue or red respectively. Those which were tried in both solvents are shown in black.

![Scheme 81](image)

Scheme 81: Products which were not isolated during the boronic acid screen

During initial optimisation studies and the boronic acid screen, purification posed a challenge as some products were found to coelute with the excess benzoquinone used in the reaction. For reactions where this occurred, this was overcome by isolating the product and benzoquinone mixture as a solid/oil and subliming the benzoquinone using a Kugelrohr distillation apparatus, rendering the pure product. This method was generally successful. However, for a number of boronic acids, decomposition of the product, or sublimation of the product itself occurred during this process and therefore purification of pure product was not possible. This occurred with phenyl, \(o\)-OMe-C_6H_4-, \(o\)-Me-C_6H_4-, 5-formyl-2-furan- and benzo[b]thiophene-2-boronic acids.

Other boronic acids which unfortunately did not give the desired product include various nitrogen heterocycles. Protected indoles (\(N\)-Boc-indole-2-boronic acid and \(N\)-Boc-5-bromo-2-indolyl boronic acid) tend to give a complex mixture of products (by
TLC analysis). As previously mentioned, these boronic acids have a tendency to undergo homocoupling and protodeboronation reactions and therefore products from these reactions may well have been formed rather than our desired monofunctionalised products. Unprotected nitrogen heterocycles (1H-pyrazole-4-boronic acid) and nitrogen bearing boronic acids (m-cyano-C₆H₄-, p-acetamido-C₆H₄-) do not react at all, presumably due to the nitrogen lone pair coordinating to palladium and thus deactivating the catalyst. Additionally, p-HS-C₆H₄- and benzo[b]furan-2-boronic acids also do not yield product.

Our interest was primarily in finding boronic acids which could be used in both water and acetone to functionalise benzoquinone. Therefore, for some of the boronic acids mentioned above which did not give the desired product, the reaction was only carried out in one of the aforementioned solvents. Where no yield was obtained, or decomposition of the product occurred for instance, as a rule the boronic acid was not probed in the other solvent.
3.3.3 Reducing catalyst loading

As a result of initial optimisation studies carried out by J. Jordan-Hore, the standard procedure for the monofunctionalisation of benzoquinone uses 7.5 mol% catalyst loading. This was necessary for more challenging boronic acids such as heterocycles and cycloalkyl and alkenyl boronic acids in order to obtain reasonable to good yields of the desired product.

However, we were interested to compare a range of catalyst loadings to see if less catalyst would still give reasonable yields of product, when a more active electron-donating boronic acid is used (Table 18). Pleasingly, results indicate that more active boronic acids still react well under lower catalyst loadings. On reducing the catalyst loading to only 1 mol%, and using \(p\text{-OMe-C}_6\text{H}_4\text{-boronic acid} \) for this screen, the yield was comparable to that obtained in monofunctionalisation reactions (Entries 1 and 2; 87\% yield with 1 mol% catalyst compared to 88\% with 7.5 mol\%). On reducing the loading further to 0.1 mol\% (Table 18, Entry 3) we did however observe a drop in yield to 37\%.

\[
\text{Entry} & \quad \text{Catalyst loading (mol\%)} & \quad \text{Yield (\%)} \\
1 & 7.5 & 88 \\
2 & 1.0 & 87 \\
3 & 0.1 & 37 \\
\]

Table 18: Reducing catalyst loading in the monofunctionalisation of benzoquinone
3.4 Homodifunctionalisation of benzoquinone

3.4.1 Homodifunctionalisation – initial optimisation

Given that current methods to difunctionalise benzoquinone require multistep syntheses (see section 3.1),13, 28, 32 we were keen to investigate whether our methodology could be applied to carry out a one step homodifunctionalisation of benzoquinone. Optimisation studies were carried out by J. Jordan-Hore using the monofunctionalisation reaction conditions as a starting point. Given that an excess of benzoquinone was used in the monofunctionalisation reactions as an oxidant and to prevent difunctionalisation products being formed, this was obviously not an option for difunctionalisation and an alternative oxidant was needed for this reaction. Extensive screening of alternative oxidants for this reaction was carried out by J. Jordan-Hore51 and the choice of oxidant was also crucial to ensure that the monofunctionalised product would not itself act as an oxidant in the reaction. This was a particular issue in initial optimisation studies.

The oxidant screen found that 2,6-dichloro-1,4-benzoquinone was a suitable oxidant and a catalyst loading of 10 mol\% of Pd(OCOCF\textsubscript{3})\textsubscript{2} was optimal, in addition to using a slight excess of boronic acid, which was used straight from the bottle, similar to the monofunctionalisation reactions (Scheme 82). Pleasingly, the homodifunctionalisation reaction proceeded well at room temperature over 2 days.

\begin{center}
\textbf{Scheme 82:} Optimised conditions for the homodifunctionalisation of benzoquinone
\end{center}
3.4.2 Boronic acid screen

With the optimal reaction conditions in hand, we then conducted a boronic acid screen (Table 19).

The products formed in the homodifunctionalisation reaction were the 2,5 and 2,6 disubstituted products. Often the isomers had very similar R_f values and initial purification posed a challenge. However, during the course of our studies we observed a trend in the formation of these isomers; electron-rich boronic acids preferentially formed the 2,6 substituted product whereas the 2,5 substituted product was the major isomer for electron-poor boronic acids. Given the current lack of methodology to selectively functionalise benzoquinone, being able to control formation of the 2,5 or 2,6 product preferentially using the electronics of the boronic acid as a tool is certainly advantageous and an advancement in this area.

The homodifunctionalisation reaction proceeded in good yields with a range of boronic acids with differing steric and electronic properties and was tolerant of various functional groups (Table 19).
<table>
<thead>
<tr>
<th>Entry</th>
<th>RB(OH)$_2$ (R =)</th>
<th>Yield 168 (%)a</th>
<th>Yield 158 (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>168 dd 71</td>
<td>158 dd <5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>168 b’b’ 73</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>168 oo 58</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>168 ee 53</td>
<td>158 ee 28</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>168 aa 29</td>
<td>158 aa 44</td>
</tr>
<tr>
<td>6b</td>
<td></td>
<td>-</td>
<td>158 bb 51</td>
</tr>
<tr>
<td>7b,c,d,e</td>
<td></td>
<td>-</td>
<td>158 rr 25</td>
</tr>
<tr>
<td>8b,f</td>
<td></td>
<td>-</td>
<td>158 qq 13</td>
</tr>
<tr>
<td>9g</td>
<td></td>
<td>41% combined yield (1:1 ratio 168c’c’:158c’c’)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>168 d’d’ 25</td>
<td>158 d’d’ 28</td>
</tr>
<tr>
<td>11b,c,d,g</td>
<td></td>
<td>75% combined yield (3:2 ratio 168 hh:158 hh)</td>
<td></td>
</tr>
</tbody>
</table>
As expected, electron-rich boronic acids reacted well, giving very good yields and excellent selectivity, forming the 2,6 isomer preferentially \((p-OH-C_6H_4, m-OH-C_6H_4, m,p-OH-C_6H_4, m,p-OMe-C_6H_4, \text{Entries 1-3})\). As the substituents on the phenyl ring of each boronic acid became steadily less electron-donating \((m\text{-}tolyl, \text{Entry 4})\) and neutral \((\text{phenyl, Entry 5})\), the ratio of 2,6:2,5 isomers reduced, but the combined yields of both isomers remained very good.

For electron-withdrawing boronic acids \((p-CF_3-C_6H_4, p-CO_2Et-C_6H_4, \text{ and } p-F-C_6H_4, \text{Entries 6-8})\) the selectivity switched to formation of the 2,5 isomer preferentially. An exception to this observed trend is the selectivity observed with the less electron-withdrawing \(m-CO_2Me-C_6H_4\) and \(m-CF_3-C_6H_4\) boronic acids (Entries 11 and 12) which gave no, or very little selectivity. The electron-withdrawing boronic acids were less reactive than their electron-rich counterparts and initial reactions using the standard conditions often gave poor yields. By increasing the temperature to 35 °C and in some cases adding additional portions of boronic acid, DCBQ and catalyst, yields were improved but still somewhat reduced compared to when electron-rich boronic acids are used.

In addition to electronic effects, steric effects also seemed to play their part in reducing yields and selectivity. Presence of an ortho substituent \((o\text{-}Me-p-OH-C_6H_4\) and \(o\text{-}OMe-C_6H_4, \text{Entries 9 and 10})\) reduced yields and also the selectivity of the reaction. Whilst excellent selectivity and yield are obtained when \(p-OH-C_6H_4\)-boronic acid is used, \(o\text{-}Me-p-OH-C_6H_4\)-boronic acid, shows no selectivity and the combined yield of both isomers drops to 41% (Entry 1 \textit{versus} Entry 9).

With regards to the reduction in yield with electron-withdrawing boronic acids, a number of reasons for this became evident. Firstly, from NMR and TLC analysis, the hydroquinone species of the product was believed to be present in those reactions where

Table 19: Homodifunctionalisation of benzoquinone boronic acid screen

<table>
<thead>
<tr>
<th>12b,d,f</th>
<th>(6e')</th>
<th>60% combined yield (1:1 ratio 168e':158e')</th>
</tr>
</thead>
</table>
\footnote{Isolated yields. \footnote{35 °C. \footnote{Additional catalyst and boronic acid added. \footnote{Treated with FeCl\textsubscript{3} and/or DCBQ at the end of reaction. \footnote{Product only moderately stable. \footnote{Additional 2,6-DCBQ, catalyst and boronic acid added. \footnote{Isomers not fully separable.}}}|

137
yields were poor. This could be attributed to the product competing with DCBQ as an oxidant in the reaction. Additionally, the homodifunctionalised products formed from electron-poor, or heterocyclic boronic acids seemed to be less stable than their electron-donating counterparts and this would have also contributed to the reduced yields observed.

In order to maximise yields obtained for reactions using electron-poor or heterocyclic boronic acids, a number of possible solutions were sought. Each reaction with electron-withdrawing boronic acids needed to be treated slightly differently depending on the problems identified when carrying out initial reactions. For \(p\text{-CF}_3\text{-C}_6\text{H}_4\text{-boronic acid}, \) an elevated temperature of 35 °C was found to be sufficient to give a reasonable yield of exclusively the 2,5 product (Entry 6). This increase in temperature was applied to reactions with all the other electron-withdrawing boronic acids, but yields still remained low and therefore additional changes to the optimised reaction conditions were needed to give appreciable amounts of product in these reactions.

In order to increase yields, a portionwise addition approach was adopted where additional portions of catalyst, boronic acid and in some cases 2,6-DCBQ were added after 24 h in order to push the reaction to completion and minimise the amount of reduced product formed (\(p\text{-CO}_2\text{Et-C}_6\text{H}_4\text{-}, p\text{-F-C}_6\text{H}_4\text{-}, m\text{-CO}_2\text{Me-C}_6\text{H}_4\text{-} \) and \(m\text{-CF}_3\text{-C}_6\text{H}_4\text{-}, \) Entries 7, 8, 11 and 12). In some cases this was still deemed insufficient and additional oxidant was added for an hour at the end of the reaction, and/or to the column wash after purification in order to oxidise any reduced product. Further purification of this solution then yielded more of the desired product (see experimental section for further details). Iron(III) chloride was found to be an effective oxidant and was used in these cases instead of DCBQ. In particularly challenging cases, such as for \(m\text{-CF}_3\text{-C}_6\text{H}_4\text{-boronic acid}, \) both DCBQ and FeCl\(_3\) were used in order to maximise yield (Entry 12).

Despite the aforementioned problems being solved to give reasonable yields of products with electron-withdrawing substituents, disappointingly, a number of additional boronic acids were tried which did not yield product (Scheme 83).
For many electron-poor boronic acids, no homodifunctionalised product was evident from TLC analysis during the reaction, but instead a complex mixture of products. Even an elevated temperature of 35 °C for some of the reactions did not yield product. Competing homocoupling of the boronic acid to form the dimer was certainly a problem in many of these reactions. Boronic acids where this was the case include: N-Boc-2-pyrrole, m-CN-C₆H₄-, m-NO₂-C₆H₄-, m-Cl-C₆H₄-, p-I-C₆H₄-, p-Br-C₆H₄-, 3-furan, 2-fluorene and 1-naphthyl boronic acids.

Unfortunately, heterocyclic boronic acids were not tolerated well by the reaction conditions and whilst the reaction with 3-thiophene boronic acid did give 2,5 and 2,6 isomers, purification posed a challenge coupled with instability of the products.

An additional challenge was purification of reactions where coelution of the product, often with either benzoquinone, 2,6-DCBQ or its reduced form, was an issue and therefore pure product could not be isolated. This was the case with a number of
substrates including p-OMe-C_6H_4, m-Cl-p-OMe-C_6H_4, 5-formyl-2-furan and p-CO_2Me-C_6H_4-boronic acids.

A potential option for future work in this area would be to examine more closely the reasons for those reactions which did not yield product. Evidently, due to the products acting as oxidants in addition to being unstable, the homodifunctionalisation using electron-poor boronic acids could be improved in order to increase yields. Where the use of DCBQ was problematic, investigations into alternative oxidants (aside from FeCl$_3$) could be pursued in addition to investigating other purification methods.
3.5 Heterodifunctionalisation of benzoquinone

3.5.1 Heterodifunctionalisation – initial optimisation

Having successfully developed methodology for the homodifunctionalisation of benzoquinone, a natural progression of this work was the investigation of the heterodifunctionalisation of benzoquinone whereby 2 different R groups would be introduced onto the benzoquinone moiety. Given the lack of literature examples of a controlled and selective procedure, any advancement in this area would be of great interest and utility.

Initially, we looked to develop a heterodifunctionalisation reaction using a two-step process by using a monofunctionalised product as our substrate and then reacting it with a boronic acid bearing a different R group using conditions modified from our homodifunctionalisation procedure, to form the desired product (Scheme 84). Optimisation of this reaction was carried out by J. Jordan-Hore.

\[
\begin{align*}
\text{O} & \quad \text{R} + \quad \text{R'}\text{B(OH)}_2 \quad \text{(1.25 equiv.)} \\
\text{O} & \quad \text{167} & \quad \text{6} & \quad \text{Pd(OCOCF}_3\text{)}_2 \quad \text{(10 mol\%)} \\
& & & \text{2,6-DCBQ} \quad \text{(1.25 equiv.)} \\
& & & \text{acetone} \\
& & & \text{rt, 18-24 h} \\
\text{O} & \quad \text{R} & \quad \text{R'} & \quad \text{168} \\
& & & \text{or} \\
\text{O} & \quad \text{R} & \quad \text{R} & \quad \text{158}
\end{align*}
\]

Scheme 84: Heterodifunctionalisation of benzoquinone – optimised reaction conditions

Using very similar conditions to the homodifunctionalisation procedure and reducing the equivalents of boronic acid and DCBQ used, heterodifunctionalised benzoquinones 168 and 158 could be synthesised in good yields at room temperature and with a reaction time of 18-24 h.

3.5.2 Boronic acid screen

Using the optimised reaction conditions, a boronic acid screen was carried out to probe the versatility of the reaction with a range of boronic acids (Table 20). Trends in the selectivity of the reaction (whether the 2,5 or 2,6 difunctionalised product is formed preferentially) are similar to those observed in the homodifunctionalisation investigations. The 2,5 isomer 158 is formed preferentially where the benzoquinone is
functionalised with electron-withdrawing groups and the selectivity switches to the 2,6 isomer 168 when electron-donating groups are present.

\[
\text{\begin{align*}
\text{O} & \quad \text{O} \\
\text{R} & \quad \text{R'}
\end{align*}}
\]

\[
\begin{array}{c}
\text{Pd} \left(\text{OCOCF}_3 \right)_{32} \\
\text{(10 mol\%)}
\end{array}
\]

\[
\begin{array}{c}
\text{2,6-DCBQ} \\
\text{(1.25 equiv.)}
\end{array}
\]

\[
\begin{array}{c}
\text{acetone, rt, 18-24 h}
\end{array}
\]

\[
\text{R'} \\
\text{R}
\]

\[
\text{or}
\]

\[
\text{R'} \\
\text{R}
\]

\[
\begin{array}{c}
\text{R} \\
\text{R'}
\end{array}
\]

\[
\begin{array}{c}
\text{167} \\
\text{158}
\end{array}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
<th>Yield 168 (%)(^a)</th>
<th>Yield 158 (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>167c</td>
<td>6d</td>
<td>168cd 73</td>
<td>158cd <5</td>
</tr>
<tr>
<td>2</td>
<td>167o</td>
<td>6d</td>
<td>168od 71</td>
<td>158od 10</td>
</tr>
<tr>
<td>3</td>
<td>167o</td>
<td>6c</td>
<td>168oc 65</td>
<td>158oc 21</td>
</tr>
<tr>
<td>4</td>
<td>167d</td>
<td>6d'</td>
<td>168dd' 50</td>
<td>158dd' 41</td>
</tr>
<tr>
<td>5</td>
<td>167o</td>
<td>6r</td>
<td>168or 44</td>
<td>158or 26</td>
</tr>
<tr>
<td>6</td>
<td>167r</td>
<td>6o</td>
<td>168ro 48</td>
<td>158ro 16</td>
</tr>
<tr>
<td>7(^b)</td>
<td>167r</td>
<td>6b</td>
<td>168rb <5</td>
<td>158rb 47</td>
</tr>
</tbody>
</table>

\(^a\)Isolated yields. \(^b\)Products only moderately stable.

Table 20: Heterodifunctionalisation of benzoquinone – aryl boronic acid screen

Yields were excellent where a monofunctionalised benzoquinone 167 with an electron-rich substituent was further functionalised with another electron-rich functional group to form the desired disubstituted product (Entries 1 to 4). Following the trend observed with homodifunctionalisation, preference for the 2,6 substituted product 168 is observed but the selectivity does drop when ortho substituted aryl boronic acids are used, yet the
yield remains very good (Entry 4). Understandably, a reduction in yield was observed and also a change in selectivity to predominantly the 2,5 disubstituted product 158 when both groups are electron-withdrawing (Entry 7).

We were intrigued to ascertain how the reaction outcome would be affected in terms of selectivity when the 2 substituents had different electronic properties. Starting with an electron-rich substituent and functionalising with an electron-poor substituent gave primarily the 2,6-difunctionalised product (Entry 5) albeit with significant amounts of 2,5 isomer formed. Synthesising the same product yet starting with an electron-poor monofunctionalised benzoquinone and functionalising with an electron-rich group gave the same selectivity (Entry 6) prompting us to conclude that the electronics of both the monofunctionalised starting material in addition to the electronics of the second group affect the selectivity of the reaction.

We also investigated whether our methodology could be applied to heterocyclic and cycloalkyl boronic acids despite the challenges experienced in the homodifunctionalisation reactions (Table 21).
After initial investigatory work with various heterocyclic boronic acids, we found that 3-thienyl boronic acid 6u gave the most promising results. We investigated using 3-thienyl benzoquinone 167u as our starting material and functionalising with various boronic acids, but found that higher yields were obtained by starting with various monofunctionalised benzoquinones and then functionalising with 3-thienyl boronic acid 6u to form our desired products (see Entries 4 and 5 for one specific example). Additionally, for Entry 2, when the heterodifunctionalisation reaction was carried out by starting with 3-thienyl benzoquinone 167u and functionalising with m-NO₂-C₆H₄-boronic acid, it was impossible to isolate both isomers due to coelution of the boronic acid with the desired product.
acid dimer with one of the isomers upon purification which therefore dictated the order of functionalisation.

Pleasingly reactions with heterocycles also showed selectivity, forming the 2,5 isomer preferentially (Entries 2-5). Additionally we found that a heterodifunctionalised product could be formed with 2 heterocyclic groups (3-thienyl and N-Boc-2-pyrrole) in good yield and excellent 2,5 selectivity (Entry 1).

The reduction in yields observed for the heterodifunctionalisation reactions with electron-withdrawing and 3-thiophene boronic acids is most likely caused by the same factors which hampered yields in the homodifunctionalisation work (vide supra). Throughout our investigations, products bearing electron-withdrawing or heterocyclic groups were found to be unstable and challenging to isolate. Additionally, it is thought that the products compete with 2,6-DCBQ as oxidants in some circumstances and therefore these reasons are likely to be contributing factors to the reduced yields observed. Following on from our experience in overcoming these problems during our work on homodifunctionalisation, a couple of methods were employed to solve these issues and increase yields. Adding additional portions of boronic acid, or using FeCl₃ as an additional oxidant at the end of the reaction (Entries 1, 2 and 4) were found to increase yields although they still remain low compared to yields obtained with electron-donating boronic acids.

Next, we turned our attention to forming a heterodisubstituted product with an electron-rich aryl group and a cycloalkyl substituent (Entry 6). Using a prefuctionalised benzoquinone with an electron-rich aryl group 167o, we carried out the reaction with cyclohexyl boronic acid 6x and unfortunately a complex mixture of products was formed from which our desired product could not be isolated. This is certainly an area which could be investigated further in order to increase the scope of the reaction.
Additional heterodifunctionalised products which unfortunately could not be isolated include those shown below (Figure 5). Again, purification and stability posed problems for these reactions.

![Figure 5: Heterodifunctionalised products which we were unable to isolate/synthesise using our methodology](image)

Despite the aforementioned challenges in our investigations into the heterodifunctionalisation of benzoquinone, we have demonstrated that Pd(II) can be used to functionalise benzoquinone in a selective manner and excellent yields. Further work would be beneficial in this area to address in more detail the issues experienced with electron-withdrawing, heterocyclic and cycloalkyl boronic acids, in order to widen the scope of this reaction.
3.5.3 Characterisation of heterodifunctionalised products

Whilst the 2,5 and 2,6 homodifunctionalised products could be differentiated by 13C NMR analysis, this was not possible with heterodifunctionalised products and therefore distinguishing between 2,5 and 2,6 isomers was more challenging. In some cases two doublets could be observed in the 1H NMR spectrum of the 2,6 isomer corresponding to the alkenyl protons coupling to one another (^{4}J coupling) (Figure 6). This coupling was absent from spectra for the 2,5 isomer, giving rise to two singlets for these protons.

![Figure 6: Comparison of 1H NMR spectra for 2,5 and 2,6 heterodifunctionalised products](image)

A crystal structure was also obtained for 168cd in order to confirm our hypothesis (see Figure 7 below). Crystal structures were acquired for compounds 168dd and 158bb, as an additional characterisation method in order to confirm their identity.
Figure 7: Crystal structures of homo- and hetero-difunctionalised products
However, for products 168or and 158or, no 4J coupling was evident in the 1H NMR spectra and efforts to crystallise a sample to be able to ascertain the structure by X-ray crystallography were unsuccessful. Instead, by acetylating each isomer separately (using a method from literature for the diacetylation of 2,5- and 2,6-diaryl-1,4-hydroquinones),[^32] we envisaged being able to differentiate between the isomers by NOESY (Scheme 85). However, after acetylation, 4J coupling was in fact visible in the 1H NMR spectrum of one of the products, and not the other, enabling us to confirm the identity of the 2,6 isomer without employing NOESY for characterisation.

Scheme 85: Acetylation of heterodifunctionalised products in order to confirm the structure by NOESY
3.6 Selectivity in the difunctionalisation reactions

During the course of our investigations, we were intrigued to observe the trends in selectivity in the homodifunctionalisation and heterodifunctionalisation reactions. In order to confirm that isomerisation was not occurring during the functionalisation reactions, two control experiments were carried out. Separate samples of the 2,5 and 2,6 isomers of bis-phenyl-1,4-benzoquinone (158aa and 168aa) were subjected to the homodifunctionalisation reaction conditions (Scheme 86), followed by an additional portion of boronic acid after 24 h and the reactions monitored to see if formation of the other isomer was evident. Both reactions did not show any change from starting material to the other isomer, or other side products, thus confirming that isomerisation was not occurring during the difunctionalisation reactions.

![Scheme 86: Control experiment to confirm isomerisation was not occurring during difunctionalisation reactions](image)

Given that some of the difunctionalisation reactions were also carried out at elevated temperature, it was important to investigate if temperature affects the ratio of products obtained. The homodifunctionalisation reaction with phenyl boronic acid 6a was chosen as the test reaction and conducted at an elevated temperature of 40 °C. The ratio of 2,5 to 2,6 difunctionalised products was 1:1 and thus implies that temperature does not affect the ratio of isomers formed in these reactions.\(^1\)

\(^1\)In order to investigate further the selectivity observed in the difunctionalisation reactions, DFT calculations were carried out by the Macgregor group at Heriot-Watt University. This work is discussed in Section 3.8.
3.7 One pot heterodifunctionalisation reaction

During the course of our investigations into the heterodifunctionalisation of benzoquinone, we decided that it would be worth investigating the feasibility of a one-pot heterodifunctionalisation procedure. By forming a monofunctionalised product in situ and then further functionalising with a different aryl group, we would be able to showcase a simple yet effective method to form a difunctionalised product which to date could only be formed in a minimum of 2 steps from our work, and significantly more using current known literature methods.37

However, it was immediately evident that we would not be able to apply our standard conditions for monofunctionalisation to this procedure given that using 3 equivalents of benzoquinone would leave excess substrate in the reaction mixture during the second step. We therefore needed to reoptimise reaction conditions using an alternative oxidant to form the monofunctionalised product in situ. We used 2,6-dichloro-1,4-benzoquinone as an alternative oxidant in our optimisation studies as this had been effective in the homo- and hetero-difunctionalisation work. Various combinations of benzoquinone and 2,6-dichloro-1,4-benzoquinone were used and the product was isolated to give an indication of how much monofunctionalised product would be formed in situ during the one pot procedure (Table 22).

![Chemical reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>BQ (Equiv.)</th>
<th>2,6-DCBQ (Equiv.)</th>
<th>Yield 167c (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>40(^b)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>54(^b)</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>1.5</td>
<td>71</td>
</tr>
</tbody>
</table>

\(^a\)Isolated yields. \(^b\)Diarylated product also present in crude mixture.

Table 22: Reducing the equivalents of benzoquinone
An additional challenge was to ideally avoid the formation of the homodifunctionalised benzoquinone. Using 3 equivalents of benzoquinone in the monofunctionalisation work avoided the formation of this by-product but as mentioned previously, in this case, this was not a viable solution. Fortunately whilst formation of the homodifunctionalisation product was evident when the equivalents of benzoquinone were reduced to 2 or 1 (Table 22, Entries 2 and 3), our studies showed that by reducing the equivalents of benzoquinone to 1.5 and using 1.5 equivalents of sacrificial oxidant, we were able to form the monofunctionalised product exclusively and in good yield (Table 22, Entry 4).

Using these optimised reaction conditions, we examined the second step of the reaction. Pleasingly, using excess (2.5 equivalents) of both DCBQ and the second boronic acid (4-hydroxyphenyl boronic acid 6d), we obtained the desired product 168cd in 47% yield, equating to a good average of 69% for each step of the reaction (Scheme 87).

![Scheme 87](image)

Scheme 87: One pot C-H hetero-difunctionalisation of benzoquinone
3.8 Mechanism

Following our work detailed in chapter 2 where we demonstrated that the outcome of the Pd(II) catalysed reaction of cyclic enones and boronic acids can be switched between conjugate addition and oxidative Heck products, we propose 2 plausible mechanistic pathways for the functionalisation of benzoquinone (Scheme 88).

![Mechanistic Pathways Diagram](image)

Scheme 88: Proposed mechanistic pathways for the functionalisation of benzoquinone

Both mechanistic pathways begin with the same steps; transmetallation of the boronic acid onto the active metal species followed by migratory insertion of benzoquinone 166 to give I. This species would then undergo enolate formation to form II, from which two possible mechanistic pathways can be followed in order to form the product 167. Pathway 1 (marked in red) follows a direct Pd(II)-catalysed oxidative Heck mechanism or pathway 2 (marked in blue) forms the product via conjugate addition and reoxidation.

As previously discussed in chapter 2, in order for the reaction to proceed via an oxidative Heck pathway, formation of enolate II is vital to facilitate the final step in this cycle, syn β-hydride elimination, which cannot occur directly from species I due to it being conformationally restricted. Once syn β-hydride elimination has occurred, the
resulting Pd(0) species is then reoxidised to Pd(II) using either benzoquinone (for monofunctionalisation) or 2,6-DCBQ (for difunctionalisation) to regenerate the catalyst. Alternatively, species II can follow a conjugate addition pathway whereby protonolysis occurs, regenerating the catalyst, and the resulting hydroquinone species IV is then oxidised to form the desired functionalised benzoquinone.

Both pathways are plausible and unfortunately we are unable to draw conclusions as to which is more likely from our experimental work. From the catalytic cycle, it is obvious that the two pathways differ in formation of the hydroquinone species, and so perhaps formation of this would be an indication of a conjugate addition route. However, formation of these species could occur through both pathways and not just the conjugate addition route as they could also be formed from their benzoquinone analogues acting as a competing oxidant in the oxidative Heck pathway, and thus appear as a side product (which has been observed in some difunctionalisation reactions – see section 3.4.2).

Additionally, we decided it would be worth investigating in more depth the selectivity observed in the difunctionalisation reactions. However, initial investigations (DFT calculations carried out by the Macgregor group at Heriot-Watt University) into the reasons for the selectivity observed have unfortunately been unable to shed light on plausible explanations for the trends observed. Similar charge distribution and LUMO coefficients were found for formation of both the 2,5 and 2,6 homodifunctionalised products bearing electron-donating or electron-withdrawing groups, from the corresponding monofunctionalised benzoquinones. However, subtle differences were observed in the energy involved in the migratory insertion step when electron-donating or electron-withdrawing groups are involved.

Further investigations into the mechanistic pathway would certainly be advantageous in order to shed light on which mechanistic pathway is more favourable, in addition to reasons for the selectivity observed.
3.9 Conclusions

This project has successfully developed the first palladium-catalysed direct functionalisation of benzoquinone. We have developed methodology to selectively carry out both mono and difunctionalisations in excellent yields. Our reaction conditions tolerate a wide variety of functional groups and complement current known methods for functionalising benzoquinone (Scheme 89).

During the course of our studies we have found that regioselectivity of the difunctionalisation reactions is dependent on the electronic properties of the boronic acid used whereby electron-deficient and heterocyclic boronic acids preferentially form the 2,5 isomer and electron-donating boronic acids give rise to the 2,6 product. Additionally, our work has included developing a one-pot procedure for the heterodifunctionalisation of benzoquinone, resulting in a good yield of the desired heterodifunctionalised products.
3.10 Future work

Given that initial investigations have unfortunately been unable to shed light on the selectivity observed in the difunctionalisation reactions, further studies would enable us to gain more insight into the factors which influence selectivity. Additionally, investigations could be carried out in order to establish whether the functionalisation reactions proceed through a conjugate addition and reoxidation mechanism, or an oxidative Heck pathway (Scheme 88).

Due to the prevalence of the quinone moiety in natural products with biological applications, for instance betulinan A 143^6, omphalone 179^{52} or leucomelone 145^7 (Figure 8), it would be useful to expand this work to other substrates such as substituted benzoquinones in order to investigate potential facile routes to such compounds. Exploratory investigations have indicated that with some further optimisation, this is certainly an area in which this project could be developed.

![Figure 8: Biologically active quinone-based compounds](image)

Additionally, our methodology could potentially be developed to form tetrasubstituted benzoquinones bearing four aryl/heteroaryl groups (Scheme 90). Such compounds have uses as ligands,$^{11-15}$ in molecular electronics16 and also biological applications.$^{1-6}$ However, given current syntheses are lengthy, our methodology may provide a facile means of accessing such compounds.
Scheme 90: Potential application of difunctionalisation methodology to form tetrasubstituted products
3.11 Experimental section

General Experimental Considerations

1H NMR spectra were recorded on Bruker AV 300, DPX 400 and AV 400 spectrometers at 300 and 400 MHz respectively and referenced to residual solvent. 13C NMR spectra were recorded using the same spectrometers at 75 and 100 MHz respectively. Chemical shifts (δ in ppm) were referenced to tetramethylsilane (TMS) or to residual solvent peaks (CDCl$_3$ at δ$_H$ 7.26 ppm, δ$_C$ at 77.00 ppm, (CD$_3$)$_2$CO at δ$_H$ 2.05 ppm, δ$_C$ at 29.84 ppm or (CD$_3$)$_2$SO at δ$_H$ 2.50 ppm, δ$_C$ at 39.52 ppm). J values are given in Hz and s, d, dd, t, q, hept., m and app. abbreviations correspond to singlet, doublet, doublet of doublet, triplet, quartet, heptet, multiplet, apparent and combinations thereof. Mass spectra were obtained at the EPSRC National Mass Spectrometry Service Centre in Swansea. Infrared spectra were obtained on Perkin-Elmer Spectrum 100 FT-IR Universal ATR Sampling Accessory or Thermo Scientific Nicolet iS5 FT-IR spectrometer, deposited neat or as a chloroform solution to a diamond/ZnSe plate. Where necessary, sublimation of benzoquinone was carried out using a Kugelrohr distillation apparatus (Büchi B-585 or Büchi GKR-50).

Flash column chromatography was carried out using Matrix silica gel 60 from Fisher Chemicals and thin layer chromatography was performed using Merck silica gel 60 F254 precoated sheets and visualised by UV (254 nm) or stained by the use of aqueous acidic KMnO$_4$, aqueous acidic ceric ammonium molybdate, acidic dinitrophenyl hydrazine or molecular iodine as appropriate. Petroleum ether refers to petroleum ether (40–60%) and EtOAc refers to ethyl acetate. Acetone was purchased from Fisher Scientific, all boronic acids were purchased from either Sigma Aldrich, Alfa Aesar or Fluorochem, palladium acetate trimer was provided by Johnson-Matthey and all other chemicals were provided by Sigma Aldrich. All chemicals were used without further purification unless otherwise stated. The reaction was performed without the need for dry solvents or inert atmosphere and all reactions were carried out in air.
Preparation of Palladium Trifluoroacetate53:

Pd(OTFA)\textsubscript{2} was prepared using the method specified in \textit{Acta Cryst.} \textbf{1989}, \textit{C45}, 1289 with minor modifications.

To a 100 mL round bottomed flask was added Pd(OAc)\textsubscript{2} (1.00 g, 4.45 mmol) and trifluoroacetic acid (25 mL). The resultant slurry was stirred for 10 min at 35 °C and the slurry was concentrated to dryness under reduced pressure. Trace TFA was removed \textit{in vacuo}, to give Pd(OTFA)\textsubscript{2} as a brown dust (1.47 g, 99 %).

Purification of Benzoquinone:

Commercially available benzoquinone often appears either as an off yellow or green colour. This colouration is due to the presence of impurities, the most common being hydroquinone. Benzoquinone was purified prior to use by either simple flash column chromatography or recrystallisation from isopropyl alcohol. After purification benzoquinone was stored at room temperature without the exclusion of air. Pure benzoquinone should appear as a bright yellow, light and flocculent solid.

General procedures for the palladium(II)-catalysed C-H functionalisation of benzoquinone

General procedure 1 - Palladium(II)-catalysed C-H monofunctionalisation of benzoquinone in acetone:

Benzoquinone (3 equiv., 3 mmol), the boronic acid (1 equiv., 1 mmol) and palladium trifluoroacetate (7.5 mol\%) were added to a round-bottomed flask equipped with a magnetic stir bar, acetone (12 mL) was then added and the reaction was stirred at room temperature for 18-24 h. Upon completion, as determined by thin layer chromatography, the mixture was evaporated to dryness, toluene (5 mL) and enough acetone to dissolve the heterogeneous mixture (0.5–1 mL) was added. The slurry was then purified directly by flash column chromatography to afford the monofunctionalised product. Where benzoquinone coeluted with the monofunctionalised product, it was removed by sublimation using a Kugelrohr distillation apparatus.

General procedure 2 - Palladium(II)-catalysed C-H monofunctionalisation of benzoquinone in water:

Benzoquinone (3 equiv., 3 mmol), the boronic acid (1 equiv., 1 mmol) and palladium trifluoroacetate (7.5 mol\%) were added to a round-bottomed flask equipped with a magnetic stir bar, distilled water (12 mL) was then added, the solution briefly sonicated
to disperse the reagents where necessary and the reaction was stirred at room temperature for 18-24 h. Upon completion, as determined by thin layer chromatography, EtOAc (20 mL) and water (10 mL) were added. The layers were separated and the aqueous layer was washed with a EtOAc (3 × 20 mL). The organic layer was then washed with brine (20 mL), dried over MgSO₄ and concentrated under reduced pressure. To the resultant solid, toluene (5 mL) and enough acetone to dissolve the heterogeneous mixture (0.5–1 mL) was added. The slurry was then purified directly by flash column chromatography to afford the monofunctionalised product. Where benzoquinone coeluted with the monofunctionalised product, it was removed by sublimation using a Kugelrohr distillation apparatus.

General procedure 3 - Palladium(II)-catalysed homo-difunctionalisation of benzoquinone:
Benzoquinone (1 equiv., 0.1 mmol), the boronic acid (2.5 equiv., 0.25 mmol), 2,6-dichlorobenzoquinone (2.5 equiv., 0.25 mmol) and palladium trifluoroacetate (10 mol%) were added to a round bottomed flask equipped with a magnetic stir bar. Acetone (0.340 mL) was then added and the reaction was stirred at room temperature for 48 h. Upon completion, as determined by thin layer chromatography, the mixture was evaporated to dryness, toluene (5 mL) and enough acetone to dissolve the heterogeneous mixture (0.5–1 mL) was added. The slurry was then purified directly by flash column chromatography to afford the difunctionalised product.

General procedure 4 - Palladium(II)-catalysed hetero-difunctionalisation of monofunctionalised benzoquinone derivatives:
The monofunctionalised benzoquinone derivative (1 equiv., 0.05 mmol), the boronic acid (1.25 equiv., 0.0625 mmol), 2,6-dichloro-1,4-benzoquinone (1.25 equiv., 0.0625 mmol) and palladium trifluoroacetate (10 mol%) were added to a round bottomed flask equipped with a magnetic stir bar. Acetone (0.170 mL) was then added and the reaction was stirred at 20 °C for 18 h. Upon completion, as determined by thin layer chromatography, the mixture was evaporated to dryness, toluene (5 mL) and enough acetone to dissolve the heterogeneous mixture (0.5–1 mL) was added. The slurry was then purified directly by flash column chromatography to afford the heterodifunctionalised product.
2-(4-Methoxyphenyl)-1,4-benzoquinone (167c)

General procedure 2 was followed to give the product 167c in 88% yield as a brown solid; M. p. 108-110 °C; R_f 0.68 (3:1 hexane:EtOAc); ^1H NMR (300 MHz, CDCl_3): δ = 7.41 (d, J = 8.8 Hz, 2H, Ar-H), 6.90 (d, J = 8.8 Hz, 2H, Ar-H), 6.82 - 6.69 (m, 3H, 3 × O=C-CH), 3.79 (s, 3H, OCH_3); ^13C NMR (75 MHz, CDCl_3): δ = 187.7 (C), 187.1 (C), 161.4 (C), 145.2 (C), 137.0 (CH), 136.3 (CH), 131.1 (CH), 130.9 (CH), 125.0 (C), 114.1 (CH), 55.4 (CH_3); HRMS (APCI) calculated for [M+H]^+ 215.0703, C_{13}H_{11}O_3 found: 215.0709.

2-(4-Hydroxyphenyl)-1,4-benzoquinone (167d)

General procedure 1 was followed, using 6 equiv. benzoquinone to give the product 167d in 64% yield as a bright red solid; M. p. 173-176 °C; R_f 0.56 (2:1 petroleum ether:EtOAc); ^1H NMR (300 MHz, Acetone-d_6): δ = 8.84 (s, 1H, OH), 7.48 (d, J = 8.7 Hz, 2H, Ar-H), 6.92 (d, J = 8.7 Hz, 2H, Ar-H), 6.87 - 6.79 (m, 3H, 3 × O=C-CH); ^13C NMR (75 MHz, Acetone-d_6): δ = 188.3 (C), 187.9 (C), 160.2 (C), 146.0 (C), 138.0 (CH), 136.9 (CH), 132.0 (CH), 131.9 (CH), 125.2 (C), 116.2 (CH); ν_max/cm^-1 3317 br str, 1646 v str, 1607 str, 1514 m, 1434 w, 1343 m, 1252 m, 1098 w, 978 w, 900 v str, 840 v str; HRMS (APCI) calculated for [M+H]^+ 201.0546, C_{12}H_{9}O_3 found: 201.0546.

2-(3,4-Dimethoxyphenyl)-1,4-benzoquinone (167o)

General procedure 2 was followed on gram scale (10.5 mmol, 1.136 g benzoquinone) to give the product 167o in 70% yield as a black solid; M. p. 137-140 °C; R_f 0.43 (2:1 hexane:EtOAc); ^1H NMR (300 MHz, CDCl_3): δ = 7.14 (dd, J = 8.4, 2.1 Hz, 1H, H_c), 7.05 (d, J = 2.1 Hz, 1H, H_a), 6.94 (d, J = 8.4 Hz, 1H, H_b), 6.86 - 6.82 (m, 3H, 3 × O=C-CH), 3.93 (s, 3H, OCH_3), 3.92 (s, 3H, OCH_3); ^13C NMR (101 MHz, CDCl_3): δ = 187.6 (C), 187.0 (C), 151.1 (C), 148.9 (C), 145.2 (C), 137.1 (CH), 1362 (CH), 131.3 (CH), 125.2 (C), 122.7 (CH), 112.18 (CH), 111.1 (CH), 56.01 (CH_3), 55.99 (CH_3); ν_max/cm^-1 1652 v str, 1515 str, 1263 str, 1146 m, 1093 m, 1023 m, 901 w, 860 w.
2-(3-Methylphenyl)-1,4-benzoquinone (167e)\(^{38}\)

General procedure 2 was followed to give the product 167e in 90% yield as a brown solid; M. p. 84-87 °C; R\(_f\) 0.45 (10:1 petroleum ether:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 7.49 - 7.00\) (m, 4H, Ar-H), 6.92 – 6.61 (m, 3H, 3 \(\times\) O=C-CH\(_3\)), 2.34 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 187.6\) (C), 186.7 (C), 146.2 (C), 138.2 (C), 137.1 (CH), 136.2 (CH), 132.62 (C), 132.56 (CH), 130.9 (CH), 129.8 (CH), 128.4 (CH), 126.4 (CH), 21.4 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2922 w, 2856 str, 1643 v str, 1602 m, 1590 str, 1296 str, 1098 str, 900 str, 888 str, 781 v str, 697 v str; HRMS (APCI) calculated for [M+H\(^+\)]\(^{+}\) 199.0754, C\(_{13}\)H\(_{11}\)O\(_2\) found: 199.0753.

2-(3-Chloro-4-methoxyphenyl)-1,4-benzoquinone (167p)

General procedure 2 was followed to give the product 167p in 48% yield as a red solid; M. p. 160-162 °C; R\(_f\) 0.20 (5:1 hexane:EtOAc); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.57\) (d, \(J = 2.2\) Hz, 1H, H\(_a\)), 7.43 (dd, \(J = 8.6, 2.2\) Hz, 1H, H\(_b\)), 6.99 (d, \(J = 8.6\) Hz, 1H, H\(_b\)), 6.88 – 6.78 (m, 3H, 3 \(\times\) O=C-CH\(_3\)), 3.96 (s, 3H, OCH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 187.4\) (C), 186.6 (C), 156.6 (C), 144.0 (C), 137.0 (CH), 136.3 (CH), 131.7 (CH), 131.0 (CH), 129.1 (CH), 125.7 (C), 122.9 (C), 111.8 (CH), 56.3 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 3062 w, 2954 w, 1653 v str, 1599 str, 1505 str, 1303 str, 1266 str, 1064 str; HRMS (APCI) calculated for [M+H\(^+\)]\(^{+}\) 249.0313, C\(_{13}\)H\(_{10}\)O\(_3\)Cl found: 249.0312.

Note: General procedure 1 was carried out by J. Jordan-Hore to give product 167p in 78% yield.

2-(4-Trifluoromethylphenyl)-1,4-benzoquinone (167b)\(^{38}\)

General procedure 2 was followed to give the product 167b in 64% yield as a black solid; M. p. 109-113 °C; R\(_f\) 0.17 (5:1 hexane:EtOAc); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.71\) (d, \(J = 8.1\) Hz, 2H, Ar-H), 7.59 (d, \(J = 8.1\) Hz, 2H, Ar-H), 6.93 – 6.85 (m, 3H, 3 \(\times\) O=C-CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 187.1\) (C), 186.0 (C), 144.7 (C), 137.0 (CH), 136.4 (CH), 136.1 (C), 133.6 (CH), 131.9 (C, q, \(J = 32.8\) Hz), 129.6 (CH), 125.5 (CH, q, \(J = 3.7\) Hz), 123.8 (C, q, \(J = 272.4\) Hz); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2930 w, 1649 v str, 1597 m, 1406 m, 1329 str, 1120 v str, 1107 v str, 1069 v str, 908 v str, 860 str, 848 str.

162
2-(4-Bromophenyl)-1,4-benzoquinone (167j)

General procedure 2 was followed to give the product 167j in 82% yield as a bright yellow solid; M. p. 112-115 °C; R_f 0.38 (5:1 hexane:EtOAc); _1^H NMR (300 MHz, CDCl_3): δ = 7.58 (d, J = 8.5 Hz, 2H, Ar-H), 7.36 (d, J = 8.5 Hz, 2H, Ar-H), 6.92 – 6.79 (m, 3H, 3 × O=C–C_H); _1^3C NMR (101 MHz, CDCl_3): δ = 187.3 (C), 186.2 (C), 144.8 (C), 137.0 (CH), 136.4 (CH), 132.6 (CH), 131.8 (CH), 131.4 (C), 130.8 (CH), 124.9 (C); HRMS (APCI) calculated for [M+H]^+ 262.9702, C_{12}H_8O_2Br found: 262.9700.

2-(3-Chlorophenyl)-1,4-benzoquinone (167l)

General procedure 2 was followed to give the product 167l in 89% yield as a dark yellow solid; M. p. 142-144 °C; R_f 0.38 (5:1 hexane:EtOAc); _1^H NMR (300 MHz, CDCl_3): δ = 7.51 – 7.47 (m, 1H, Ar-H), 7.47 – 7.41 (m, 1H, Ar-H), 7.41 – 7.33 (m, 2H, Ar-H), 6.95 – 6.73 (m, 3H, 3 × O=C–C_H); _1^3C NMR (101 MHz, CDCl_3): δ = 187.2 (C), 186.1 (C), 144.6 (C), 137.0 (CH), 136.4 (CH), 134.5 (C), 134.3 (C), 133.1 (CH), 130.1 (CH), 129.8 (CH), 129.3 (CH), 127.4 (CH); ν_max/cm

1^2929 w, 1716 w, 1651 v str, 1590 str, 1562 str, 1344 str, 1299 str, 1099 str, 1085 str, 903 v str, 883 v str, 833 v str, 690 v str; HRMS (APCI) calculated for [M+H]^+ 219.0207, C_{12}H_8O_2Cl found: 219.0213.

2-(4-Ethoxycarbonylphenyl)-1,4-benzoquinone (167r)

General procedure 2 was followed to give the product 167r in 75% yield as a dark green solid; M. p. 119-123 °C; R_f 0.57 (2:1 hexane:EtOAc); _1^H NMR (300 MHz, CDCl_3): δ = 8.12 (d, J = 8.7 Hz, 2H, Ar-H), 7.55 (d, J = 8.7 Hz, 2H, Ar-H), 6.94 – 6.85 (m, 3H, 3 × O=C–C_H), 4.41 (q, J = 7.1 Hz, 2H, CH_2CH_3), 1.41 (t, J = 7.1 Hz, 3H, CH_2CH_3); _1^3C NMR (101 MHz, CDCl_3): δ = 187.2 (C), 186.1 (C), 165.9 (C), 145.1 (C), 137.0 (CH), 136.8 (C), 136.4 (CH), 133.4 (CH), 131.8 (C), 129.6 (CH), 129.2 (CH), 61.3 (CH_2), 14.3 (CH_3); ν_max/cm

1^2929 w, 1716 w, 1651 v str, 1596 str, 1562 str, 1326 v str, 1278 str, 1168 str, 1120 v str, 1068 v str, 908 v str, 732 v str; HRMS (APCI) calculated for [M+H]^+ 257.0808, C_{15}H_{13}O_4 found: 257.0811.
2-(3-Nitrophenyl)-1,4-benzoquinone (167i) \(^{45}\)

General procedure 2 was followed, but the reaction required 48 h at 50 °C to give the product 167i in 53% yield as a grey solid; M. p. 118-125 °C; R\(_f\) 0.14 (5:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)); \(\delta = 8.37\) (t, \(J = 1.9\) Hz, 1H, Ar-H), 8.36 – 8.30 (m, 1H, Ar-H), 7.85 – 7.79 (m, 1H, Ar-H), 7.69 – 7.62 (m, 1H, Ar-H), 6.98 – 6.90 (m, 3H, \(3 \times \text{O=C-C}\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)); \(\delta = \) 186.8 (C), 185.7 (C), 148.3 (C), 143.7 (C), 136.9 (CH), 136.6 (CH), 135.1 (CH), 134.1 (C), 133.8 (CH), 129.6 (CH), 124.7 (CH), 124.3 (CH); \(\nu_{\text{max}}/\text{cm}^{-1}\) \(3084\) w, 2925 w, 1658 v str, 1614 str, 1592 str, 1528 v str, 1435 v str, 1295 str, 1275 str, 1094 v str, 902 v str, 733 v str; HRMS (APCI) calculated for [M+H]\(^+\) \(230.0448\), C\(_{12}\)H\(_8\)O\(_4\)N found: 230.0450.

Note: General procedure 1 was carried out by J. Jordan-Hore (requiring 48 h at 50 °C) to give product 167i in 71% yield.

2-(2,4,6-Trimethylphenyl)-1,4-benzoquinone (167s)

General procedure 2 was followed to give the product 167s in 68% yield as a dark red thick oil; R\(_f\) 0.43 (10:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)); \(\delta = 6.93\) (s, 2H, Ar-H), 6.90 – 6.64 (m, 3H, \(3 \times \text{O=C-C}\)), 2.31 (s, 3H, CH\(_3\)), 2.08 (s, 6H, \(2 \times \text{CH}_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)); \(\delta = \) 187.4 (C), 186.2 (C), 148.1 (C), 138.4 (C), 136.7 (CH), 136.4 (CH), 135.4 (CH), 135.3 (C), 129.7 (C), 128.3 (CH), 21.0 (CH\(_3\)), 20.2 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) \(2921\) w, 1656 v str, 1611 w, 1597 w, 1282 str, 1090 m, 912 m, 835 m; HRMS (APCI) calculated for [M+H]\(^+\) \(227.1067\), C\(_{15}\)H\(_{15}\)O\(_2\) found: 227.1067.

2-(2-Fluorenyl)-1,4-benzoquinone (167n)

General procedure 2 was followed to give the product 167n in 53% yield as a brown solid; M. p. 195-198 °C; R\(_f\) 0.59 (3:1 petroleum ether:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)); \(\delta = 7.92\) – 7.77 (m, 2H, Ar-H), 7.74 – 7.65 (m, 1H, Ar-H), 7.63 – 7.46 (m, 2H, Ar-H), 7.46 – 7.31 (m, 2H, Ar-H), 6.98 – 6.80 (m, 3H, \(3 \times \text{O=C-C}\)), 3.96 (s, 2H, CH\(_2\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)); \(\delta = \) 187.6 (C), 187.0 (C), 146.1 (C), 143.8 (C), 143.8 (C), 143.4 (C), 140.7 (C), 137.1 (CH), 136.3 (CH), 132.1 (CH), 130.9 (C), 128.2 (CH), 127.6 (CH), 127.0 (CH), 126.0 (CH), 125.2 (CH), 120.5 (CH), 119.9 (CH), 36.9 (CH\(_2\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) \(3053\) w, 2924 w, 1645 v str, 1589 str, 1456 w,
767 str, 732 v str; HRMS (APCI) calculated for [M+H]+ 273.0910, C_{19}H_{13}O_{2} found: 273.0907.

Note: General procedure 1 was carried out by J. Jordan-Hore to give product 167n in 81% yield.

C-H Monofunctionalisation of benzoquinone with heterocyclic boronic acids:
General procedures 1 and 2 used. Reactions carried out on a 0.5 mmol scale with a reaction time of 40-43 h.

2-(3-Furanyl)-1,4-benzoquinone (167t)

General procedure 1 was followed to give the product 167t in 52% yield as a dark brown solid; M. p. decomposes at 110 °C; R_f 0.59 (2:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 8.35\) (s, 1H, HetAr-H), 7.48 (dd, \(J = 2.0, 1.5\) Hz, 1H, HetAr-H), 6.87 – 6.72 (m, 3H, 3 × O=C-CH), 6.67 – 6.61 (m, 1H, HetAr-H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 187.4\) (C), 186.4 (C), 146.1 (CH), 143.6 (CH), 138.0 (C), 137.1 (CH), 136.2 (CH), 128.5 (CH), 118.0 (C), 107.7 (CH); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2973 w, 1651 v str, 1597 str, 1296 str, 1164 m, 1033 str, 913 str, 806 str; HRMS (APCI) calculated for [M+H]+ 175.0390, C_{10}H_{7}O_{3} found: 175.0390.

2-(3-Thienyl)-1,4-benzoquinone (167u)

General procedure 1 was followed to give the product 167u in 62% yield as a brown solid; M. p. 137-139 °C; R_f 0.50 (2:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 8.12\) (dd, \(J = 2.6, 1.6\) Hz, 1H, HetAr-H), 7.43 – 7.35 (m, 2H, HetAr-H), 6.96 – 6.76 (m, 3H, 3 × O=C-CH); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 187.9\) (C), 186.8 (C), 139.2 (C), 137.1 (CH), 136.1 (CH), 132.8 (C), 129.9 (CH), 129.8 (CH), 126.7 (CH), 126.2 (CH); \(\nu_{\text{max}}/\text{cm}^{-1}\) 3054 w, 1659 v str, 1646 v str, 1578 v str, 1510 m, 1419 m, 1371 m, 1286 v str, 1096 v str, 907 v str, 789 v str; HRMS (APCI) calculated for [M+H]+ 191.0161, C_{10}H_{7}O_{2}S found: 191.0166.
2-(1-(Triisopropylsilyl)-3-pyrrolyl)-1,4-benzoquinone (167v)

General procedure 1 was followed to give the product 167v in 41% yield as a dark red solid; M. p. 75-78 °C; R$_f$ 0.60 (5:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.73 (dd, J = 2.0, 1.4 Hz, 1H, HetAr-H), 6.84 – 6.68 (m, 4H, 3 × O=C-CH and HetAr-H), 6.61 (dd, J = 3.0, 1.4 Hz, 1H, HetAr-H), 1.49 (hept., J = 7.5 Hz, 3H, CH(CH$_3$)$_2$), 1.12 (d, J = 7.5 Hz, 18H, Si(CH(C$_3$H$_3$)$_2$)$_3$); 13C NMR (75 MHz, CDCl$_3$): δ = 188.1 (C), 188.0 (C), 140.1 (C), 136.9 (CH), 136.2 (CH), 129.9 (CH), 125.7 (CH), 125.3 (CH), 118.3 (C), 109.3 (CH), 17.7 (CH$_3$), 11.6 (CH); ν_{max}/cm$^{-1}$ 2950 str, 2866 str, 1663 v str, 1573 v str, 1495 str, 1285 v str, 1221 v str, 1082 v str, 884 v str, 658 v str; HRMS (NSI) calculated for [M+H]$^+$ 330.1884, C$_{19}$H$_{28}$O$_2$NSi found: 330.1886.

2-(1-(tert-Butoxycarbonyl)-2-pyrrolyl)-1,4-benzoquinone (167w)

General procedure 2 was followed to give the product 167w in 75% yield as a dark red thick oil; R$_f$ 0.66 (2:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.41 (dd, J = 3.4, 1.7 Hz, 1H, H$_c$), 6.86 – 6.70 (m, 3H, 3 × O=C-CH), 6.37 (dd, J = 3.4, 1.7 Hz, 1H, H$_a$), 6.25 (t, J = 3.4 Hz, 1H, H$_b$), 1.51 (s, 9H, O$_t$Bu); 13C NMR (75 MHz, CDCl$_3$): δ = 187.5 (C), 185.8 (C), 148.6 (C), 141.7 (C), 136.7 (CH), 136.6 (CH), 130.1 (CH), 126.6 (C), 124.9 (CH), 117.0 (CH), 111.2 (CH), 84.7 (C), 27.8 (CH$_3$); ν_{max}/cm$^{-1}$ 2981 w, 1744 v str, 1661 v str, 1595 w, 1468 w, 1404 w, 1314 v str, 1139 v str; HRMS (APCI) calculated for [M+H]$^+$ 274.1074, C$_{15}$H$_{16}$O$_4$N found: 274.1070.
Palladium(II)-catalysed homo-difunctionalisation of benzoquinone

2,6-Bis-(4-hydroxyphenyl)-1,4-benzoquinone (168dd) and 2,5-Bis-(4-hydroxyphenyl)-1,4-benzoquinone (158dd)

General procedure 3 was followed to yield 168dd and 158dd in an approximate >10:1 ratio.

Dark red solid, 71% yield; M. p. 211-215 °C; R$_f$ 0.39 (1:1 hexane:EtOAc); 1H NMR (300 MHz, Acetone-d$_6$):

δ = 8.82 (s, 2H, O-H), 7.52 (d, J = 8.8 Hz, 4H, Ar-H),
6.93 (d, J = 8.8 Hz, 4H, Ar-H), 6.82 (s, 2H, O=C-CH);

13C NMR (75 MHz, Acetone-d$_6$): δ = 188.01 (C), 187.8 (C), 160.1 (C), 147.1 (C), 132.1 (CH), 131.0 (CH), 125.9 (C), 116.1 (CH); ν_{max}/cm$^{-1}$ 3318 br str, 1637 v str, 1605 v str, 1579 v str, 1506 v str, 1438 str, 1232 v str, 1176 v str, 1105 v str, 910 str, 840 v str, 730 str; HRMS (APCI) calculated for [M+H]$^+$ 293.0808, C$_{18}$H$_{13}$O$_4$ found: 293.0810.

A crystal structure was also obtained of this product. This can be found in section 3.5.3.

Black solid, <5% yield; M. p. >300 °C; R$_f$ 0.39 (1:1 hexane:EtOAc); 1H NMR (300 MHz, DMSO-d$_6$):

δ = 10.00 (s, 2H, O-H), 7.47 (d, J = 8.8 Hz, 4H, Ar-H), 6.90 (s, 2H, O=C-CH), 6.84 (d, J = 8.8 Hz, 4H, Ar-H);

13C NMR (75 MHz, DMSO-d$_6$): δ = 187.3 (C), 159.4 (C), 144.2 (C), 131.2 (CH), 130.7 (CH), 123.2 (C), 115.4 (CH); ν_{max}/cm$^{-1}$ 3379 br, 2567 m, 2506 m, 1637 v str, 1594 v str, 1507 v str, 1347 m, 1250 v str, 1171 str, 992 m, 899 str, 805 str; HRMS (APCI) calculated for [M-H]$^-$ 291.0663, C$_{18}$H$_{11}$O$_4$ found: 291.0658.
2,6-Bis-(4-hydroxy-3-methoxyphenyl)-1,4-benzoquinone (168b’b’)

General procedure 3 was followed to yield 168b’b’ as the major product. Evidence of a minor product, believed to be the 2,5 isomer, was observed. However, it was impossible to isolate pure for characterisation.

Dark red solid, 73% yield; M. p. 178-179 °C; R\textsubscript{f} 0.66 (1:1.5 hexane:EtOAc); 1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta = 7.16 - 7.05\) (m, 4H, Ar-H), 6.99 (d, \(J = 8.4\) Hz, 2H, Ar-H), 6.86 (s, 2H, O=CH\textsubscript{2}), 5.87 (s, 2H, OH), 3.94 (s, 6H, OCH\textsubscript{3}); 13C NMR (75 MHz, CDCl\textsubscript{3}): \(\delta = 187.6\) (C), 187.0 (C), 147.7 (C), 146.4 (C), 145.9 (C), 131.3 (CH), 125.3 (C), 123.3 (CH), 114.6 (CH), 111.9 (CH), 56.1 (CH\textsubscript{3}); \(\nu\text{max}/\text{cm}^{-1}\) 3287 br, 2938 w, 1631 m, 1586 m, 1563 m, 1509 str, 1426 str, 1259 str, 899 str, 855 m; HRMS (APCI) calculated for [M+H]+ 353.1020, C\textsubscript{20}H\textsubscript{17}O\textsubscript{6} found: 353.1016.

2,6-Bis-(3,4-dimethoxyphenyl)-1,4-benzoquinone (168oo)

General procedure 3 was followed to yield 168oo as the major product. Evidence of a minor product, believed to be the 2,5 isomer was observed. However, it was impossible to isolate pure for characterisation.

Dark red solid, 58% yield; M. p. 160-164 °C; R\textsubscript{f} 0.47 (95:5 dichloromethane:EtOAc); 1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta = 7.15\) (dd, \(J = 8.4, 2.1\) Hz, 2H, H\textsubscript{c}), 7.09 (d, \(J = 2.1\) Hz, 2H, H\textsubscript{a}), 6.95 (d, \(J = 8.4\) Hz, 2H, H\textsubscript{b}), 6.87 (s, 2H, O=CH\textsubscript{2}), 3.93 (s, 6H, OCH\textsubscript{3}), 3.92 (s, 6H, OCH\textsubscript{3}); \(\nu\text{max}/\text{cm}^{-1}\) 3018 w, 2936 w, 2838 w, 1640 v str, 1596 str, 1510 v str, 1463 w, 1255 v str, 1145 m, 1021 w, 746 v str; HRMS (APCI) calculated for [M+H]+ 381.1333, C\textsubscript{22}H\textsubscript{21}O\textsubscript{6} found: 381.1334.
2,6-Bis-(3-methylphenyl)-1,4-benzoquinone (168ee) and 2,5-Bis-(3-methylphenyl)-1,4-benzoquinone (158ee)

General procedure 3 was followed to yield 168ee and 158ee in an approximate 2:1 ratio.

![Major product 168ee](image)

Dark brown thick oil, 53% yield; Rf 0.83 (4:1 petroleum ether:EtOAc); 1H NMR (300 MHz, CDCl3): \(\delta = 7.34 - 7.14 \) (m, 8H, Ar-H), 6.83 (s, 2H, O=C-CH), 2.34 (s, 6H, CH3); 13C NMR (75 MHz, CDCl3): \(\delta = 187.7 \) (C), 186.3 (C), 146.7 (C), 138.2 (C), 133.1 (C), 132.5 (CH), 130.8 (CH), 130.0 (CH), 128.4 (CH), 126.5 (CH), 21.4 (CH3); \(\nu_{\text{max}}/\text{cm}^{-1} \) 2923 w, 1647 v str, 1591 w, 1485 m, 1303 w, 771 w; HRMS (APCI) calculated for [M+H]+ 289.1223, C20H17O2 found: 289.1220.

![Minor product 158ee](image)

Dark brown thick oil, 28% yield; Rf 0.90 (4:1 petroleum ether:EtOAc); 1H NMR (300 MHz, CDCl3): \(\delta = 7.40 - 7.27 \) (m, 8H, Ar-H), 6.95 (s, 2H, O=C-CH), 2.42 (s, 6H, CH3); 13C NMR (75 MHz, CDCl3): \(\delta = 187.1 \) (C), 145.7 (C), 138.3 (C), 133.1 (CH), 132.5 (C), 130.9 (CH), 129.9 (CH), 128.4 (CH), 126.4 (CH), 21.5 (CH3); \(\nu_{\text{max}}/\text{cm}^{-1} \) 2923 w, 1646 v str, 1580 w, 1349 w, 785 str; HRMS (APCI) calculated for [M+H]+ 289.1223, C20H17O2 found: 289.1224.

2,5-Diphenyl-1,4-benzoquinone (158aa) and 2,6-Diphenyl-1,4-benzoquinone (168aa)

General procedure 3 was followed to yield 158aa and 168aa in an approximate 3:2 ratio.

![Major product 158aa](image)

Yellow solid, 44% yield; M. p. 214-218 °C; Rf 0.62 (80:20 dichloromethane:hexane); 1H NMR (300 MHz, CDCl3): \(\delta = 7.60 - 7.51 \) (m, 4H, Ar-H), 7.51 - 7.43 (m, 6H, Ar-H), 6.97 (s, 2H, O=C-CH); 13C NMR (75 MHz, CDCl3): \(\delta = 187.0 \) (C), 145.6 (C), 133.1 (CH), 132.5 (C), 130.1 (CH), 129.3 (CH), 128.6 (CH); \(\nu_{\text{max}}/\text{cm}^{-1} \) 3053 w, 1640 v str, 1604 w, 1488 w, 1444 w, 904 v str, 769 v str, 696 v str.
Red solid, 29% yield; M. p. 126-132 °C; Rf 0.28 (80:20 dichloromethane:hexane); 1H NMR (300 MHz, CDCl$_3$): δ = 7.57 – 7.49 (m, 4H, Ar-H), 7.49 – 7.43 (m, 6H, Ar-H), 6.93 (s, 2H, O=C-CH); 13C NMR (75 MHz, CDCl$_3$): δ = 187.6 (C), 186.1 (C), 146.5 (C), 133.2 (C), 132.6 (CH), 130.0 (CH), 129.4 (CH), 128.5 (CH); $\nu_{\text{max}}/\text{cm}^{-1}$ 3037 w, 1644 v str, 1601 w, 1591 w, 1494 w, 1447 str, 743 v str, 687 v str.

2,5-Bis-(3-methoxycarbonylphenyl)-1,4-benzoquinone (158hh) and 2,6-Bis-(3-methoxycarbonylphenyl)-1,4-benzoquinone (168hh)

General procedure 3 was followed using an elevated temperature of 35 °C. Additional portions of catalyst (0.005 mmol, 5 mol%) and boronic acid (0.050 mmol, 0.5 equiv.) were added after 24 h followed by a portion of FeCl$_3$ (0.400 mmol, 4 equiv.) as an additional oxidant after 45 h. Following purification by column chromatography, an additional portion of FeCl$_3$ (0.400 mmol, 4 equiv.) was added to the column wash, stirred for 18 h and the residue purified to yield further product. As the 2,5 and 2,6 isomers were not fully separable, a mixture of 158hh and 168hh was isolated in 75% yield and a 41:59 ratio (2,5:2,6).

Despite isomers 158hh and 168hh being only partially separable, it was possible to isolate a small amount of each isomer for characterisation purposes.

Orange solid, 12% yield; M. p. 189-191 °C; Rf 0.45 (1:1 hexane:EtOAc); 1H NMR (400 MHz, CDCl$_3$): δ = 8.22 (td, J = 1.8, 0.6 Hz, 2H, H$_b$), 8.16 (ddd, J = 7.8, 1.8, 1.2 Hz, 2H, H$_{dc/e}$), 7.76 (ddd, J = 7.8, 1.8, 1.2 Hz, 2H, H$_{dc/e}$), 7.56 (td, J = 7.8, 0.6 Hz, 2H, H$_a$), 7.05 (s, 2H, H$_a$), 3.96 (s, 6H, OCH$_3$); 13C NMR (101 MHz, CDCl$_3$): δ = 186.3 (C), 166.4 (C), 144.9 (C), 133.7 (CH), 133.5 (CH), 132.6 (C), 131.2 (CH), 130.8 (C), 130.3 (CH), 128.7 (CH), 52.4 (CH$_3$); $\nu_{\text{max}}/\text{cm}^{-1}$ 2958 w, 1722 v str, 1651 str, 1602 w, 1580 w, 1431 m, 1285 v str, 1233 m, 1184 m, 758 str; HRMS (NSI) calculated for [M+H]$^+$ 377.1020, C$_{22}$H$_{17}$O$_6$ found: 377.1021.
Orange crystalline solid, 13% yield; M. p. 164-168 °C; Rf 0.76 (1:1 hexane:EtOAc); \(^1^H\) NMR (300 MHz, CDCl\(_3\)): \(\delta = 8.19\) (t, \(J = 1.5\) Hz, 2H, H\(_b\)), 8.15 (dt, \(J = 7.8, 1.5\) Hz, 2H, H\(_{c/e}\)), 7.72 (dt, \(J = 7.8, 1.5\) Hz, 2H, H\(_{c/e}\)), 7.55 (t, \(J = 7.8\) Hz, 2H, H\(_d\)), 7.00 (s, 2H, H\(_a\)), 3.95 (s, 6H, OCH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 187.0\) (C), 185.4 (C), 166.4 (C), 145.5 (C), 133.7 (CH), 133.5 (C), 133.2 (CH), 131.1 (CH), 130.6 (C), 130.4 (CH), 128.7 (CH), 52.4 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2953 w, 1721 v str, 1650 str, 1603 w, 1439 m, 1293 v str, 1234 m, 1126 m, 750 m; HRMS (NSI) calculated for [M+H] \(^+\) 377.1020, C\(_{22}\)H\(_{17}\)O\(_6\) found: 377.1022.

2,5-Bis-(3-trifluoromethylphenyl)-1,4-benzoquinone (158e’e’) and 2,6-Bis-(3-trifluoromethylphenyl)-1,4-benzoquinone (168e’e’)

General procedure 3 was followed using an elevated temperature of 35 °C and an oxygen atmosphere. A second portion of boronic acid (0.150 mmol, 1.5 equiv.), 2,6-dichlorobenzoquinone (0.250 mmol, 2.5 equiv.) and Pd(OTFA)\(_2\) (0.005 mmol, 5 mol%) was added after 24 h. After column chromatography evidence of reduced product was observed so additional oxidants (FeCl\(_3\), 6 equiv. and 2,6-dichlorobenzoquinone, 2.5 equiv.) were added to the combined column fractions and left to stir at room temperature for 20 h. The 2,5 and 2,6 isomers were isolated in 60% yield (including a 5% impurity of mono arylated product due to coelution with the product) and a 1:1 ratio (158e’e’:168e’e’).

Bright yellow amorphous solid, 30% yield includes <5% impurity of monoarylated product; Rf 0.38 (2:1 hexane: EtOAc); \(^1^H\) NMR (300 MHz, CDCl\(_3\)): \(\delta = 7.83 – 7.79\) (m, 2H, Ar-H), 7.79 – 7.70 (m, 4H, Ar-H), 7.68 – 7.56 (m, 2H, Ar-H), 7.04 (s, 2H, O=C-CH); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 186.0\) (C), 144.5 (C), 138.1 (C), 133.8 (CH), 132.6 (CH), 131.2 (C, q, \(J = 32.6\) Hz), 129.2 (CH), 127.5 (C, q, \(J = 279.3\) Hz), 126.9 (CH, q, \(J = 3.5\) Hz), 126.1 (CH, q, \(J = 3.8\) Hz); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2962 w, 1698 str, 1435 w, 1325 v str, 1164 str, 1118 v str, 1074 str, 803 m, 698 str; HRMS (APCI) calculated for [M+H] \(^+\) 397.0658, C\(_{20}\)H\(_{11}\)O\(_2\)F\(_6\) found: 397.0661.
Bright orange amorphous solid, 30% yield; R$_f$ 0.29 (2:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.82 – 7.56 (m, 8H, Ar-H), 7.00 (s, 2H, O=C-CH); 13C NMR (75 MHz, CDCl$_3$): δ = 186.6 (C), 185.0 (C), 145.1 (C), 138.4 (C), 133.6 (CH), 132.6 (CH), 131.1 (C, q, J = 32.6 Hz), 129.1 (CH), 126.8 (CH, q, J = 3.9 Hz), 126.2 (CH, q, J = 3.9 Hz), 123.7 (C, q, J = 272.5 Hz); ν_{max}/cm$^{-1}$ 3226 w, 1698 str, 1497 w, 1441 w, 1324 v str, 1166 str, 1119 v str, 1060 str, 789 m, 702 m; HRMS (APCI) calculated for [M+H]$^+$ 397.0658, C$_{20}$H$_{11}$O$_2$F$_6$ found: 397.0658.

2,5-Bis-(4-trifluoromethylphenyl)-1,4-benzoquinone (158bb)14

General procedure 3 was followed using an elevated temperature of 35 °C to give 158bb14 as the major isomer. Some evidence of trace amounts of 2,6 isomer were observed however it was found to be unstable and impossible to isolate pure for characterisation.

Bright yellow solid, 51% yield; M. p. 211-216 °C; R$_f$ 0.61 (4:1 petroleum ether:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.75 (d, J = 8.3 Hz, 4H, Ar-H), 7.66 (d, J = 8.3 Hz, 4H, Ar-H), 7.03 (s, 2H, O=C-CH); 13C NMR (75 MHz, CDCl$_3$): δ = 186.0 (C), 144.6 (C), 135.6 (C), 133.9 (CH), 132.1 (C, q, J = 33.0 Hz), 129.7 (CH), 125.6 (CH, q, J = 3.7 Hz), 123.8 (C, q, J = 272.6 Hz); ν_{max}/cm$^{-1}$ 2925 w, 1660 w, 1645 v str, 1609 w, 1410 w, 1328 v str, 1113 v str, 1069 v str, 910 str, 854 v str, 817 m, 701 m; HRMS (APCI) calculated for [M+H]$^+$ 397.0658, C$_{20}$H$_{11}$O$_2$F$_6$ found: 397.0651.

A crystal structure was also obtained of this product. This can be found in section 3.5.3.

2,5-Bis-(4-ethoxycarbonylphenyl)-1,4-benzoquinone (158rr)

General procedure 3 was followed using an elevated temperature of 35 °C and 3 equivalents (0.300 mmol) of 2,6-dichloro-1,4-benzoquinone. After 24 h, a second portion of boronic acid (0.051 mmol, 0.5 equiv.) and Pd(OTFA)$_2$ (0.005 mmol, 5 mol%) were added and after a further 7 h, FeCl$_3$ (0.272 mmol, 2.7 equiv.) was added as an additional oxidant. Upon purification by column chromatography, evidence of reduced
product was observed so 2,6-dichloro-1,4-benzoquinone (0.250 mol, 2.5 equiv.) was
added to the fraction tubes and the resulting solution stirred for 72 h. After evaporation
under reduced pressure, the residue was purified by column chromatography to give
\textbf{158rr} in 25\% yield.

\begin{center}
\includegraphics[width=0.5\textwidth]{158rr}
\end{center}

Yellow amorphous solid, 25\% yield; R\textsubscript{f} 0.31 (2:1 hexane: EtOAc); 1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta = 8.13\) (d, \(J = 8.6\) Hz, 4H, Ar-H), 7.61 (d, \(J = 8.6\) Hz, 4H, Ar-H), 6.85 (s, 2H, O=C-CH\textsubscript{3}), 4.40 (q, \(J = 7.1\) Hz, 4H, CH\textsubscript{2}CH\textsubscript{3}), 1.41 (t, \(J = 7.1\) Hz, 6H, CH\textsubscript{2}CH\textsubscript{3}); 13C NMR (75 MHz, CDCl\textsubscript{3}): \(\delta = 166.5\) (C), 149.5 (C), 142.0 (C), 130.1 (CH), 129.7 (C), 129.3 (CH), 129.0 (C), 117.0 (CH), 61.2 (CH\textsubscript{2}), 14.3 (CH\textsubscript{3}); \(\nu_{\text{max}}/\text{cm}^{-1}\) 3431 br m, 2978 m, 1709 str, 1693 str, 1605 m, 1447 m, 1432 w, 1398 m, 1367 m, 1272 v str, 1102 str, 858 str, 774 str, 711 str; HRMS (APCI) calculated for [M+H]+ 405.1333, C\textsubscript{24}H\textsubscript{21}O\textsubscript{6} found: 405.1333.

\textbf{2,5-Bis-(4-fluorophenyl)-1,4-benzoquinone (158qq)}14,57

General procedure 3 was followed using an elevated temperature of 35 °C and adding a
second portion of boronic acid (0.250 mmol, 2.5 equiv.), 2,6-dichlorobenzoquinone
(0.251 mmol, 2.5 equiv.) and Pd(OTFA)\textsubscript{2} (0.005 mmol, 5 mol%) after 24 h to yield
\textbf{158qq} as the major product (no trace of the 2,6 isomer was observed).

\begin{center}
\includegraphics[width=0.5\textwidth]{158qq}
\end{center}

Bright yellow solid, 13\% yield; M. p. 223-225 °C; R\textsubscript{f} 0.69
(2:1 hexane: EtOAc); 1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta = 7.52\) (dd, \(J = 8.8, 5.3\) Hz, 4H, Ar-H), 7.16 (t, \(J = 8.8\) Hz, 4H, Ar-H), 6.90 (s, 2H, O=C-CH\textsubscript{3}); 13C NMR (75 MHz, CDCl\textsubscript{3}): \(\delta = 187.2\) (C), 163.9 (C-F, d, \(J = 251.2\) Hz), 145.3 (C), 132.5 (CH), 131.4 (CH, d, \(J = 8.4\) Hz), 129.0 (C), 115.7 (CH, d, \(J = 21.8\) Hz); \(\nu_{\text{max}}/\text{cm}^{-1}\) 3071 w, 1650 str, 1600 str, 1507 v str, 1411 w, 1300 m, 1230 v str, 1160 str, 835 str, 786 str.
2,5-Bis-(4-hydroxy-2-methylphenyl)-1,4-benzoquinone (158c’c’) and 2,6-Bis-(4-hydroxy-2-methylphenyl)-1,4-benzoquinone (168c’c’)

General procedure 3 was followed to give 158c’c’ and 168c’c’ in 41% combined yield and an approximate 1:1 ratio. The products were not easily separable but a small amount of material was isolated of each isomer for characterisation purposes.

![Red solid, 15% yield; M. p. 65-67 °C; Rf 0.21 (1:1 hexane:EtOAc); 1H NMR (300 MHz, Acetone-d6): δ = 8.51 (s, 2H, OH), 7.28 – 6.92 (m, 2H, Ar-H), 6.90 – 6.54 (m, 6H, Ar-H and 2 × O=C-CH), 1.20 (s, 6H, CH3); 13C NMR (101 MHz, Acetone-d6): δ = 187.6 (C), 159.2 (C), 148.7 (C), 139.0 (C), 135.3 (CH), 132.0 (CH), 125.9 (C), 117.9 (CH), 113.4 (CH), 20.8 (CH3); v_max/cm⁻¹ 3305 br str, 2923 w, 1694 m, 1647 str, 1602 v str, 1498 m, 1454 m, 1295 m, 1230 str, 1188 v str, 990 m, 860 m, 752 m; HRMS (NSI) calculated for [M+H]⁺ 321.1121, C₂₀H₁₇O₄ found: 321.1120.](image)

Red solid, 5% yield; M. p. 50-52 °C; Rf 0.18 (1:1 hexane:EtOAc); 1H NMR (300 MHz, Acetone-d₆): δ = 8.49 (s, 2H, OH), 7.05 (d, J = 8.3 Hz, 2H, O=C-CH), 6.76 (d, J = 2.2 Hz, 2H, Ar-H), 6.75 – 6.68 (m, 4H, Ar-H), 1.20 (s, 6H, CH₃); 13C NMR (101 MHz, Acetone-d₆): δ = 188.5 (C), 186.6 (C), 159.2 (C), 149.5 (C), 138.8 (C), 134.8 (CH), 131.9 (CH), 126.6 (C), 117.9 (CH), 113.5 (CH), 20.9 (CH₃); v_max/cm⁻¹ 3305 br str, 2923 m, 1698 w, 1645 v str, 1602 v str, 1498 m, 1454 m, 1289 v str, 1225 str, 1086 str, 822 m, 791 m; HRMS (APCI) calculated for [M+H]⁺ 321.1121, C₂₀H₁₇O₄ found: 321.1128.

2,6-Bis-(2-methoxyphenyl)-1,4-benzoquinone (168d’d’) and 2,5-Bis-(2-methoxyphenyl)-1,4-benzoquinone (158d’d’)

General procedure 3 was followed to yield 168d’d’ and 158d’d’ in an approximate 1:1 ratio.

Bright orange solid, 25% yield; M. p. 114-116 °C; Rf 0.32 (1:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl₃): δ = 7.41 (ddd, J = 8.3, 7.5, 1.8 Hz, 2H, Ar-H), 7.21 (dd, J = 7.5, 1.8 Hz, 2H, Ar-H), 7.07 – 6.92 (m, 4H, Ar-H), 6.87 (s, 2H, O=C-CH), 3.81 (s, 6H, OCH₃); 13C NMR (75 MHz,
CDCl₃): δ = 188.0 (C), 184.3 (C), 157.2 (C), 146.5 (C), 133.9 (CH), 131.0 (CH), 130.7 (CH), 123.3 (C), 120.6 (CH), 111.3 (CH), 55.8 (CH₃); νmax/cm⁻¹ 2936 w, 1647 str, 1598 str, 1576 m, 1489 str, 1453 m, 1249 str, 1128 m, 911 str, 823 w, 736 v str; HRMS (APCI) calculated for [M+H]⁺ 321.1121, C₂₀H₁₇O₄ found: 321.1124.

Bright orange solid, 28% yield; M. p. 208-210 °C; Rf 0.36 (1:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.42 (ddd, J = 8.4, 7.5, 1.8 Hz, 2H, Ar-H), 7.23 (dd, J = 7.5, 1.8 Hz, 2H, Ar-H), 7.09 – 6.95 (m, 4H, Ar-H), 6.91 (s, 2H, O=C–C₃H₃); ¹³C NMR (75 MHz, CDCl₃): δ = 186.1 (C), 157.3 (C), 145.3 (C), 134.9 (CH), 131.1 (CH), 130.6 (CH), 122.6 (C), 120.6 (CH), 111.3 (CH), 55.7 (CH₃); νmax/cm⁻¹ 2963 w, 1651 str, 1607 m, 1591 m, 1488 m, 1466 m, 1280 m, 913 str, 822 m, 791 m, 760 v str; HRMS (APCI) calculated for [M+H]⁺ 321.1121, C₂₀H₁₇O₄ found: 321.1121.

Palladium(II)-catalysed functionalisation of monofunctionalised benzoquinone derivatives

2-(4-Hydroxyphenyl)-6-(4-methoxyphenyl)-1,4-benzoquinone (168cd) and 2-(4-Hydroxyphenyl)-5-(4-methoxyphenyl)-1,4-benzoquinone (158cd)

General procedure 4 was followed to give the products 168cd and 158cd in >10:1 ratio.

Dark brown solid, 73% yield; M. p. 143-145 °C; Rf 0.50 (1:1 hexane:EtOAc); ¹H NMR (300 MHz, Acetone-d₆): δ = 8.83 (s, 1H, OH), 7.59 (d, J = 9.0 Hz, 2H, Ar-H), 7.52 (d, J = 8.9 Hz, 2H, Ar-H), 7.03 (d, J = 9.0 Hz, 2H, Ar-H), 6.94 (d, J = 8.9 Hz, 2H, Ar-H), 6.84 (d, J = 2.7 Hz, 1H, O=C–CH₃), 3.87 (s, 3H, OCH₃); ¹³C NMR (101 MHz, Acetone-d₆): δ = 188.1 (C), 187.8 (C), 162.2 (C), 160.3 (C), 147.3 (C), 147.1 (C), 132.1 (CH), 132.0 (CH), 131.6 (CH), 131.2 (CH), 127.1 (C), 125.9 (C), 116.2 (CH), 114.7 (CH), 55.8 (CH₃); νmax/cm⁻¹ 3115 br str, 2928 str, 2840 m, 1635 v str, 1602 v str, 1583 v str, 1511 v str, 1444 str, 1236 v str, 1172 v str, 1028 str, 912 str, 827 str, 784 v str; HRMS (APCI) calculated for [M+H]⁺ 307.0965, C₁₉H₁₅O₄ found: 307.0963.

A crystal structure was also obtained of this product. This can be found in section 3.5.3.
Dark brown solid, <5% yield; M. p. 190-192 °C; R$_f$ 0.56 (1:1 hexane:EtOAc); 1H NMR (300 MHz, Acetone-d$_6$): δ = 8.85 (s, 1H, OH), 7.63 (d, J = 9.0 Hz, 2H, Ar-H), 7.55 (d, J = 8.9 Hz, 2H, Ar-H), 7.04 (d, J = 9.0 Hz, 2H, Ar-H), 6.94 (d, J = 8.9 Hz, 2H, Ar-H), 6.91 (s, 1H, O=C=CH), 6.89 (s, 1H, O=C=CH), 3.87 (s, 3H, OCH$_3$); 13C NMR (101 MHz, Acetone-d$_6$): δ = 188.0 (C), 187.9 (C), 162.2 (C), 160.3 (C), 145.6 (C), 145.4 (C), 132.4 (2 × CH), 132.1 (CH), 131.9 (CH), 126.1 (C), 125.0 (C), 116.2 (CH), 114.7 (CH), 55.8 (CH$_3$); ν_{max}/cm$^{-1}$ 3387 br str, 2925 str, 2853 m, 1638 v str, 1600 v str, 1510 v str, 1441 m, 1247 v str, 1175 v str, 1028 str, 904 str, 835 str, 786 w; HRMS (APCI) calculated for [M+H]$^+$ 307.0965, C$_{19}$H$_{15}$O$_4$ found: 307.0966.

2-(4-Hydroxyphenyl)-6-(3,4-dimethoxyphenyl)-1,4-benzoquinone (168od) and 2-(4-Hydroxyphenyl)-5-(3,4-dimethoxyphenyl)-1,4-benzoquinone (158od)

General procedure 4 was followed to give the products 168od and 158od in an approximate 7:1 ratio.

Dark red solid, 71% yield; M. p. 169-170 °C; R$_f$ 0.43 (1:1 hexane:EtOAc); 1H NMR (400 MHz, Acetone-d$_6$): δ = 8.84 (s, 1H, OH), 7.52 (d, J = 8.9 Hz, 2H, Ar-H), 7.25 (d, J = 2.1 Hz, 1H, H$_a$), 7.22 (dd, J = 8.4, 2.1 Hz, 1H, H$_b$), 7.04 (d, J = 8.4 Hz, 1H, H$_a$), 6.94 (d, J = 8.9 Hz, 2H, Ar-H), 6.87 (d, J = 2.7 Hz, 1H, O=C-CH), 6.82 (d, J = 2.7 Hz, 1H, O=C-CH), 3.87 (s, 3H, OCH$_3$), 3.87 (s, 3H, OCH$_3$); 13C NMR (101 MHz, Acetone-d$_6$): δ = 188.1 (C), 187.7 (C), 160.1 (C), 152.1 (C), 150.3 (C), 147.2 (C), 147.1 (C), 132.2 (CH), 131.7 (CH), 131.1 (CH), 127.2 (C), 125.9 (C), 123.8 (CH), 116.1 (CH), 114.2 (CH), 112.3 (CH), 56.3 (CH$_3$), 56.2 (CH$_3$); ν_{max}/cm$^{-1}$ 3395 br, 2935 w, 1637 str, 1583 str, 1510 v str, 1440 w, 1415 w, 1251 v str, 1214 str, 1171 str, 1019 str, 817 w, 767 w; HRMS (NSI) calculated for [M+H]$^+$ 337.1071, C$_{20}$H$_{17}$O$_5$ found: 337.1073.
**Dark red solid, 10% yield; M. p. 198-200 °C; R_f 0.40 (1:1 hexane:EtOAc); **\(^1\)H NMR (400 MHz, Acetone-d\(_6\)): \(\delta = 8.86 \text{ (s, 1H, } \text{O})\), 7.55 (d, \(J = 8.7 \text{ Hz, 2H, Ar-H}\)), 7.29 – 7.24 (m, 2H, H\(_{b}\) and H\(_{c}\)), 7.05 (d, \(J = 9.0 \text{ Hz, 1H, H}_{b}\)), 6.94 (d, \(J = 8.7 \text{ Hz, 2H, Ar-H}\)), 6.94 (s, 1H, O=C-CH), 6.89 (s, 1H, O=C-CH), 3.88 (s, 6H, 2\(\times \)OCH\(_3\)); **\(^{13}\)C NMR (101 MHz, Acetone-d\(_6\)): \(\delta = 188.1 \text{ (C), 187.9 (C), 160.3 (C), 152.2 (C), 150.1 (C), 145.5 (C), 145.4 (C), 132.5 (CH), 132.1 (CH), 132.0 (CH), 126.3 (C), 125.1 (C), 123.9 (CH), 116.2 (CH), 113.9 (CH), 112.3 (CH), 56.3 (CH\(_3\)), 56.2 (CH\(_3\)); \(\nu_{\max}/\text{cm}^{-1} 3449 \text{ br m, 2922 \text{ str, 1637 \text{ v str, 1588 \text{ str, 1512 \text{ v str, 1466 \text{ w, 1430 \text{ w, 1271 \text{ m, 1140 \text{ str, 1019 \text{ str, 818 m, 766 m; HRMS (NSI) calculated for [M+H]^+ 337.1071, C}_{20}H_{17}O_5 \text{ found: 337.1074.}}}}})

2-(3,4-Dimethoxyphenyl)-6-(4-methoxyphenyl)-1,4-benzoquinone (168oc) and 2-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-1,4-benzoquinone (158oc)

General procedure 4 was followed to give the products 168oc and 158oc in an approximate 3:1 ratio.

**Dark red solid, 65% yield; M. p. 140-142 °C; R_f 0.27 (1:1 hexane:EtOAc); **\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 7.50 \text{ (d, } J = 8.8 \text{ Hz, 2H, Ar-H)}, 7.16 \text{ (dd, } J = 8.4, 2.1 \text{ Hz, 1H, H}_{b}), 7.09 \text{ (d, } J = 2.1 \text{ Hz, 1H, H}_{c}), 6.98 \text{ (d, } J = 8.8 \text{ Hz, 2H, Ar-H)}, 6.94 \text{ (d, } J = 8.4 \text{ Hz, 1H, H}_{b}), 6.87 \text{ (d, } J = 2.7 \text{ Hz, 1H, O=C-CH}), 6.86 \text{ (d, } J = 2.7 \text{ Hz, 1H, O=C-CH}), 3.93 \text{ (s, 3H, OCH}_3\), 3.92 \text{ (s, 3H, OCH}_3\), 3.86 \text{ (s, 3H, OCH}_3\); **\(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 187.6 \text{ (C), 186.9 (C), 161.2 (C), 150.8 (C), 148.8 (C), 145.9 (C), 145.7 (C), 131.4 (CH), 131.1 (CH), 130.9 (CH), 125.8 (C), 125.6 (C), 122.7 (CH), 114.0 (CH), 112.4 (CH), 110.9 (CH), 55.99 (CH\(_3\)), 55.97 (CH\(_3\)), 55.4 (CH\(_3\)); \(\nu_{\max}/\text{cm}^{-1} 3009 \text{ w, 2935 w, 2837 w, 1640 v str, 1601 str, 1510 v str, 1463 w, 1249 str, 1175 str, 1146 m, 1025 m; HRMS (APCI) calculated for [M+H]^+ 351.1227, C_{23}H_{19}O_5 \text{ found: 351.1226.}}

**
Bright red solid, 21% yield; M. p. 156-158 °C; Rf 0.30 (1:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.55 (d, J = 8.8 Hz, 2H, Ar-H), 7.21 (dd, J = 8.4, 2.1 Hz, 1H, H₃), 7.13 (d, J = 2.1 Hz, 1H, H₄), 6.99 (d, J = 8.8 Hz, 2H, Ar-H), 6.95 (d, J = 8.4 Hz, 1H, H₅), 6.92 (s, 1H, O=C-CH), 6.90 (s, 1H, O=C-CH), 3.94 (app. s, 6H, 2 × OCH₃), 3.87 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 187.4 (C × 2), 161.4 (C), 151.0 (C), 148.9 (C), 144.8 (C × 2), 131.8 (CH), 131.6 (CH), 130.9 (CH), 125.1 (C), 124.8 (C), 122.8 (CH), 114.1 (CH), 112.2 (CH), 111.0 (CH), 56.00 (CH₃), 55.98 (CH₃), 55.0 (CH₃); νmax/cm⁻¹ 3003 w, 2935 w, 2837 w, 1645 v str, 1601 str, 1588 str, 1510 v str, 1463 w, 1259 w, 1175 str, 1145 m, 1025 m; HRMS (APCI) calculated for [M+H]⁺ 351.1227, C₂₁H₁₉O₅ found: 351.1226.

2-(4-Hydroxyphenyl)-6-(2-methoxyphenyl)-1,4,benzoquinone (168dd’) and 2-(4-Hydroxyphenyl)-5-(2-methoxyphenyl)-1,4,benzoquinone (158dd’)

General procedure 4 was followed to give the products 168dd’ and 158dd’ in an approximate 5:4 ratio.

Dark red solid, 50% yield; M. p. 178-181 °C; Rf 0.19 (1:1 hexane:EtOAc); ¹H NMR (300 MHz, Acetone-d₆): δ = 8.86 (s, 1H, OH), 7.51 (d, J = 8.7 Hz, 2H, Ar-H), 7.45 (ddd, J = 8.3, 7.5, 1.8 Hz, 1H, Ar-H), 7.32 (dd, J = 7.5, 1.8 Hz, 1H, Ar-H), 7.12 (dd, J = 8.3, 1.0 Hz, 1H, Ar-H), 7.04 (td, J = 7.5, 1.0 Hz, 1H, Ar-H), 6.94 (d, J = 8.7 Hz, 2H, Ar-H), 6.86 (d, J = 2.7 Hz, 1H, O=C-CH), 6.77 (d, J = 2.7 Hz, 1H, O=C-CH), 3.83 (s, 3H, OCH₃); ¹³C NMR (75 MHz, Acetone-d₆): δ = 187.9 (C), 186.6 (C), 160.3 (C), 158.2 (C), 148.1 (C), 147.3 (C), 134.1 (CH), 132.0 (CH), 131.9 (CH), 131.2 (CH), 130.4 (CH), 125.7 (C), 124.9 (C), 121.4 (CH), 116.2 (CH), 112.2 (CH), 56.2 (CH₃); νmax/cm⁻¹ 3255 br, 2952 w, 1664 m, 1637 str, 1571 str, 1511 m, 1275 str, 1229 v str, 1174 m, 908 str, 743 str; HRMS (NSI) calculated for [M+H]⁺ 307.0965, C₁₉H₁₅O₄ found: 307.0968.
Red solid, 41% yield; M. p. 207-209 °C; \(R_f \) 0.23 (1:1 hexane:EtOAc); \(^1\text{H} \) NMR (300 MHz, Acetone-\(d_6 \)): \(\delta = 8.85 \) (s, 1H, OH), 7.55 (d, \(J = 8.3 \) Hz, 2H, Ar-H), 7.49 – 7.38 (m, 1H, Ar-H), 7.27 (dd, \(J = 7.5, 1.7 \) Hz, 1H, Ar-H), 7.11 (d, \(J = 8.3 \) Hz, 1H, Ar-H), 7.06 – 7.00 (m, 1H, Ar-H), 6.95 (d, \(J = 8.3 \) Hz, 2H, Ar-H), 6.90 (d, \(J = 0.7 \) Hz, 1H, O=C-CH), 6.84 (d, \(J = 0.7 \) Hz, 1H, O=C-CH), 3.80 (d, \(J = 0.7 \) Hz, 3H, OC\(\text{H}_3 \)); \(^{13}\text{C} \) NMR (75 MHz, Acetone-\(d_6 \)): \(\delta = 188.1 \) (C), 186.4 (C), 158.4 (C), 146.4 (C), 145.6 (C), 135.5 (CH), 134.2 (C), 132.1 (CH), 131.8 (CH), 131.7 (CH), 131.4 (CH), 125.1 (C), 123.9 (C), 121.2 (CH), 116.2 (CH), 112.3 (CH), 56.1 (CH\(\text{H}_3 \)); \(\nu_{\max }/\text{cm}^{-1} \) 3423 br, 2922 w, 1635 v str, 1588 v str, 1514 v str, 1437 m, 1248 v str, 1173 v str, 763 v str, 753 str; HRMS (NSI) calculated for [M+H]\(^+ \) 307.0965, C\(_{19}\)H\(_{15}\)O\(_4\) found: 307.0968.

2-(4-Ethoxycarbonylphenyl)-6-(3,4-dimethoxyphenyl)-1,4,benzoquinone (168ro) and **2-(4-Ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-1,4,benzoquinone (158ro)**

General procedure 4 was followed to give the products 168ro and 158ro in an approximate 3:1 ratio. See section 3.5.3 for the procedure used to differentiate between the 2,5 and 2,6 isomers.

Black solid, 48% yield; M. p. 148-150 °C; \(R_f \) 0.30 (2:1 hexane:EtOAc); \(^1\text{H} \) NMR (300 MHz, CDCl\(_3 \)): \(\delta = 8.13 \) (d, \(J = 8.7 \) Hz, 2H, He), 7.58 (d, \(J = 8.7 \) Hz, 2H, H\(_d\)), 7.17 (dd, \(J = 8.4, 2.1 \) Hz, 1H, H\(_c\)), 7.09 (d, \(J = 2.1 \) Hz, 1H, H\(_b\)), 7.00 – 6.90 (m, 3H, 2 \(\times \) O=C-CH, H\(_b\)), 4.41 (q, \(J = 7.1 \) Hz, 2H, CH\(_2\)CH\(_3\)), 3.94 (s, 3H, OCH\(_3\)), 3.93 (s, 3H, OCH\(_3\)), 1.42 (t, \(J = 7.1 \) Hz, 3H, CH\(_2\)CH\(_3\)); \(^{13}\text{C} \) NMR (75 MHz, CDCl\(_3 \)): \(\delta = 187.2 \) (C), 186.0 (C), 166.0 (C), 151.1 (C), 148.9 (C), 145.8 (C), 145.7 (C), 137.5 (C), 133.4 (CH), 131.6 (C), 131.4 (CH), 129.5 (CH), 129.3 (CH), 125.5 (C), 122.9 (CH), 112.3 (CH), 111.0 (CH), 61.3 (CH\(_2\)), 56.02 (CH\(_3\)), 55.99 (CH\(_3\)), 14.3 (CH\(_3\)); \(\nu_{\max }/\text{cm}^{-1} \) 2935 w, 1715 str, 1643 v str, 1513 str, 1464 m, 1257 v str, 1100 v str, 1022 v str, 917 w, 748 v str, 706 m; HRMS (APCI) calculated for [M+H]\(^+ \) 393.1333, C\(_{23}\)H\(_{21}\)O\(_6\) found: 393.1328.
Black solid, 16% yield; M. p. 186-188 °C; Rf 0.33 (2:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl3):
\[\delta = 8.13 (d, J = 8.4 \text{ Hz}, 2H, H_e), 7.61 (d, J = 8.4 \text{ Hz}, 2H, H_d), 7.22 (dd, J = 8.4, 2.1 \text{ Hz}, 1H, H_c), 7.13 (d, J = 2.1 \text{ Hz}, 1H, H_a), 7.01 – 6.93 (m, 3H), 2 \times O=C-CH, H_b), 4.41 (q, J = 7.1 \text{ Hz}, 2H, CH2CH3), 3.95 (s, 3H, OCH3), 3.94 (s, 3H, OCH3), 1.42 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3): \[\delta = 187.2 (C), 186.4 (C), 166.0 (C), 151.2 (C), 149.0 (C), 145.0 (C), 144.7 (C), 136.7 (C), 133.9 (CH), 131.7 (C), 131.6 (CH), 129.6 (CH), 129.3 (CH), 124.8 (C), 122.9 (CH), 112.6 (CH), 111.1 (CH), 61.3 (CH2), 56.03 (CH3), 56.01 (CH3), 14.3 (CH3); \nu_{\text{max}}/\text{cm}^{-1} 2934 \text{ w}, 1706 \text{ v str}, 1644 \text{ v str}, 1587 \text{ m}, 1516 \text{ str}, 1443 \text{ m}, 1287 \text{ v str}, 1268 \text{ v str}, 1105 \text{ v str}, 1022 \text{ v str}, 910 \text{ v str}, 762 \text{ m}, 701 \text{ m}; \text{HRMS (APCI) calculated for } [\text{M+H}]^+ 393.1333, C23H21O6 found: 393.1328.

2-(4-Ethoxycarbonylphenyl)-5-(4-trifluoromethylphenyl)-1,4,benzoquinone (158rb) and 2-(4-Ethoxycarbonylphenyl)-6-(4-trifluoromethylphenyl)-1,4,benzoquinone (168rb)

General procedure 4 was followed to give the products 158rb and 168rb in an approximate 10:1 ratio.

Bright yellow amorphous solid, 47% yield; Rf 0.43 (5:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl3):
\[\delta = 8.14 (d, J = 8.6 \text{ Hz}, 2H, Ar-H), 7.74 (d, J = 8.3 \text{ Hz}, 2H, Ar-H), 7.66 (d, J = 8.3 \text{ Hz}, 2H, Ar-H), 7.62 (d, J = 8.6 \text{ Hz}, 2H, Ar-H), 7.04 (s, 1H, O=C-CH), 7.02 (s, 1H, O=C-CH), 4.42 (q, J = 7.1 Hz, 2H, CH2CH3), 1.42 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (101 MHz, CDCl3): \delta = 186.10 (C), 186.06 (C), 165.9 (C), 145.0 (C), 144.5 (C), 136.4 (C), 135.7 (C), 134.0 (CH), 133.7 (CH), 132.0 (C, q, J = 33.4 Hz), 132.0 (C), 129.7 (2 × CH), 129.3 (CH), 125.5 (CH, q, J = 3.9 Hz), 123.8 (C, q, J = 271.6 Hz), 61.3 (CH2), 14.3 (CH3); \nu_{\text{max}}/\text{cm}^{-1} 2924 \text{ w}, 1723 \text{ v str}, 1642 \text{ v str}, 1326 \text{ str}, 1278 \text{ str}, 1125 \text{ v str}, 1107 \text{ v str}, 1069 \text{ v str}, 909 \text{ v str}, 713 \text{ str}; \text{HRMS (APCI) calculated for } [\text{M+H}]^+ 401.0995, C22H16F3O4 found: 401.0995.
Pale yellow amorphous solid, <5% yield; Rf 0.36 (5:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 8.13\) (d, \(J = 8.5\) Hz, 2H, Ar-H), 7.73 (d, \(J = 8.2\) Hz, 2H, Ar-H), 7.63 (d, \(J = 8.2\) Hz, 2H, Ar-H), 7.58 (d, \(J = 8.5\) Hz, 2H, Ar-H), 6.99 (d, \(J = 2.6\) Hz, 1H, O=C-CH\(_2\)), 6.97 (d, \(J = 2.6\) Hz, 1H, O=C-CH\(_2\)), 4.41 (q, \(J = 7.1\) Hz, 2H, CH\(_2\)CH\(_3\)), 1.42 (t, \(J = 7.1\) Hz, 3H, CH\(_2\)CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 186.8\) (C), 185.1 (C), 165.9 (C), 145.6 (C), 145.3 (C), 137.0 (C), 136.4 (C), 133.6 (CH), 133.5 (CH), 131.9 (C, q, \(J = 37.9\) Hz), 131.9 (C), 129.8 (CH), 129.6 (CH), 129.4 (CH), 125.46 (CH, q, \(J = 3.9\) Hz), 124.8 (C, q, \(J = 271.6\) Hz), 61.3 (CH\(_2\)), 14.3 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2924 w, 2855 str, 1715 str, 1609 w, 1457 w, 1325 v str, 1278 str, 1124 v str, 1068 v str, 843 w, 758 m; HRMS (APCI) calculated for [M+H]+ 401.0995, C\(_{22}\)H\(_{16}\)F\(_3\)O\(_4\) found: 401.0995.

2-(1-(tert-Butoxycarbonyl)-2-pyrrolyl)-5-(3-thienyl)-1,4-benzoquinone (158wu)

General procedure 4 was followed, using 2.5 equivalents of 3-thienyl boronic acid to give the 2,5 isomer 158wu. Another product, believed to be the 2,6 isomer was observed but only in trace amounts.

Red solid, 74% yield; M. p. 125-127 °C; Rf 0.50 (2:1 hexane:EtOAc); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.15\) (dd, \(J = 2.8, 1.5\) Hz, 1H, HetAr-H), 7.42 (dd, \(J = 3.4, 1.7\) Hz, 1H, HetAr-H), 7.41 – 7.37 (m, 2H, HetAr-H), 6.99 (s, 1H, O=C-CH\(_2\)), 6.78 (s, 1H, O=C-CH\(_2\)), 6.41 (dd, \(J = 3.4, 1.7\) Hz, 1H, HetAr-H), 6.26 (t, \(J = 3.4\) Hz, 1H, HetAr-H), 1.52 (s, 9H, (CH\(_3\))\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 187.1\) (C), 186.3 (C), 148.7 (C), 141.2 (C), 139.3 (C), 133.0 (C), 130.8 (CH), 130.2 (CH), 129.7 (CH), 126.9 (CH), 126.5 (C), 125.9 (CH), 125.0 (CH), 117.0 (CH), 111.1 (CH), 84.7 (C), 27.9 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2979 w, 1744 v str, 1655 v str, 1587 str, 1474 w, 1405 w, 1315 v str, 1223 m, 1136 v str, 848 w, 734 w; HRMS (NSI) calculated for [M+H]+ 356.0951, C\(_{19}\)H\(_{18}\)O\(_4\)NS found: 356.0954.
2-(3-Nitrophenyl)-5-(3-thienyl)-1,4,benzoquinone (158iu)

General procedure 4 was followed, using 2.5 equivalents of 3-thienyl boronic acid and FeCl₃ (1.25 equiv.) was added for 1 h at the end of the reaction. Column chromatography yielded the 2,5 isomer 158iu as the major product but evidence of reduced product was observed following washing of the column with ethyl acetate. FeCl₃ (2.5 equiv.), was added as an additional oxidant to the column wash and left to stir at room temperature for 18 h, after which the solution was evaporated under reduced pressure and purified by column chromatography to yield further 2,5 product. Another product, believed to be the 2,6 isomer was observed but only in trace amounts.

Red solid, 42% yield; M. p. 175-178 °C; R₇ 0.27 (2:1 hexane:EtOAc); ¹H NMR (400 MHz, CDCl₃): δ = 8.45 – 8.41 (m, 1H, Ar-H), 8.36 – 8.31 (m, 1H, Ar-H), 8.23 – 8.21 (m, 1H, HetAr-H), 7.90 – 7.86 (m, 1H, Ar-H), 7.70 – 7.63 (m, 1H, Ar-H), 7.45 – 7.43 (m, 2H, HetAr-H), 7.08 (s, 1H, O=C-CH), 7.01 (s, 1H, O=C-CH); ¹³C NMR (101 MHz, CDCl₃): δ = 186.6 (C), 186.2 (C), 148.3 (C), 143.1 (C), 139.3 (C), 135.2 (CH), 134.3 (CH), 134.0 (C), 132.3 (C), 130.4 (CH), 130.1 (CH), 129.6 (CH), 126.7 (CH), 126.4 (CH), 124.6 (CH), 124.3 (CH); ν max/cm⁻¹ 3107 w, 2925 w, 1650 v str, 1583 w, 1528 v str, 1347 str, 1220 w, 1158 w, 906 w, 730 w; HRMS (APCI) calculated for [M+H]⁺ 312.0325, C₁₆H₁₀O₄NS found: 312.0327.

2-(4-Ethoxycarbonylphenyl)-5-(3-thienyl)-1,4,benzoquinone (158ru)

General procedure 4 was followed to give 158ru as the major product. Another product, believed to be the 2,6 isomer was observed but only in trace amounts.

Red solid, 34% yield; M. p. 144-146 °C; R₇ 0.26 (3:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 8.20 (dd, J = 2.7, 1.6 Hz, 1H, HetAr-H), 8.12 (d, J = 8.6 Hz, 2H, Ar-H), 7.61 (d, J = 8.6 Hz, 2H, Ar-H), 7.44 – 7.41 (m, 2H, HetAr-H), 7.05 (s, 1H, O=C-CH), 6.96 (s, 1H, O=C-CH), 4.41 (q, J = 7.2 Hz, 2H, CH₂CH₃), 1.41 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 186.9 (C), 186.7 (C), 166.0 (C), 144.6 (C), 139.2 (C), 136.7 (C), 134.0 (CH), 132.6 (C), 131.9 (C), 130.4 (CH), 130.0 (CH), 129.6 (CH), 129.3 (CH), 126.8 (CH), 126.2 (CH), 61.2 (CH₂), 14.3 (CH₃); ν max/cm⁻¹ 3105 w, 2981 w, 1717 v str, 1652 v str, 1640 v str.
1583 w, 1409 w, 1277 v str, 1107 str, 911 w, 723 m; HRMS (APCI) calculated for [M+H$_2$O-H]$^+$ 355.0635, C$_{19}$H$_{15}$O$_5$S found: 355.0629.

2-(4-Trifluoromethylphenyl)-5-(3-thienyl)-1,4,benzoquinone (158ub) and 2-(4-Trifluoromethylphenyl)-6-(3-thienyl)-1,4,benzoquinone (168ub)

General procedure 4 was followed, using 2.5 equivalents of 3-thienyl boronic acid and adding FeCl$_3$ (1.4 equiv.) for 1 h at the end of the reaction to give 158ub and 168ub in an approximate 3:2 ratio. The minor isomer 168ub was isolated but could not be sufficiently purified. Additionally, due to decomposition a 13C NMR spectrum could not be obtained.

Yellow amorphous solid, 31% yield; R$_f$ 0.74 (2:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 8.24 – 8.17 (m, 1H, HetAr-H), 7.73 (d, J = 8.3 Hz, 2H, Ar-H), 7.65 (d, J = 8.3 Hz, 2H, Ar-H), 7.48 – 7.38 (m, 2H, HetAr-H), 7.06 (s, 1H, O=C-CH$_3$), 6.95 (s, 1H, O=C-CH$_3$); 13C NMR (101 MHz, CDCl$_3$): δ = 186.9 (C), 186.6 (C), 144.1 (C), 139.2 (C), 135.9 (C), 134.1 (CH), 132.4 (C), 131.9 (q, J = 28.2 Hz, C), 130.2 (CH), 129.7 (CH x2), 126.7 (CH), 126.3 (CH), 125.4 (q, J = 3.9 Hz, CH), 123.0 (q, J = 167.7 Hz, C); ν_{max}/cm$^{-1}$ 2929 w, 1641 v str, 1327 v str, 1168 w, 1124 str, 1071 str, 848 w; HRMS (APCI) calculated for [M+H]$^+$ 335.0348, C$_{17}$H$_{10}$F$_3$O$_2$S found: 335.0347.

Yellow amorphous solid, 23% yield; R$_f$ 0.58 (2:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 8.12 (1 H, t, J = 2.1 Hz, HetAr-H), 7.73 (2 H, d, J = 8.0 Hz, Ar-H), 7.61 (2 H, d, J = 8.0 Hz, Ar-H), 7.44 – 7.38 (2 H, m, HetAr-H), 7.03 (1 H, d, J = 2.6 Hz, O=C-CH$_3$), 6.91 (1 H, d, J = 2.6 Hz, O=C-CH$_3$); ν_{max}/cm$^{-1}$ 2924 m, 1668 w, 1647 str, 1585 w, 1410 w, 1324 v str, 1168 m, 1127 str, 1068 str, 845 w; HRMS (APCI) calculated for [M+H]$^+$ 335.0348, C$_{17}$H$_{10}$F$_3$O$_2$S found: 335.0350.
Diacetylation of 2,5- and 2,6-diaryl-1,4-hydroquinones

General procedure for diacetylation:
Heterodifunctionalised benzoquinones 168or or 158or (1 equiv.), zinc (5 equiv.) and anhydrous NaOAc (2 equiv.) were added to a flask followed by acetic anhydride (0.096 M) and the solution was heated to reflux. Upon completion, the solution was filtered through glass wool and the filtrate washed with acetic acid. Water (5 mL) and EtOAc (5 mL) were then added, the layers were separated and the aqueous phase washed with EtOAc (3 × 5 mL). The combined organic layers were washed with water (3 × 5 mL), dried over MgSO₄ and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography (5:1 → 1:1 pentane:Et₂O) to yield the product.

Ethyl 4-[2,5-bis(acetyloxy)-4-(3,4-dimethoxyphenyl)phenyl]benzoate (177or)
Compound 158or (0.0133 mmol) was diacetylated using the aforementioned procedure to give 177or in a 78% yield.

Yellow amorphous solid, 78% yield; Rf 0.23 (2:1 hexane:EtOAc); ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (d, J = 8.6 Hz, 2H, H₉), 7.53 (d, J = 8.6 Hz, 2H, H₉), 7.20 (s, 1H, Hₐ/b), 7.19 (s, 1H, Hₐ/b), 7.02 (dd, J = 8.2, 2.0 Hz, 1H, H₉), 6.99 (d, J = 2.0 Hz, 1H, Hₙ), 6.93 (d, J = 8.2 Hz, 1H, Hₙ), 4.41 (q, J = 7.1 Hz, 2H, CH₂CH₃), 3.93 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 2.13 (s, 3H, CH₃), 2.11 (s, 3H, CH₃), 1.42 (t, J = 7.1 Hz, 3H, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 169.2 (C), 169.0 (C), 166.3 (C), 148.9 (C), 148.7 (C), 145.6 (C), 145.4 (C), 141.1 (C), 135.5 (C), 133.5 (C), 129.8 (C), 129.6 (CH), 129.0 (C), 128.8 (CH), 125.0 (CH), 124.8 (CH), 121.3 (CH), 111.9 (CH), 111.1 (CH), 61.1 (CH₃), 56.0 (CH₃), 55.9 (CH₃), 20.9 (CH₃), 20.8 (CH₃), 14.4 (CH₃); νmax/cm⁻¹ 2929 w, 1761 str, 1714 str, 1608 w, 1513 w, 1488 w.
1367 str, 1274 str, 1199 v str, 1155 v str, 915 m, 860 w, 730 m; HRMS (APCI) calculated for [M+H]⁺ 479.1700, C_{27}H_{27}O_{8} found: 479.1695.

Ethyl 4-[2,5-bis(acetyloxy)-3-(3,4-dimethoxyphenyl)phenyl]benzoate (178or)

Compound 168or (0.0201 mmol) was diacetylated using the aforementioned procedure32 to give 178or in a 76% yield. Yellow amorphous solid, 76% yield; R\textsubscript{f} 0.22 (2:1 hexane:EtOAc); 1H NMR (400 MHz, CDCl\textsubscript{3}): δ = 8.08 (d, J = 8.5 Hz, 2H, H\textsubscript{g}), 7.52 (d, J = 8.5 Hz, 2H, H\textsubscript{h}), 7.16 (d, J = 2.8 Hz, 1H, H\textsubscript{a}), 7.12 (d, J = 2.8 Hz, 1H, H\textsubscript{b}), 7.00 (dd, J = 8.1, 2.0 Hz, 1H, H\textsubscript{d}), 6.97 (d, J = 2.0 Hz, 1H, H\textsubscript{e}), 6.91 (d, J = 8.1 Hz, 1H, H\textsubscript{c}), 4.40 (q, J = 7.1 Hz, 2H, CH\textsubscript{2}CH\textsubscript{3}), 3.92 (s, 3H, OCH\textsubscript{3}), 3.89 (s, 3H, OCH\textsubscript{3}), 2.32 (s, 3H, CH\textsubscript{3}), 1.82 (s, 3H, CH\textsubscript{3}), 1.41 (t, J = 7.1 Hz, 3H, CH\textsubscript{2}CH\textsubscript{3}); 13C NMR (101 MHz, CDCl\textsubscript{3}): δ = 169.3 (C), 168.7 (C), 166.3 (C), 148.8 (C), 148.6 (C), 148.3 (C), 142.5 (C), 141.7 (C), 136.9 (C), 135.9 (C), 129.8 (C), 129.5 (CH), 129.5 (C), 128.9 (CH), 123.4 (CH), 122.3 (CH), 121.4 (CH), 112.0 (CH), 111.0 (CH), 61.1 (CH\textsubscript{2}), 55.93 (CH\textsubscript{3}), 55.88 (CH\textsubscript{3}), 21.1 (CH\textsubscript{3}), 20.6 (CH\textsubscript{3}), 14.3 (CH\textsubscript{3}); ν\textsubscript{max}/cm-1 2933 w, 1762 str, 1713 str, 1608 w, 1516 str, 1441 w, 1367 str, 1273 str, 1174 v str, 1160 v str, 1022 str, 915 m, 864 w, 731 m; HRMS (APCI) calculated for [M+H]⁺ 479.1700, C_{27}H_{27}O_{8} found: 479.1698.
3.12 References

Chapter 4: Palladium(II)-Catalysed Asymmetric Oxidative Heck Reactions on Cyclopentene-1,3-diones

Acknowledgement: The author would like to thank the following people who collaborated on this project: Claire Lamb, Nick Beattie, Paul Nikodemiak, Riccardo Serreli and James Jordan-Hore. Where work has been conducted by anyone other than the author, this is explicitly stated.
Chapter 4: Introduction

4.1 Background

Cyclopentenediones are ubiquitous in nature and exhibit a range of biological activities including antibacterial, antifungal, anti-inflammatory, cytostatic and enzyme inhibitory properties.\(^1\) Around one hundred of these compounds have been reported to date, the majority of which have been isolated from plant sources. Within this class of compounds, a 2,2-disubstituted cyclopentene-1,3-dione moiety 183 is often present, for instance in natural products such as Madindoline A and B (184 and 185),\(^2,7\) Similin A (186),\(^8\) Involutone (187),\(^9-11\) Ochroleucin A (188)\(^12\) and Preussidone (189) (Figure 9).\(^13\)

![Biologically active natural products containing the 2,2-disubstituted cyclopentene-1,3-dione core 183](image_url)
Current synthetic routes to functionalised 2,2-disubstituted cyclopentene-1,3-diones 183 are lengthy1 and given the prevalence of this moiety in natural products and the biological activity exhibited by these compounds, a direct synthetic route to access these structures would therefore be advantageous. On commencing the work outlined in this chapter, no direct syntheses of these compounds had been reported and therefore would be highly desirable. Additionally, given the challenge for synthetic chemists in forming all-carbon stereocentres,14, 15 functionalising such compounds would provide a facile route to desymmetrise the prochiral centre, despite being remote from the reaction site. A Heck-type coupling method would therefore provide an ideal route to both functionalise the 2,2-disubstituted cyclopentene-1,3-dione core in addition to desymmetrising the all-carbon quaternary stereocentre in a one step process.

This review will touch on relevant literature examples using 2,2-disubstituted cyclopentene-1,3-diones in synthetic methodology in addition to relevant work reported in the literature during the course of this project.

4.1.1 Current methods to functionalise 2,2-disubstituted cyclopentene-1,3-diones

Investigations into the functionalisation of 2,2-disubstituted cyclopentene-1,3-diones 183 have primarily focussed on conjugate addition reactions. Mikami and co-workers have developed a copper(I)-catalysed asymmetric conjugate addition method in high yield and high enantioselectivity (Scheme 91).16 Chiral copper-phosphoramidite catalysts with a loading as low as 0.5 mol% were used in an alkylation sequence using dialkylzinc reagents to access a variety of cyclopentane derivatives with a remote quaternary stereocentre.
Scheme 91: Copper(I)-catalysed enantioselective conjugate addition on 2,2-disubstituted cyclopentene-1,3-dione substrates

A variety of substituents at the 2 position on the cyclopentenedione core 183 were tolerated and the reaction afforded excellent yields (up to 99%) with a number of dialkyl zinc reagents. Excellent enantio- (>99% ee) and diastereoselectivities (>95:5 dr) were also obtained. However, obvious drawbacks to the methodology include the low temperature required, limited accessibility and cost of dialkyl zinc reagents, in addition to some functional groups not being tolerated.

Additionally, the methodology was expanded to synthesise a precursor to Madindolines (195, Scheme 92). The zinc enolate intermediate 192 was further reacted with an aldehyde 193 to afford a cyclopentane derivative bearing 4 chiral centres 194. Elimination and isomerisation then regenerated the cyclopentenedione core and formed the Madindoline precursor 195.
Mukherjee and coworkers have studied substituted cyclopentene-1,3-dione substrates and reported an enantioselective vinylogous nucleophilic addition using butenolides and thus desymmetrising the prochiral centre. Excellent diastereo- and enantioselectivities were obtained (Scheme 93).17, 18

Using amine-thiourea based catalysts 197, a variety of 2,2-disubstituted cyclopentene-1,3-diones 183 bearing various functional groups at the 2 position were desymmetrised to afford cyclopentanedione products 198 bearing multiple stereocentres (one tertiary and two quaternary), including one outside of the cyclopentane scaffold. Yields were excellent (up to 99%) in addition to excellent diastereo- (>20:1 dr) and
enantioselectivity (99:1 er) being obtained. Investigations into the mechanism found that not only does the thiourea moiety of the catalyst induce selectivity, but additionally the amide side chain plays an important role in determining enantioselectivity.

The aforementioned work by Manna and Mukherjee was followed up by a study of a base-mediated organocatalytic enantioselective alkylation of 2,2-disubstituted cyclopentene-1,3-diones which was reported as the manuscript for this project\(^\text{19}\) was being prepared (Scheme 94).\(^\text{20}\) Also employing a bifunctional aminourea based catalyst as the chiral base 199, functionalisation was achieved using nitroalkyl reagents 200 to yield substituted cyclopentenediones 201 in up to 92% yield and 97:3 er.

In this reaction, the base 199 deprotonates the nitroalkane 200 and the resulting nucleophile adds in a conjugate addition fashion to 183b. Elimination of the NO\(_2\) group then reforms the double bond in 201.

Scheme 94: Organocatalytic enantioselective alkylation of 2,2-disubstituted cyclopentene-1,3-diones

Although necessarily restricted to alkylations, a wide variety of functional groups were tolerated by the methodology both as substituents at the 2 position on the cyclopentene ring (benzyl, naphthyl, allyl) and as nucleophiles (CH\(_2\)CH\(_2\)-hydroxyl, -amide, -amine, -furan, -OTBS, -eneone).
4.1.2 Conclusion

To conclude, the functionalisation of 2,2-disubstituted cyclopentene-1,3-diones is an area with much potential for further exploration. There are few examples in the literature of functionalisation of such substrates, despite their prevalence in natural products. Additionally, enantioselective functionalisation would be of great use in order to create all-carbon quaternary stereocentres in a direct and facile manner. To be able to use these substrates in Heck-type couplings would be a huge advancement in this area and open up further possibilities for synthetic routes to biologically active compounds.
4.2 Project aim

The Lee group has conducted extensive work on Pd(II)-catalysed reactions between cyclic enones and boronic acids, some of which is detailed in this thesis (see chapters 2 and 3).²¹-²³ During early studies in the Lee group on oxidative Heck reactions to cyclic enones, initial reactions on 2,2-disubstituted cyclopenten-1,3-dione substrates 183 indicated that the oxidative Heck product 201 was formed preferentially over the conjugate addition product. Given the challenges in carrying out Heck-type reactions on cyclic enones, and few reported literature examples of functionalising such compounds (vide supra), further investigations were therefore worthwhile. With this in mind, the aim for this project was to build upon the initial promising results and develop an oxidative Heck reaction on 2,2-disubstituted cyclopenten-1,3-dione substrates 183 with a range of substituents on the cyclopentenedione core (R¹ and R²) and boronic acid coupling partners 6 (Scheme 95).

![Scheme 95: Development of a racemic oxidative Heck reaction on 2,2-disubstituted cyclopentene-1,3-dione substrates](image)

Once the racemic reaction had been developed, our second aim was to develop an enantioselective oxidative Heck reaction with the aforementioned substrates (Scheme 96). By carrying out further optimisation where necessary and screening a number of chiral ligands, our aim was to establish an enantioselective protocol in order to desymmetrise the all-carbon quaternary centre in high yield and enantioselectivity. This second part of the project was the main focus of the author’s work.

* Initial studies carried out by J. Jordan-Hore.
Scheme 96: Development of an enantioselective oxidative Heck reaction on 2,2-disubstituted cyclopentene-1,3-dione substrates
4.3 Development of a racemic oxidative Heck reaction on 2,2-disubstituted cyclopenten-1,3-diones

4.3.1 Substrate synthesis

The initial part of this project involved synthesising a library of substrates. This was carried out in collaboration with other Lee group members. Synthetic routes of substrates synthesised by the author are detailed below. Literature methods were followed for known compounds, or adapted where necessary in order to synthesise unknown substrates. One of two general synthetic routes was used depending on the substrate synthesised.

The first synthetic route was used to synthesise methyl 2-(1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate 183c (Scheme 97). This methodology was taken from a literature procedure used for similar substrates. Carrying out a simple S_N2 reaction with 2-methylcyclopentene-1,3-dione 202 and the appropriate alkyl bromide 204 yields the substrate precursor 203c, albeit in 22% yield. Oxidation of this precursor 203c using copper(II) bromide under reflux gave the desired product 183c in 83% yield (Scheme 97).

Scheme 97: Synthesis of methyl 2-(1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate

For those substrates which could not be synthesised by this method i.e. for aryl groups, an alternative synthetic route was adopted which was also taken from literature for synthesising similar substrates (Scheme 98). Using 1,2-bis(trimethylsiloxy)cyclobutene 205 as a starting material and reacting with the appropriate ketone 206 in the presence of a Lewis acid (BF_3·OEt_2) forms the cyclopentanediene precursor 203 of the desired substrate 183. For substrates 183d and 183e, adding the reagents at 0 °C and warming the reaction mixture to room temperature was found to give reasonable yield (see Table 23). However, this methodology was later altered and a slightly different literature procedure was adopted.
using a lower reaction temperature of $-78 \, ^\circ C$ which was found to be more effective, particularly with more sterically hindered ketones (183f-i, see experimental section for more specific information). Oxidation of this precursor 203 was then carried out using copper(II) bromide to form the cyclopentenedione substrate 183.

Scheme 98: General synthetic route for substrate synthesis

The mechanism for the synthesis of the substrate precursor 203 proceeds via a Mukaiyama-aldol reaction (I → III) followed by a semi-pinacol rearrangement (IV → 203) as indicated in Scheme 99.25

Scheme 99: Mechanism for the formation of substrate precursor 203
The aforementioned synthetic route was used to synthesise a number of substrates (183d-i). Yields and reaction temperatures are shown in Table 23.

![Chemical reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate (183)</th>
<th>Temperature (step 1)</th>
<th>Yield 203 (%)<sup>a</sup> - step 1</th>
<th>Yield 183 (%)<sup>a</sup> - step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0 °C to rt</td>
<td>203d 57</td>
<td>183d 77</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0 °C to rt</td>
<td>203e 45</td>
<td>183e 58</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>−78 °C to rt</td>
<td>203f 36</td>
<td>183f 79</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>−78 °C to rt</td>
<td>203g 34</td>
<td>183g 80</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>−78 °C to rt</td>
<td>203h 67</td>
<td>183h 75</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>−78 °C to rt</td>
<td>Crude product used for step 2</td>
<td>183i 16</td>
</tr>
</tbody>
</table>

^aIsolated yields.

Table 23: Substrates synthesised for the oxidative Heck reaction on cyclopentenedione

Additionally a substrate with a spiro centre was synthesised using the synthetic route shown below (Scheme 100) which was also adapted from literature.²⁴ A simple
methylolation formed the desired ketone 208 in quantitative yield. Reacting this with 1,2-bis(trimethylsiloxy)cyclobutene 205 formed the substrate precursor 203j albeit in low yield (23%). The standard copper(II) bromide oxidation conditions used for other substrates then yielded the desired substrate 183j in 79% yield.

Scheme 100: Synthesis of 7'-methoxy-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione
4.3.2 Oxidative Heck reaction – substrate screen

Early work on this project, specifically on the racemic oxidative Heck reaction was carried out in collaboration with MChem and short term undergraduate project students in the Lee Group. After extensive optimisation examining potential Pd(II) catalysts, ligands and temperature, appropriate reaction conditions were obtained. Nitrogen- (as opposed to phosphorus-) based ligands were screened given they have been found to be effective in oxidative Heck reactions and are not prone to oxidation.26, 27 Palladium(II) acetate was found to be an appropriate palladium source and phenanthroline the most effective ligand for the reaction. DMF (0.1 mM concentration) was used as a solvent with molecular oxygen as the oxidant. Heating the reaction to 70 °C was necessary for good yields. For the substrate scope, it was found that 5 mol\% of both catalyst and ligand was sufficient for the reaction to proceed in good yield. Additionally, optimisation studies found that using boroxines as the coupling partner (formed by dehydrating the commercial boronic acid by heating under vacuum) gave higher yields than using the corresponding boronic acid (Scheme 101).

![Scheme 101: Optimised reaction conditions for oxidative Heck substrate screen](image_url)

Scheme 101: Optimised reaction conditions for oxidative Heck substrate screen
With the optimised reaction conditions in hand, the substrate screen was performed in collaboration with other Lee group members. An initial substrate screen was carried out by MChem project student Claire Lamb (Scheme 102).

Scheme 102: Oxidative Heck reaction of 2,2-disubstituted cyclopentene-1,3-dione substrates and tris(p-methoxyphenyl)boroxine

Pleasingly, the substrate screen demonstrated that the reaction conditions are tolerant of a wide variety of substrates with various functional groups of differing steric and electronic properties. Substrates bearing phenyl and benzyl substituents are well tolerated and gave comparable yields (201bc, 201kc and 201lc, 77%, 76% and 79% respectively). Various other functional groups including a protected alcohol (201ac, 63%), ester (201cc, 94%) and acid (201mc, 83%) gave decent to excellent yields and an alkyl group is also tolerated (201nc, 56%). Pleasingly, a substrate bearing a heterocycle also gave a good 70% yield (201oc). However, unsubstituted cyclopentenedione with...
enolisable protons does not give the desired product but instead a trisubstituted enone (209), which is possibly formed via tautomerisation of the oxidative Heck product followed by 1,2 addition.28,29

Following this substrate screen, we wanted to expand the substrate scope further. The author therefore investigated a number of other substrates to probe how substituents on the aryl ring would affect yield. Additionally, a naphthyl substrate and a spiro compound were added to this screen (Scheme 103).

\begin{equation}
\text{Scheme 103: Additional substrate screen including substrates with substituted aryl groups}
\end{equation}

Pleasingly, decent to excellent yields were obtained in this additional substrate screen (Scheme 103). Aryl substituents are tolerated and give up to excellent yields whether electron-donating (201hc, 201gc) or electron-withdrawing (201ec). Whilst an ortho-methoxy group was well tolerated (89%, 201gc), an ortho-methyl group did reduce the yield quite considerably (54%, 201fc). Additionally, substrates bearing a naphthyl substituent and a spiro centre performed well under the reaction conditions (91%, 201dc and 82%, 201jc).
Following on from the successful substrate screen which demonstrated the versatility of the reaction with various functional groups, our attention turned to carrying out a boronic acid screen.

4.3.3 Oxidative Heck reaction – boronic acid screen

The boronic acid screen was conducted in collaboration with undergraduate project students in the Lee Group. Optimisation was carried out using 183b as the chosen substrate and the reaction conditions used for the substrate screen, were found to be appropriate, with an additional portion of Pd(OAc)$_2$ and 1,10-phenanthroline 44 being added after 24 hours to maximise conversion to product (Scheme 104). A reaction time of 40-48 hours was found to be optimal. The reaction required dry conditions and therefore boronic acids were dehydrated to the corresponding boroxines by heating under vacuum prior to use.

Using the optimised reaction conditions, a range of boronic acids were screened with varying steric and electronic properties and found to give good to excellent yields (Scheme 105). Electron-withdrawing and donating groups (201bc, 201ba, 201bf, 201bo, 201bd, 201bl and 201br), in addition to polyaromatics (201bm) are tolerated and give good to very good yields (61-89%). Substituents at various positions on the phenyl ring are tolerated and also provide a potential handle for further functionalisation (for example 201bd, 201bl and 201br). Pleasingly, unprotected groups such phenols (201bd, 69%) are tolerated as are readily oxidisable groups such as fluorene (201bn, 72%).
Commercial arylboronic acid (2 equiv.) is heated under vacuum to generate the arylboroxine prior to use.

Isolated yields.

Conditions as in Scheme 102.

Scheme 105: Boronic acid screen
Following on from this boronic acid screen (carried out by MChem project student Claire Lamb), we wanted to further our investigations and demonstrate that the reaction conditions were tolerant of a wider variety of functional groups. The author therefore screened another three boronic acids with ketone, amide and alcohol moieties (Scheme 106).

\[
\text{Ar} = \begin{array}{c}
\text{183b} \\
\text{201bf}^a \quad 54\% \\
\text{201bg}^b \quad 76\% \\
\text{201bh}^c \quad 84\%
\end{array}
\]

\(^a^\text{Commercial arylboronic acid (2 equiv.) is heated under vacuum to generate the arylboroxine prior to use.}\)
\(^b^\text{Isolated yields.}\)
\(^c^\text{Pd(OAc)}_2 (4 \times 5 \text{ mol}%), \text{phenanthroline (4} \times 6 \text{ mol)}, \text{standard conditions gave a yield of 29\% (see Table 24).}\)

Scheme 106: Additional boroxine screen to further investigate functional group tolerance.

Both the ketone and amide boronic acids were well tolerated with moderate to very good yields obtained (54\%, 201bf\(^a\) and 84\%, 201bh\(^c\) respectively). However, when using the optimised reaction conditions with 4-hydroxybenzyl boronic acid, the initial yield was very poor (29\%, 201bg\(^b\)) and further optimisation was deemed necessary (Table 24).
Commerarial aryloboronic acid is heated under vacuum to generate the aryloboroxine prior to use.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additional portions of Pd(OAc)$_2$, ligand and boroxine</th>
<th>Reaction time (h)</th>
<th>Yield 201bg* (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 h – 5 mol% Pd(OAc)$_2$ and 6 mol% ligand</td>
<td>42</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>24 h and 48 h – 5 mol% Pd(OAc)$_2$, 6 mol% ligand and 2.2 equiv. boroxine</td>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>24, 28 and 32 h – 5 mol% Pd(OAc)$_2$ and 6 mol% ligand</td>
<td>48</td>
<td>76</td>
</tr>
</tbody>
</table>

aIsolated yields.

Table 24: Investigating portionwise addition with 4-hydroxybenzyl boronic acid

Firstly, additional portions of catalyst, ligand and boronic acid were added to the reaction and the reaction time increased (Table 24, Entry 2). Unfortunately, this did not have the desired effect of increasing the yield and a reduction in yield was actually observed (in fact no product could be isolated) compared to when one portion of catalyst and ligand was used (Entries 1 and 2). A possible reason for this is that the addition of extra boronic acid was rendering the catalyst inactive, possibly due to coordination of the hydroxyl group to palladium. Therefore, we decided to only add additional portions of catalyst and ligand. Increasing the catalyst loading to four portions of ligand and Pd(OAc)$_2$ over a 48 hour period increased the yield of 201bg* to 76% (Entry 3).
4.4 Oxidative Heck reaction – developing the enantioselective protocol

Following on from the extensive studies into the racemic oxidative Heck reaction between cyclopentene-1,3-diones and aryl boroxines, we turned our attention to investigating the potential of carrying out the reaction enantioselectively.

The conditions chosen for initial studies were those used for the substrate screen, and the commercially available chiral ligand (S)-4-tert-butyl-2-(2-pyridyl)oxazoline [(S)-t-BuPyOx] was selected given there are various examples in literature of its use as an effective chiral ligand in Pd(II) catalysis. At this stage our aim was to see if the oxidative Heck reaction could be performed enantioselectively, after which further optimisation studies would be carried out in order to increase both enantiomeric ratio and yield (Table 25).

![Reaction Scheme]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Yield (%)a</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>183b</td>
<td>201bc 66</td>
<td>76:24</td>
</tr>
<tr>
<td>2</td>
<td>183k</td>
<td>201kc 29</td>
<td>52:48</td>
</tr>
<tr>
<td>3</td>
<td>183c</td>
<td>201cc 65</td>
<td>75:25</td>
</tr>
</tbody>
</table>

*aIsolated yields.

Table 25: Initial studies into the enantioselective oxidative Heck reaction

*Initial screen carried out by Claire Lamb, MChem project student.
The initial studies carried out by MChem project student Claire Lamb produced some very promising results. Yields were good for substrates 183b and 183c (Table 25, Entries 1 and 3), although a considerable drop in yield (and enantiomeric ratio) was observed for more sterically encumbered substrates such as 183k (Entry 2). More importantly, the enantioselectivity whilst moderate, showed potential with enantiomeric ratios of up to 76:24 (Entry 1).

These results certainly showed promise in terms of developing an enantioselective protocol for this reaction in order to obtain both good yields and enantioselectivity. However, upon further optimisation (see Sections 4.4.1 and 4.4.2), enantioselectivity was poor and unfortunately the initial results shown in Table 25 could not be repeated, requiring extensive further optimisation of the enantioselective protocol.
4.4.1 Enantioselective oxidative Heck reaction – initial ligand screen

Following on from the initial promising results obtained by Claire Lamb using (S)-t-BuPyOx 210 as the chiral ligand, our aim was to further optimise the reaction conditions in order to increase the enantioselectivity of the reaction. The first variable examined was the choice of ligand. Using the same conditions, we screened an additional two commercially available PyOx ligands with substituents on the pyridinyl ring (Table 26) to investigate if the enantioselectivity could be improved.

When substituted (S)-t-BuPyOx ligands 64 and 211 were screened (Table 26, Entries 2 and 3), both the enantioselectivity and the yield dropped considerably compared to our initial promising result with ligand 210 (Entry 1). It was therefore apparent that further, more extensive optimisation studies were necessary in order to increase both the yield and enantiomeric ratio of the desired product.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Yield 201bc (%)(^a)</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^b)</td>
<td></td>
<td>66</td>
<td>76:24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>46</td>
<td>62:38</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>45</td>
<td>61:39</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yields. \(^b\) Initial result by Claire Lamb (MChem project student).

Table 26: Enantioselective oxidative Heck reaction - ligand screen
4.4.2 Enantioselective oxidative Heck reaction – further optimisation

Catalyst loading and premixing of the catalyst

Following on from the aforementioned initial ligand screen (Table 26), further optimisation studies commenced with repeating the best result from the original substrate screen using (S)-t-BuPyOx 210, followed by examining whether increasing catalyst loading would have a positive effect on enantiomeric ratio. Given that the priority at this point in the project was to optimise reaction conditions to give a good enantiomeric ratio, chiral HPLC analysis was carried out on the reaction mixture after work up and therefore isolated yields or conversions were not obtained.

We also examined whether premixing of the catalyst [Pd(OAc)$_2$, DMF and ligand] for one hour before adding the substrate and boroxine would be effective in increasing the enantioselectivity (Table 27). This methodology had been employed by Jung and coworkers in their investigations into asymmetric Heck-type reactions and found to increase the enantioselectivity.34

![Catalyst loading optimisation](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd(OAc)$_2$ (mol%)</th>
<th>Ligand (mol%)</th>
<th>Enantiomeric ratio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>5</td>
<td>6</td>
<td>76:24</td>
<td>Initial result by Claire Lamb</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>6</td>
<td>58:42</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>5</td>
<td>6</td>
<td>57:43</td>
<td>Ligand, DMF and Pd(OAc)$_2$ stirred at rt for 1 h</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>11</td>
<td>57:43</td>
<td>Ligand, DMF and Pd(OAc)$_2$ stirred at rt for 1 h</td>
</tr>
</tbody>
</table>

aTable 25, Entry 1. bEnantiomeric ratio measured every 24 h during reaction and found to remain constant.

Table 27: Catalyst loading optimisation
On repeating the initial promising result obtained by Claire Lamb, unfortunately the enantiomeric excess was not comparable, confirming the need for further extensive optimisation (Table 27, Entries 1 versus 2). We examined the effect of premixing Pd(OAc)$_2$, DMF and ligand and found that regardless of catalyst loading, the enantioselectivity did not change (Entries 3 and 4). We also examined whether the enantiomeric excess varied during the course of the reaction in order to investigate whether reaction time affected enantioselectivity in addition to yield. By analysing aliquots of reaction mixture (Entry 4) at 24 hour intervals the enantiomeric excess was found to remain constant throughout the reaction.

Solvent screen

Our attention next turned to carrying out a small solvent screen. Using 10 mol% catalyst and 11 mol% (S)-t-BuPyOx 210 as the chiral ligand, a number of different solvents were investigated, which were less ligating than DMF, in the hope of boosting enantioselectivity. In previous work by Jung and co-workers on asymmetric Heck-type couplings it was hypothesised that moderate enantioselectivities were due to background reactions facilitated by the free palladium catalyst rather than the ligand-chelated catalyst. In the same study, Jung and co-workers found that premixing the ligand and catalyst prior to adding the reagents increased enantioselectivity (vide supra), in addition to using a premade catalyst (which will be discussed in the following section). Therefore, the ligand, Pd(OAc)$_2$ and solvent were premixed for one hour at room temperature before the substrate and boroxine were added. Additionally, the reaction temperature was lowered to 50 °C to examine the effect on enantioselectivity.
Table 28: Solvent screen

Unfortunately the reaction using chloroform as the solvent did not yield product (Table 28, Entry 2). However, a slight increase in enantioselectivity was observed when DMA was used as the solvent (Entry 3).

Studies into preforming the catalyst

Next our attention turned to investigating whether preforming and isolating the catalyst rather than forming it in situ would improve enantioselectivity.

The catalyst was synthesised according to a known literature method used by Jung and co-workers in their studies into asymmetric Heck-type reactions using Pd(II) (Scheme 107).34
Synthesis of the catalyst precursor gave a reasonable yield of 212 (Scheme 107). Reacting this precursor with silver acetate formed the desired catalyst 56 in good yield (Scheme 108).

![Scheme 108: Synthesis of catalyst 56](image)

The premade catalyst 56 (10 mol%) was used in two reactions conducted at 50 °C using DMF and DMA as solvents (Table 29).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF</td>
<td>59:41</td>
</tr>
<tr>
<td>2</td>
<td>DMA</td>
<td>65:35</td>
</tr>
</tbody>
</table>

Table 29: Solvent screen using premade catalyst

Whilst the premade catalyst 56 was effective in inducing some degree of enantioselectivity, there was no change in the enantioselectivity compared to when 10 mol% Pd(OAc)$_2$ and 11 mol% ligand were added separately to the reaction (Table 28, Entries 1 and 3). Given potential stability issues with the premade catalyst and to simplify the reaction procedure, it was decided to continue optimisation studies using the \textit{in situ} generated catalyst [Pd(OAc)$_2$ and (S)-t-BuPyOx 210].
Investigations into possible background reactions

Given the enantiomeric ratios to date were very poor, it was worth investigating if any background reaction was taking place in the absence of ligand. We therefore took the original conditions using DMF as a solvent, a temperature of 70 °C and 5 mol% Pd(OAc)$_2$ in the absence of ligand to investigate if the reaction would still proceed.

\[
\text{O} \quad \text{Me} \quad \begin{array}{c}
\text{Bn} \\
183b
\end{array}
\quad +
\quad \begin{array}{c}
\text{OMe} \\
\text{B-O}_{3}
\end{array}
\quad \text{Pd(OAc)$_2$ (x mol%), (S)-t-BuPyOx 210 (x mol%)}
\quad \text{DMF, 70 °C, O$_2$, 72 h}
\quad \text{Enantiomeric ratio}
\quad \text{Me} \quad \begin{array}{c}
\text{Ar} \\
201bc
\end{array}
\quad \begin{array}{c}
\text{trace product, 91% starting material isolated}
\end{array}
\quad \begin{array}{c}
\text{2.4 equiv.}
\end{array}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>mol% Pd(OAc)$_2$</th>
<th>mol% ligand 210</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>5</td>
<td>6</td>
<td>58:42</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>Trace product, 91% starting material isolated</td>
</tr>
</tbody>
</table>

aTable 27, Entry 2.

Table 30: Reactions with and in the absence of ligand

Trace product was obtained from the reaction carried out in the absence of ligand (Table 30, Entry 2). Given that starting material was isolated, we can therefore assume that limited background reactions are occurring which would potentially be eroding the enantiomeric ratio.
Optimisation using methyl 2-(1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate as the substrate

Given that optimisation studies using the benzyl substituted substrate 183b were not showing any significant improvement in enantioselectivity, we decided to investigate using a different substrate.

Initial studies (Table 25) had shown that substrate 183c bearing an ester substituent could be used in the enantioselective reaction to give an enantiomeric ratio of 75:25 and therefore we decided that it would be worth investigating if this result could be optimised further (Table 31).

![Chemical Reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd(OAc)$_2$ (mol%)</th>
<th>Ligand 210 (mol%)</th>
<th>Enantiomeric ratio</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>5</td>
<td>5</td>
<td>75:25</td>
<td>Initial result by Claire Lamb (Table 25, Entry 3)</td>
</tr>
<tr>
<td>2b</td>
<td>5 mol% premade catalyst</td>
<td>-</td>
<td>Trace product</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>47:53</td>
<td></td>
</tr>
</tbody>
</table>

a72 h, Table 25, Entry 3. bReaction monitored and starting material present after 24 and 48 h.

Table 31: Optimisation with methyl 2-(1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate as the substrate
Using DMF as the solvent for ease of comparison with previous results and a temperature of 70 °C, two reactions were carried out using both the premade catalyst 56 and repeating the original result using this substrate 183c (Table 31). Unfortunately, the reaction using the premade catalyst did not yield product (Entry 2). Repeating the initial promising result using 5 mol% Pd(OAc)$_2$ and 6 mol% (S)-t-BuPyOx 210 the enantioselectivity was not comparable, with a poor enantiomeric ratio of 47:53 (Entry 3 cf. Entry 1). Given these results, we returned to using the original substrate 183b bearing a benzyl substituent to continue optimisation studies.

Investigating boronic acid sources

In other investigations in the Lee Group, the source of boronic acid has had an impact on results and we therefore screened boronic acids from both Sigma Aldrich and Fluorochem to probe whether the commercial source would affect results (Table 32).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Boronic acid source</th>
<th>Boronic acid or boroxine</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Sigma Aldrich</td>
<td>Boronic acid from bottle dehydrated to boroxine</td>
<td>58:42</td>
</tr>
<tr>
<td>2</td>
<td>Sigma Aldrich</td>
<td>Boronic acid from bottle recrystallised then dehydrated to boroxine</td>
<td>57:43</td>
</tr>
<tr>
<td>3</td>
<td>Sigma Aldrich</td>
<td>Directly used from bottle – no dehydration</td>
<td>57:43</td>
</tr>
<tr>
<td>4</td>
<td>Fluorochem</td>
<td>Boronic acid from bottle dehydrated to boroxine</td>
<td>56:44</td>
</tr>
</tbody>
</table>

a72 h, Table 27, Entry 2.

Table 32: Investigating affect of boronic acid source on enantioselectivity
This screen demonstrated that in this case (and as should be expected), the source of boronic acid did not affect the enantioselectivity of the reaction. Using the boroxine generated either from the commercial boronic acid (Table 32, Entry 1), or the commercial boronic acid which was then recrystallised and dehydrated (Entry 2), did not have any effect on the enantiomeric ratio. Additionally, using the commercial boronic acid rather than dehydrating to the boroxine did not have an effect on enantioselectivity of the reaction (Entry 3). Our studies also showed that the source of boronic acid did not affect enantioselectivity (Entries 1 and 4).
Ligand screen using premixed catalyst

Next, we decided to investigate how premixing of the catalyst would affect the enantioselectivity of the reaction. The highest enantiomeric ratio obtained up to this stage in our optimisation studies was using (S)-t-BuPyOx 210 as the ligand and premixing this with DMA and Pd(OAc)$_2$ prior to adding the substrate and boroxine (Table 28, Entry 3). We therefore applied these conditions to a couple of reactions using different ligands (Table 33, Entries 2 and 4). Additionally, premixing of the catalyst had been carried out at room temperature and therefore we also investigated whether raising the temperature to 50 °C would have an effect on enantioselectivity (Entry 3 cf. Entry 2).

![Reaction Scheme](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Conditions</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td></td>
<td>Premixing solvent, ligand and catalyst for 1 h at rt</td>
<td>65:35</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Premixing solvent, ligand and catalyst for 1 h at rt</td>
<td>64:36</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Premixing solvent, ligand and catalyst for 1 h at 50 °C</td>
<td>65:35</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Premixing solvent, ligand and catalyst for 1 h at rt</td>
<td>Racemic</td>
</tr>
</tbody>
</table>

a72 h, Table 28, Entry 3.

Table 33: Ligand screen using a premixed catalyst and dimethyl acetamide as solvent

Our results showed that the temperature at which the catalyst was premixed prior to adding substrate and boroxine did not affect enantioselectivity (Table 33, Entries 2 and
3). Additionally, no change in enantioselectivity was observed when ligand 64 was used compared to the unsubstituted ligand 210 (Entry 2 cf. Entry 1). However, when the quinoline based ligand 213 was employed, no enantioselectivity was observed (Entry 4). Given that (S)-t-BuPyOx 210 is cheaper than ligand 64, and that they both induce the same level of enantioselectivity, we used the unsubstituted ligand 210 and the conditions shown in Entry 1 for further optimisation studies into whether changing the palladium source would affect enantioselectivity.

Investigating the effect of palladium source on enantioselectivity

Optimisation studies to date had used palladium(II) acetate as the palladium source and we therefore decided to investigate whether using the more cationic Pd(OCOCF₃)₂ in DMA would affect enantioselectivity (Table 34).

![Chemical structure](image)

Table 34: Effect of changing the palladium source and temperature on enantioselectivity

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temperature</th>
<th>Enantiomeric Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ᵃ</td>
<td>Pd(OAc)₂</td>
<td>50 °C</td>
<td>65:35</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)₂</td>
<td>25 °C</td>
<td>69:31</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OCOCF₃)₂</td>
<td>50 °C</td>
<td>66:34</td>
</tr>
</tbody>
</table>

ᵃTable 28, Entry 3.

On using Pd(OCOCF₃)₂ as opposed to Pd(OAc)₂ as the palladium source, the enantioselectivity did not change (Table 34, Entry 1 compared to Entry 3). Additionally, as part of this study we also investigated whether lowering the reaction temperature to 25 °C affected enantioselectivity. Whilst the enantioselectivity did increase when a lower temperature was used (69:31, Entry 2 compared to 65:35, Entry 1), the conversion was very poor (~11%) in comparison to using a reaction temperature of 50 °C (40%). Conversions were calculated by integrating the starting material and
product peaks in HPLC traces for each reaction. Therefore, we decided that in order to obtain good yields, the higher temperature would be more favourable for future reactions. Also given that changing the palladium source did not appear to significantly increase enantioselectivity, we also decided to continue to use Pd(OAc)$_2$ as the catalyst.

Extensive solvent screen

Given that the enantioselectivities obtained in optimisation studies still remained moderate, a more extensive solvent screen was carried out to investigate whether the enantiomeric ratio of the reaction could be improved. We screened a number of aprotic solvents with varying polarities (Table 35). Substrate 183b and tris(p-methoxyphenyl)boroxine 6c were used with a catalyst loading of 10 mol% Pd(OAc)$_2$ and 11 mol% (S)-t-BuPyOx 210.

![Chemical structure](image)

Table 35: Solvent screen

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acetonitrile</td>
<td>70:30</td>
</tr>
<tr>
<td>2a</td>
<td>Dimethyl carbonate</td>
<td>48:52</td>
</tr>
<tr>
<td>3</td>
<td>Acetone</td>
<td>66:34</td>
</tr>
<tr>
<td>4</td>
<td>NMP (1-methyl-2-pyrrolidinone)</td>
<td>63:37</td>
</tr>
<tr>
<td>5</td>
<td>Dioxane</td>
<td>Racemic</td>
</tr>
<tr>
<td>6</td>
<td>Tetramethyl urea</td>
<td>55:45</td>
</tr>
</tbody>
</table>

aComplex mix of products including oxidative Heck product.

The results obtained showed a varying degree of enantioselectivity depending on the solvent used. Non polar dioxane gave a racemic product (Table 35, Entry 5), as did dimethyl carbonate (Entry 2). The use of tetramethyl urea also induced poor enantioselectivity (Entry 6). However, acetone and NMP (66:34 and 63:37 er respectively, Entries 3 and 4) performed better and pleasingly when acetonitrile was
used as a solvent the enantiomeric ratio increased to 70:30. Being the best result to date and an improvement on the enantiomeric ratio when DMA was used as a solvent (65:35 er, Table 28, Entry 3), it was decided to further investigate using acetonitrile as the solvent.

Temperature and ligand screen using acetonitrile as the solvent

Following on from the promising result obtained when acetonitrile was used as the solvent (Table 35, Entry 1), our optimisation work turned to screening various ligands and reaction temperatures to see if the enantioselectivity could be improved upon. Substrate 183b and tris(p-methoxyphenyl)boroxine 6c were used, with a catalyst and ligand loading of 10 mol% and 11 mol% respectively (Table 36).

![Chemical structure](attachment:image.png)

Table 36: Ligand and temperature screen with acetonitrile as solvent

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Temp.</th>
<th>Enantiomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>20 °C</td>
<td>78:22</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>35 °C</td>
<td>73:27</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>20 °C</td>
<td>83:17</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>20 °C</td>
<td>83:17</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20 °C</td>
<td>No reaction</td>
</tr>
</tbody>
</table>
Using (S)-t-BuPyOx 210 as the ligand, two reactions were carried out at 20 and 30 °C, and an increase in enantioselectivity was observed compared to when a reaction temperature of 50 °C was used (70:30 er, Table 35, Entry 1 compared to Table 36, Entries 1 and 2). As expected, an increase in enantioselectivity was observed at lower temperatures. Given this result, a number of other ligands were also screened at 20 °C and enantioselectivity increased to 83:17 er using substituted (S)-t-BuPyOx ligands (64 and 211, Entries 3 and 4). However, no conversion to oxidative Heck product was observed when ligand 213 bearing a quinoline moiety was used (Entry 5).
Investigating yield using acetonitrile as the solvent

From our investigations into ligand and temperature using acetonitrile as the chosen solvent, it was clear from TLC analysis and presence of starting material in HPLC analysis, that conversions were poor. Therefore, attention turned to increasing conversion to oxidative Heck product. Catalyst loading and temperature were investigated and conversions determined (Table 37).

![Chemical Reaction Diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd(OAc)$_2$ (mol%)</th>
<th>Ligand 64 (mol%)</th>
<th>Temp.</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 × 5 mol% added at 0, 24 and 48 h</td>
<td>3 × 6 mol% added at 0, 24 and 48 h</td>
<td>20 °C</td>
<td>95% starting material recovered</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>25</td>
<td>35 °C</td>
<td>90% starting material recovered</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>25</td>
<td>50 °C</td>
<td>68% starting material recovered, complex mixture of other products</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>25 + 1 equiv. benzoquinone</td>
<td>50 °C</td>
<td>No reactiona</td>
</tr>
</tbody>
</table>

aNo product visible by 1H NMR or TLC analysis.

Table 37: Investigating catalyst loading and temperature with acetonitrile as solvent

Unfortunately in all the reactions carried out, regardless of catalyst loading, only trace product was formed and a considerable amount of starting material (Table 37, Entries 1 and 2), in addition to a complex mixture of other products (Entry 3) was evident from purification of the reactions by column chromatography. Given the very poor conversions, another reaction was carried out using one equivalent of benzoquinone as an additional oxidant to probe whether molecular oxygen was perhaps being ineffective in reoxidising the catalyst. However, no reaction occurred (Entry 4).
Despite the promising enantioselectivity in the reactions carried out in acetonitrile, the very poor conversions indicated that this would not be a viable solvent to use in future studies. Therefore our investigations returned to using dimethyl acetamide as the reaction solvent which had given the most promising enantioselectivity and reasonable conversions.

Ligand loading studies using dimethyl acetamide as solvent

The majority of optimisation studies had solely focused on examining enantiomeric ratio rather than yield. Although TLC and HPLC analysis had indicated that conversions to product when DMA was used as the solvent were reasonable compared to acetonitrile, it was obviously prudent to investigate this further. We repeated one of our earlier optimisation reactions (Table 28, Entry 3) in order to isolate the product and obtain a yield. A reaction time of four days was chosen in order to maximise conversion of starting material to product. Additionally, another reaction was carried out using double the ligand loading (20 mol%) in order to investigate if this would affect yield or enantioselectivity (Table 38).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd(OAc)$_2$ (mol%)</th>
<th>Ligand 210 (mol%)</th>
<th>Enantiomeric ratio</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td>65:35</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20</td>
<td>63:37</td>
<td>82</td>
</tr>
</tbody>
</table>

aLigand, solvent and catalyst premixed for 1 h at rt. bIsolated yields.

Table 38: Catalyst loading studies using DMA as solvent

Pleasingly the yield of oxidative Heck product 201bc was very good and no change (within error) was observed in yield or enantiomeric ratio when a higher ligand loading was used (Table 38, Entries 1 and 2).
Given the good yield obtained using DMA as the solvent and a catalyst and ligand loading of 10 and 11 mol% respectively (Entry 1), it was decided to take these conditions forward and complete a substrate and boronic acid screen.

4.4.3 Enantioselective oxidative Heck reaction – substrate screen

Given that our optimisation work had investigated a wide variety of variables and enantioselectivities remained moderate, we decided to continue work on this project by screening a range of substrates in the hope that increased enantioselectivity may be observed. The conditions used in Table 38, Entry 1 were chosen for the screen given the reasonable enantioselectivity and good yield obtained (10 mol% Pd(OAc)$_2$, 11 mol% (S)-t-BuPyOx 210, DMA, 50 °C, 95 h). Premixing of the solvent, ligand and Pd(OAc)$_2$ was also carried out prior to adding the substrate and boroxine (Table 39).

Pleasingly, good enantioselectivities were obtained with a number of substrates. Given that ligand screens during initial optimisation work had shown only moderate enantioselectivities (Table 33), any significant difference in ligands was not evident from small changes in enantiomeric ratio. Therefore we decided that it would be worth rescreening a small selection of substrates which gave good enantioselectivity using (S)-t-BuPyOx 210 in this substrate screen, with ligand (S)-4-(tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 64 in order to investigate if the now higher enantioselectivities could be improved further by slight changes to the ligand. These results are also included in Table 39, in addition to yields from the racemic reactions carried out with these substrates for comparison purposes.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Product 201xc</th>
<th>Racemic reaction yield(^{a,b})</th>
<th>Yield(^b) and er with 210</th>
<th>Yield(^b) and er with 64</th>
</tr>
</thead>
</table>
| 1 | ![201bc](image) | 79% | 81%
65:35 | 57%
61:39 |
| 2 | ![201kc](image) | 76% | 71%
62:38 |
| 3 | ![201lc](image) | 79% | 93%
83:17 | 91%
83:17 |
| 4 | ![201dc](image) | 91% | 99%
90:10 | Quant. yield
90:10 |
| 5 | ![201ec](image) | 95% | 98%
78:22 | 90%
80:20 |
<table>
<thead>
<tr>
<th>6</th>
<th></th>
<th>89%</th>
<th>85% 78:22</th>
<th>Purification not possiblec 72:28</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>82%</td>
<td>85% 55:45</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>54%</td>
<td>Purification not possibled 61:39</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>91%</td>
<td>Quant. yield 80:20 99% 80:20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>94%</td>
<td>NYe</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>70%</td>
<td>NYe</td>
<td></td>
</tr>
</tbody>
</table>

Ligand, solvent and catalyst premixed for 1 h at rt. aSee Scheme 102 for reaction conditions. bIsolated yields. cCoelution with starting material. dCoelution with phenol. eVery poor conversion, no product isolated.

Table 39: Enantioselective oxidative Heck reaction substrate screen
A range of substrates were screened bearing aryl, polyaromatic and heterocyclic groups. Enantioselectivity varied depending on the substrate and an increase in enantioselectivity was observed with substrates bearing aryl substituents, as opposed to benzyl groups (Table 39, Entries 3 and 4 cf. Entries 1 and 2) with up to 90:10 enantiomeric ratio obtained (Entry 4). Substrates bearing aryl groups with a range of electron-donating and withdrawing substituents all gave decent enantioselectivities (Entries 5, 6, 8 and 9). However, a substrate bearing a spiro centre induced very little enantioselectivity (55:45 er, Entry 7).

Using the substituted PyOx ligand 64 for selected substrates had various effects depending on the substrate. A very slight increase in the enantiomeric ratio was observed for product 201ec (Entry 5). The enantioselectivity remained unchanged for some substrates (Entries 3, 4 and 9) and a slight decrease was observed for products 201bc and 201ge (Entries 1 and 6).

When substrate 183g was screened with the two different ligands (Entry 6), conversion reduced upon using the substituted PyOx ligand 64 as coelution of the product with starting material upon purification by column chromatography was observed and thus an isolated yield could not be obtained. This problem was not encountered when ligand 210 was used.

Additionally, unfortunately a yield could not be obtained when substrate 183f was screened, again for purification reasons. Coelution with an impurity, possibly the phenol of the boronic acid was observed and thus the product 201fc could not be isolated (Entry 8).

Regrettably, when substrates bearing ester and heterocyclic groups were screened, considerable amounts of starting material were evident and no product could be isolated from the reaction mixture (201cc and 201oc, Entries 10 and 11).

Comparing the yields of the enantioselective reactions to those carried out racemically, yields were generally slightly better or comparable, with a few exceptions where conversions were poorer or where isolation of the product was not possible (Entries 6, 8, 10 and 11).
4.4.4 Enantioselective oxidative Heck reaction – boroxine screen

Next, two different substrates were chosen for the boroxine screen. Firstly, substrate 183l bearing a phenyl substituent was reacted with tris(m-chlorophenyl)boroxine 6l to investigate whether the enantiomeric ratio would be affected by the electronics of the boronic acid (Table 40). An additional portion of catalyst and ligand was added after one day in order to maximise yield (in line with the boroxine screen conditions for the racemic reaction).

![Reaction scheme](https://example.com/scheme)

Table 40: Enantioselective oxidative Heck reaction boroxine screen using substrate 183l

Regrettably, a decrease in enantioselectivity to 56:44 (Table 40, Entry 2) was observed compared to the reaction using tris(p-methoxyphenyl)boroxine (83:17 er, Entry 1). Given this result, it was decided to continue with the boroxine screen using substrate 183l.
183d which had given the highest enantiomeric ratio in the initial substrate screen (90:10 er, Table 39, Entry 4).

An additional part of the screen shown in Table 40 was to carry out a reaction using substrate 183l and 2,2′-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] 214 as a ligand. Whilst BOX ligands such as 214 have been employed in enantioselective oxidative Heck studies reported in the literature,34,36 early optimisation work had indicated that it was not suitable for this work. We thought it prudent to confirm this before proceeding further using PyOx ligands. Our result confirmed that our choice of ligand was the best for these studies as 80% starting material was recovered from the reaction (Scheme 109).

![Scheme 109: Enantioselective oxidative Heck reaction using 2,2′-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] as a ligand](image)

Next, substrate 183d was screened with a number of boroxines with various steric and electronic properties (Table 41). Racemic reactions were also carried out in order to obtain HPLC separation conditions. These results are also included in the table for comparison of yields. With the exception of 2 results (Entries 4 and 7), yields from the enantioselective reactions were higher in comparison to when the racemic conditions were used.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>Racemic reaction yielda</th>
<th>Yieldb and er with 210</th>
<th>Yieldb and er with 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td></td>
<td>91%</td>
<td>99% 90:10</td>
<td>Quant. yield 90:10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>87d%</td>
<td>Quant. yield 79:21</td>
<td>Quant. yield 83:17</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>79%</td>
<td>69% 76:23</td>
<td>85% 94:6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Purification not possiblee</td>
<td>Purification not possiblee</td>
<td></td>
</tr>
</tbody>
</table>
Table 41: Enantioselective oxidative Heck reaction boroxine screen using substrate 183d

Enantioselectivities from the boroxine screen were very promising with enantiomeric ratios of up to 94:6 achieved when tris(p-chlorophenyl) boroxine 6i was used with ligand 64 (Table 41, Entry 3). This was a significant improvement to an enantiomeric ratio of 76:23 which was obtained when the unsubstituted PyOx ligand 210 was used with the same substrate and boroxine combination. Aside from this very good result, various other boroxines with differing steric and electronic properties were well tolerated by the reaction conditions. Promising enantioselectivities were obtained ranging from a moderate enantiomeric ratio of 73:27 (but in excellent quantitative yield) when trisphenyl boroxine was used (Entry 6) to 90:10 using tris(p-methoxyphenyl) boroxine (Entry 1). Unprotected phenols (Entry 2) and amides (Entry 7) were well tolerated and gave good enantiomeric ratios of 83:17 and 80:20 respectively. However, achieving decent yields was a challenge when tris(4-acetamidophenyl) boroxine was used and despite additional catalyst loading, a yield of only 28% of the desired
oxidative Heck product was obtained in the enantioselective reaction even though the yield was very good when the racemic protocol was employed (Entry 7).

Tris(naphthyl)boroxines gave mixed results depending on whether the 1- or 2-substituted analogues were used (Entries 4 and 5). Pleasingly, tris(2-naphthyl)boroxine was well tolerated and yielded 92% of the desired product 201dm and a decent enantiomeric ratio (Entry 5, 74:26 er). Following on from this result it was thought that perhaps using more sterically hindered tris(1-naphthyl)boroxine may induce higher enantioselectivity. However, neither racemic nor enantioenriched products could be isolated pure and chiral HPLC analysis of the impure products also indicated a very low enantioselectivity of 54:46 er.

Additionally during the course of this work the racemic reaction conditions were applied to substrate 183d with phenyl boronic acid pinacol ester (Table 42) to investigate the effect on yield. The reaction proceeded in good yield (78%) with only a slight decrease in yield compared to when the boroxine was used (Table 42, Entry 1, 84% cf. Entry 2, 78%). This result proved to be useful during later work on the synthesis of preussidone (section 4.5).

![Chemical structure](image)

Table 42: Comparison between boronic acids and boronic acid pinacol esters

<table>
<thead>
<tr>
<th>Entry</th>
<th>Arylboron species</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>c</sup></td>
<td>Phenyl boroxine</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Phenyl boronic acid pinacol ester</td>
<td>78</td>
</tr>
</tbody>
</table>

Ligand, solvent and catalyst premixed for 1 h at rt. ^aEquiv. of single aryl group. ^bIsolated yields. ^cTable 41, Entry 6.
Despite those boroxines which gave poorer yields and enantioselectivity in the boroxine screen (Table 41), results are very promising and demonstrate that a successful enantioselective oxidative Heck reaction has been developed with excellent yields and enantioselectivity for a range of substrates and boroxines. This work certainly indicates potential for further investigation in this area.
4.5 Synthesis of preussidone

Following on from the successful development of the enantioselective oxidative Heck reaction between substituted cyclopentenediones and boroxines as detailed above, our attention turned to examining whether our methodology could be applied to the synthesis of the metabolite preussidone (Figure 10).13

![Figure 10: (R)-Preussidone](image)

This natural product has been isolated from the fungus \textit{Preussia typharum} and the absolute stereochemistry (\textit{R}) determined by vibrational and electronic circular dichroism.13 One of the aims of the project was to synthesise preussidone which not only would demonstrate potential application of our methodology, but by comparing the specific rotation of our product and the known literature value, the absolute stereochemistry of our enantioenriched oxidative Heck products could be assigned by analogy.

Firstly, synthesis of the substituted cyclopentenedione substrate \textbf{183i} was carried out (Scheme 110). Employing the same methodology used for the synthesis of many of the other substrates used in this project, the appropriate acetophenone \textbf{206i} and 1,2-bis((trimethylsilyl)oxy)cyclobut-1-ene \textbf{205} were reacted in the presence of Lewis acid BF$_3$·OEt$_2$ to synthesise the substrate precursor \textbf{203i}. Conversion to \textbf{203i} was quite low, most probably due to the unprotected phenol moiety coordinating to BF$_3$·OEt$_2$. Nevertheless, we surmised that it was still preferable to having two additional protection and deprotection steps in the synthesis. Due to coelution of the acetophenone starting material \textbf{206i} with \textbf{203i} on purification by column chromatography, the crude mixture was used for the following oxidation step to synthesise the substrate \textbf{183i}.

237
Next, our attention turned to synthesising the appropriate boronic acid. Using the commercially available pinacol ester 2-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol 215, a known literature method for converting a similar boronic ester to the corresponding boronic acid was applied and the boronic acid 6b' was synthesised (Scheme 111).\(^{37}\) Purification was a challenge and even following column chromatography and recrystallisation, the boronic acid was not 100% pure. However, it was deemed of sufficient purity to use in the oxidative Heck reaction.

Scheme 111: Synthesis of 4-hydroxy-3-methoxy phenyl boronic acid

Having synthesised the boronic acid 6b' and substrate 183i, racemic and enantioselective oxidative Heck reactions were carried out using our previously optimised reaction conditions (Scheme 112).

Scheme 112: Synthesis of preussidone using racemic reaction conditions
Pleasingly, a good isolated yield of 84% was obtained for the racemic reaction to form preussidone 189. Our attention then turned to carrying out the reaction enantioselectively. Given that in the enantioselective oxidative Heck reactions described previously, the substituted PyOx ligand \((S)-4-(\text{tert-Butyl})-2-[4-(\text{trifluoromethyl})\text{pyridin-2-yl}]\text{-4,5-dihydrooxazole} 64\) has often performed better than the unsubstituted ligand, this was chosen for initial reactions (Table 43).

![Chemical structure of preussidone and reaction conditions](image)

| Entry | \(\text{Pd(OAc)}_2\) | Ligand | Temp. | Time | Yield (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(10 \text{ mol%})</td>
<td>(11 \text{ mol%})</td>
<td>(50 ^\circ\text{C})</td>
<td>94 h</td>
<td>21% 80:20</td>
</tr>
<tr>
<td>1</td>
<td>3 portions: (10 + 5 + 5 \text{ mol%}) added at 0, 24, 48 h</td>
<td>3 portions: (11 + 6 + 6 \text{ mol%}) added at 0, 24, 48 h</td>
<td>(50 ^\circ\text{C})</td>
<td>120 h</td>
<td>36% ND</td>
</tr>
<tr>
<td>2</td>
<td>(3 \times 10 \text{ mol%}) added at 0, 30, 54 h</td>
<td>(3 \times 11 \text{ mol%}) added at 0, 30, 54 h</td>
<td>(70 ^\circ\text{C})</td>
<td>120 h</td>
<td>34% ND</td>
</tr>
<tr>
<td>3</td>
<td>(4 \times 5 \text{ mol%}) added at 0, 7, 22, 31 h</td>
<td>(4 \times 6 \text{ mol%}) added at 0, 7, 22, 31 h</td>
<td>(50 ^\circ\text{C})</td>
<td>72 h</td>
<td><58% ND</td>
</tr>
</tbody>
</table>

| Entry | \(\text{Pd(OAc)}_2\) | Ligand | Temp. | Time | Yield (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(4 \times 5 \text{ mol%}) added at 0, 7, 22, 31 h</td>
<td>(4 \times 6 \text{ mol%}) added at 0, 7, 22, 31 h</td>
<td>(50 ^\circ\text{C})</td>
<td>72 h</td>
<td><58% ND</td>
</tr>
</tbody>
</table>

Ligand, solvent and catalyst premixed for 1 h at rt. *Isolated yields.

Table 43: Synthesis of preussidone with tris(4-hydroxy-3-methoxyphenyl)boroxine

Using the previously optimised enantioselective reaction conditions (Table 39) regrettably gave poor yield of the desired product 189 (21%) albeit the enantioselectivity was moderately good (80:20 er). In an attempt to increase yield, the catalyst loading was increased to \(10 + 5 + 5 \text{ mol\%}\) added over a period of two days, and...
the reaction left for a further three days to maximise conversion. This unfortunately did not increase yield considerably (36%, Entry 2) and therefore the enantiomeric ratio was not obtained. Next, an increase in catalyst and ligand loading to 3 × 10 mol% and 3 × 11 mol% respectively in addition to an increase in the reaction temperature to 70 °C was tried in an attempt to boost yield. Surprisingly, a slight decrease in yield was observed (34%, Entry 3). Given that neither a higher catalyst loading nor an increase in temperature seemed to increase yield, the original optimised reaction temperature of 50 °C was used for the next reaction, coupled with 4 × 5 mol% catalyst and 4 × 6 mol% ligand added over a period of 2 days, and the reaction mixture then left for a further 24 hours (Entry 4). Although the isolated product was not particularly pure, the yield was significantly higher than previous reactions.

Given that the enantioselective synthesis of preussidone had up to this point been hampered by poor yields, we decided that it would be worth including the pinacol ester as a coupling partner in our studies. Although pinacol esters are known to be less reactive than their boronic acid counterparts, and yields using pinacol esters in this work were lower than when the corresponding boronic acid was used (Table 42, Entry 2), using commercially available reagents in our synthesis rather than synthesising the boronic acid would certainly be more advantageous. Results using the pinacol ester as the boron coupling partner are shown in Table 44.
Table 44: Synthesis of Preussidone using pinacol ester 2-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol

Firstly, the reaction conditions which had given the highest yield when the boronic acid was used (<58%, Table 43, Entry 4) were applied to the oxidative Heck reaction using the pinacol ester (Table 44, Entry 1). Surprisingly, given the reduced reactivity of pinacol esters, the yield improved considerably to 69% and a good enantiomeric ratio was obtained also (84:16). This improved yield may possibly be due to difficulties experienced in purification of the boronic acid and simply using a boron coupling partner of higher purity had a positive effect on overall conversion.
In order to attempt to improve the yield further, a number of other reaction conditions were investigated including the optimised enantioselective oxidative Heck conditions (10 mol% catalyst and 11 mol% ligand, Entry 2). The yield unfortunately reduced considerably indicating that portionwise addition of catalyst and ligand was more suited to this reaction. Therefore, we also investigated reducing the catalyst loading to 3 × 5 mol% catalyst and 3 × 6 mol% ligand over 3 days and used both the substituted and unsubstituted PyOx ligands (64 and 210, Entries 3 and 4 respectively) to compare to one another and examine the effect on enantioselectivity and yield. Although no considerable improvement was observed to the enantiomeric ratio in either reaction, pleasingly the yield improved and a good yield of 79% was obtained with the substituted PyOx ligand 64 and an enantiomeric ratio of 85:15 (Entry 3).

Preussidone - determining the absolute stereochemistry

As previously mentioned, the absolute stereochemistry of preussidone was determined as \((R)\) by vibrational and electronic circular dichroism.\(^{13}\) Therefore by comparison of the \([\alpha]_D\) value quoted in the literature and that of our synthesised product, by analogy, this would allow the absolute stereochemistry of the products synthesised by the enantioselective oxidative Heck protocol to be assigned. Given that the specific rotation of preussidone is negative and comparing this to the positive value obtained for the specific rotation of preussidone formed synthetically by our methodology, this indicates that the absolute stereochemistry of product 189 is \((S)\) (Figure 10). Thereby by analogy we can assume that the enantioenriched products synthesised over the course of this project are also of \((S)\) configuration.

![Figure 10: (S)-Preussidone](image-url)
4.6 Reaction mechanism and inducing enantioselectivity

The mechanism for both the racemic and enantioselective reactions is likely to follow a classical oxidative Heck mechanism (Scheme 113).

![Oxidative Heck reaction mechanism](image)

Scheme 113: Oxidative Heck reaction mechanism

The mechanism commences with transmetallation of the aryl boroxine onto the palladium species 216. This step is followed by migratory insertion of the substrate onto 217 to form I. Epimerisation of this intermediate then occurs, most likely via the enolate II, to form III. This epimerisation allows syn β-hydride elimination to occur to form the product 201. The catalyst is then regenerated via reductive elimination of AcOH from 218, followed by oxidation of 219 to regenerate Pd(II).

In order to rationalise the stereochemistry of the products of the enantioselective oxidative Heck mechanism, current literature can provide valuable insight into the factors affecting selectivity. Stoltz and co-workers have carried out extensive mechanistic studies into palladium-catalysed enantioselective conjugate addition of aryl boronic acids to β-substituted cyclic enones, specifically using chiral pyridinooxazoline (PyOx) ligands. Despite the obvious mechanistic differences with our oxidative Heck work, the rationale explaining the stereoselectivity observed (induced during the migratory insertion step) can also be applied to our studies.

The migratory insertion step of the oxidative Heck mechanism also determines the stereoselectivity of the product. Possible transition states for this step need to be
examined in order to provide a justification for the stereochemistry observed (Figure 11). The transition states are four-membered of square planar geometry incorporating the chiral ligand, aryl group from the boronic acid and the alkene substrate.

The transition states are determined by two factors: whether the aryl group of the boronic acid transmetallates trans or cis to the chiral oxazoline component of the ligand, and the orientation of the substrate on commencing the migratory insertion step.

![Possible transition states for the migratory insertion step](image)

Figure 11: Possible transition states for the migratory insertion step

In addition to the four transition states shown above, a further four are theoretically possible with the alkene approaching the palladium complex facing the opposite way to that indicated resulting in the aryl substituent of the substrate being on the same side as the palladium complex. This would inevitably lead to further steric repulsions and would therefore likely be less favourable than the alkene orientations illustrated in Figure 11.

Of the four transitions states shown, two (TS-A and TS-D) lead to (S) geometry which is observed from our experimental work. Considering steric repulsions between the various components of the transition state, namely the tert-butyl group on the oxazoline ring, aryl group from the boronic acid and the substituents on the substrate, it would appear that the configuration of TS-A leads to the least steric repulsion of the four possibilities and thus is most likely to be lowest in energy and the transition state through which the mechanism occurs. Further computational studies would obviously be necessary to confirm this hypothesis.
4.7 Conclusions

We have successfully demonstrated that an oxidative Heck reaction can be performed on challenging cyclopentenedione substrates 183 with aryl boronic acids 6 in good yields. A range of substrates and boronic acid coupling partners bearing a wide variety of functional groups are tolerated (Scheme 114).

![Scheme 114: Enantioselective oxidative Heck reaction on substituted cyclopentenedione substrates with aryl boroxines](image)

Additionally, we have also developed an enantioselective oxidative Heck protocol which we have applied to various substrate and boronic acid combinations to obtain up to quantitative yield and 94:6 enantiomeric ratio (Scheme 115).

![Scheme 115: Enantioselective oxidative Heck reaction on substituted cyclopentenedione substrates with aryl boroxines](image)

We have also achieved the third aim of the project by applying our methodology to the synthesis of the (+)-preussidone 189 and by comparison with literature data, we have assigned absolute stereochemistry to our enantioenriched oxidative Heck products (Scheme 116).
Further work in this area could focus on the enantioselective oxidative Heck reaction in order to increase enantioselectivity given the very promising results we have obtained in our studies so far. Expanding the library of possible substrates to cyclopentenediones bearing two alkyl groups at the 2 position could also be examined in future studies. Additionally, mechanistic studies would also be helpful in order to examine more closely the factors affecting the stereoselectivity in the enantioselective oxidative Heck reaction.
4.8 Experimental Section
General Experimental Section

\(^1\)H NMR spectra were recorded on Bruker AV 300 and AV 400 spectrometers at 300 and 400 MHz respectively and referenced to residual solvent. \(^1\)\(^3\)C NMR spectra were recorded using the same spectrometers at 75 and 100 MHz respectively. Chemical shifts (\(\delta\) in ppm) were referenced to tetramethylsilane (TMS) or to residual solvent peaks (CDCl\(_3\) at \(\delta_H\) 7.26 ppm, \(\delta_C\) at 77.00 ppm, (CD\(_3\))\(_2\)CO at \(\delta_H\) 2.05 ppm, \(\delta_C\) at 29.84 ppm or C\(_6\)D\(_6\) at \(\delta_H\) 7.16 ppm, \(\delta_C\) at 128.06 ppm). \(J\) values are given in Hz and s, d, dd, t, q, qn and m abbreviations correspond to singlet, doublet, doublet of doublet, triplet, quartet, quintet and multiplet. Mass spectra were obtained at the EPSRC UK National Mass Spectrometry Facility at Swansea University. Infrared spectra were obtained on Perkin-Elmer Spectrum 100 FT-IR Universal ATR Sampling Accessory, deposited neat or as a chloroform solution to a diamond/ZnSe plate. Flash column chromatography was carried out using Matrix silica gel 60 from Fisher Chemicals and TLC was performed using Merck silica gel 60 F254 pre-coated sheets and visualised by UV (254 nm) or stained by the use of aqueous acidic KMnO\(_4\) or aqueous acidic ceric ammonium molybdate as appropriate. Enantiomer separation was achieved by chiral stationary phase HPLC with an Agilent Technologies 1120 Compact LC with either CHIRALPAK IA or IB column as appropriate. Alternatively, where specified, enantiomeric ratios were calculated using chiral shift reagent (S)-(+)1-(9-anthryl)-2,2,2-trifluoroethanol, purchased from Sigma-Aldrich. Optical rotation was measured on a Bellingham and Stanley ADP410 polarimeter. Petrol ether refers to petroleum ether (40–60 °C). Anhydrous DMF and DMA were purchased from Sigma-Aldrich and Fluorochem respectively and used without further purification. All arylboronic acids were purchased from Sigma-Aldrich, Fluorochem or Acros, and better results are achieved if they are heated under vacuum with a heat gun prior to the oxidative Heck reaction. The oxidative Heck reactions were carried out in dried glassware, using anhydrous DMF and Pd(OAc)_2 from Johnson Matthey.
Synthesis of 2,2-Disubstituted Cyclopentene-1,3-dione Starting Materials:

Methyl 2-(1-methyl-2,5-dioxocyclopentyl)acetate

To a suspension of 2-methylcyclopentane-1,3-dione 202 (5.00 g, 44.6 mmol, 1 equiv.) and TBAI (8.20 g, 43.4 mmol, 0.1 equiv.) in anhydrous CH$_3$CN (233 mL), DBU (7.7 mL, 51.6 mmol, 1.2 equiv.) was added dropwise at 0 °C. After the solution was warmed to room temperature, methylbromoacetate 204 (6.8 mL, 71.4 mmol, 1.6 equiv.) was added and the reaction was refluxed for 40 h. The reaction was quenched with H$_2$O. The aqueous layer was washed with EtOAc until the organic layer was colourless. The combined organic layers were dried over MgSO$_4$ before the solvent was removed with reduced pressure. The resulting residue was purified by silica gel column chromatography (petrol ether/EtOAc, 10:1→1.5:1) to obtain methyl 2-(1-methyl-2,5-dioxocyclopentyl)acetate 203c (1.82 g, 9.88 mmol, 22%) as a yellow crystalline solid.

Data provided by C. Lamb: M.p. 94 – 96 °C; R$_f$ = 0.2 (3:1 petrol ether:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 3.55 (s, 3H, OCH$_3$), 2.89 (s, 2H, CH$_2$), 2.83 (s, 4H, CH$_2$CH$_2$), 1.04 (s, 3H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$): δ = 215.9 (C), 171.9 (C), 52.7 (C), 52.2 (CH$_3$), 39.8 (CH$_2$), 34.6 (CH$_2$), 19.8 (CH$_3$); ν_{max}/cm$^{-1}$ 2958, 1762, 1712, 1408, 1398, 1213, 1153, 1075, 997, 799.

Methyl 2-(1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate

To a flask containing CuBr$_2$ (3.19 g, 14.3 mmol, 2.2 equiv.), methyl 2-(1-methyl-2,5-dioxocyclopentyl)acetate 203c (1.20 g, 6.52 mmol, 1 equiv.) dissolved in anhydrous MeOH (46 mL) was added. The reaction was left to reflux for 18 h. The reaction was quenched with H$_2$O and acidified with HCl (2 mL, 1M). The aqueous layer was extracted with Et$_2$O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO$_4$ before solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (petrol ether/EtOAc, 15:1→5:1) to obtain methyl 2-(1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate 183c (0.980 g, 5.83 mmol, 83%) as a yellow crystalline solid.

Data provided by C. Lamb: M.p. 73-74 °C; R$_f$ = 0.5 (3:1 petrol ether:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.27 (s, 2H, HC=CH), 3.55 (s, 3H, CH$_3$), 2.86 (s, 2H, CH$_2$),
1.14 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 205.7 (C), 170.8 (C), 147.5 (CH), 52.0 (CH₃), 47.7 (C), 37.4 (CH₂), 20.5 (CH₃); ν\text{max}/ cm⁻¹ 3070 w, 2955 w, 1729 str, 1698 ν str, 1442 m, 1403 w, 1355 str, 1207 ν str, 1187 ν str, 1006 m, 862 m, 701m.

2-Methyl-2-(naphthalen-2-yl)cyclopentane-1,3-dione (203d)¹⁶

2'-Acetonaphthone (2.46 g, 0.0145 mol, 1 equiv.) and 1,2-bis(trimethylsiloxy)cyclobutene 205 (5.6 mL, 0.0218 mol, 1.5 equiv.) were added to dichloromethane (37 mL), followed by BF₃·OEt₂ (2.7 mL, 0.0219 mol, 1.5 equiv.) at 0 °C. The solution was warmed to room temperature and stirred for 20 h under an inert atmosphere. Water (10 mL) was added and the reaction left to stir for 50 min. The organic layer was separated and the aqueous layer was washed with dichloromethane (3 × 30 mL). The combined organic layer was washed with brine, dried over MgSO₄ and the solvent evaporated in vacuo. The residue was purified by silica gel column chromatography (10:1 hexane:EtOAc) to yield 2-methyl-2-(naphthalen-2-yl)cyclopentane-1,3-dione¹⁶ 203d as a yellow oil (1.98 g, 0.00830 mol, 57%).

R_f = 0.27 (2:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.87 – 7.73 (m, 3H, Ar-H), 7.63 (d, J = 2.3 Hz, 1H, Ar-H), 7.51 – 7.43 (m, 2H, Ar-H), 7.38 (dd, J = 8.7, 2.0 Hz, 1H, Ar-H), 3.03 – 2.61 (m, 4H, CH₂), 1.52 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 212.9 (C), 134.2 (C), 133.2 (C), 132.5 (C), 129.2 (CH), 127.9 (CH), 127.4 (CH), 126.53 (CH), 126.47 (CH), 125.5 (CH), 123.6 (CH), 62.0 (C), 35.2 (CH₂), 19.7 (CH₃); HRMS (APCI) m/z calc. for C₁₆H₁₅O₂: 239.1067 [M+H]+; found: 239.1064.
2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione (183d)16

2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione \textbf{203d} (1.04 g, 4.37 mmol, 1 equiv.) was added to anhydrous MeOH (34 mL) followed by \textbf{CuBr\textsubscript{2}} (2.17 g, 9.71 mmol, 2.2 equiv.). The resulting reaction mixture was refluxed for 2 h before being quenched with cold H\textsubscript{2}O and 1 M HCl. Et\textsubscript{2}O was added to the solution and the layers separated. The aqueous layer was washed with Et\textsubscript{2}O (4 × 30 mL) and the combined organic layers were washed with brine (15 mL) and dried over MgSO\textsubscript{4} and the solvent removed \textit{in vacuo}. The resulting residue was purified by silica gel column chromatography (10:1 → 5:1 hexane:EtOAc) to give 2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione \textbf{183d} as a yellow solid (791.5 mg, 3.35 mmol, 77%).

M. p. 97-98 °C; \textit{R\textsubscript{f}} = 0.27 (2:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl\textsubscript{3}): δ = 7.85 – 7.77 (3 H, m, Ar-H), 7.73 (1 H, d, \textit{J} = 1.8 Hz, Ar-H), 7.53 – 7.41 (3 H, m, Ar-H), 7.39 (2 H, s, =CH), 1.68 (3 H, s, CH\textsubscript{3}); 13C NMR (101 MHz, CDCl\textsubscript{3}): δ = 204.8 (C), 148.3 (CH), 134.1 (C), 133.2 (C), 132.5 (C), 128.7 (CH), 128.1 (CH), 127.5 (CH), 126.4 (2 × CH), 125.7 (CH), 124.0 (CH), 54.7 (C), 19.8 (CH\textsubscript{3}); HRMS (APCI) \textit{m/z} calc. for C\textsubscript{16}H\textsubscript{13}O\textsubscript{2}: 237.0910 [M+H]+; found: 237.0909.

2-(4-Chlorophenyl)-2-methylcyclopentane-1,3-dione (203e)

4'-Chloroacetoephene (0.310 g, 2.00 mmol, 1 equiv.) and 1,2-bis(trimethylsiloxy)cyclobutene \textbf{205} (0.77 mL, 3.00 mmol, 1.5 equiv.) were added to dichloromethane (5.1 mL), followed by BF\textsubscript{3}·OEt\textsubscript{2} (0.37 mL, 3.00 mmol, 1.5 equiv.) at 0 °C. The solution was warmed to room temperature and stirred for 16 h under an inert atmosphere. Water (10 mL) was added and the reaction left to stir for 30 min. The organic layer was separated and the aqueous layer was washed with dichloromethane (3 × 15 mL). The combined organic layer was washed with brine, dried over MgSO\textsubscript{4} and the solvent evaporated \textit{in vacuo}. The residue was purified by silica gel column chromatography (10:1 hexane:EtOAc) to yield 2-(4-chlorophenyl)-2-methylcyclopentane-1,3-dione \textbf{203e} as a colourless oil, (0.1994 g, 0.90 mmol, 45%).

\textit{R\textsubscript{f}} = 0.48 (2:1 hexane:EtOAc); 1H NMR (400 MHz, CDCl\textsubscript{3}): δ = 7.31 (d, \textit{J} = 8.8 Hz, 2H, Ar-H), 7.16 (d, \textit{J} = 8.8 Hz, 2H, Ar-H), 3.11 – 2.58 (m, 4H, H\textsubscript{2}C-CH\textsubscript{2}), 1.42 (s, 3H,
CH₃; \(^{13}\)C NMR (101 MHz, CDCl₃): \(\delta = 212.7\) (C), 135.3 (C), 134.2 (C), 129.4 (CH), 127.8 (CH), 61.0 (C), 35.2 (CH₂), 20.1 (CH₃); \(v_{\text{max}}/\text{cm}^{-1}\) 2976 w, 2930 w, 1765 w, 1721 v str, 1491 str, 1260 m, 1095 str, 1013 str, 990 m, 828 str; HRMS (APCI) \(m/z\) calc. For C₁₂H₁₂O₂Cl: 223.0520 \([\text{M}+\text{H}]^+\); found: 223.0520.

2-(4-Chlorophenyl)-2-methylcyclopent-4-ene-1,3-dione (183e)

![Structure of 183e](image)

2-(4-Chlorophenyl)-2-methylcyclopent-1,3-dione (203e) (188.5 mg, 0.846 mmol, 1 equiv.) was added to a solution of CuBr₂ (420.8 mg, 1.88 mmol, 2.2 equiv.) in anhydrous MeOH (7 mL). The resulting reaction mixture was refluxed for 3 h before being quenched with cold H₂O and 1 M HCl. Et₂O was added to the solution. The aqueous layer was washed with Et₂O until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried over Na₂SO₄ before solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/EtOAc, 7:1→5:1) to yield 2-(4-chlorophenyl)-2-methylcyclopent-4-ene-1,3-dione 183e (107.4 mg, 0.487 mmol, 58%) as a yellow oil.

Rₜ = 0.13 (2:1 hexane/EtOAc); \(^{1}H\) NMR (400 MHz, CDCl₃): \(\delta = 7.34\) (s, 2H, alkene-H), 7.31 – 7.27 (m, 2H, Ar-H), 7.25 – 7.21 (m, 2H, Ar-H), 1.54 (s, 3H, CH₃); \(^{13}\)C NMR (101 MHz, CDCl₃): \(\delta = 204.5\) (C), 148.3 (CH), 135.2 (C), 133.9 (C), 129.0 (CH), 127.9 (CH), 53.8 (C), 20.1 (CH₃); \(v_{\text{max}}/\text{cm}^{-1}\) 3072 w, 2973 w, 1699 v str, 1492 str, 1095 m, 1012 str, 833 m, 805 m, 728 m; HRMS (APCI) \(m/z\) calc. For C₁₂H₁₀O₂Cl: 221.0364 \([\text{M}+\text{H}]^+\); found: 221.0365.

2-Methyl-2-(o-tolyl)cyclopentane-1,3-dione (203f)

![Structure of 203f](image)

2'-Methylacetophenone (267 mg, 1.99 mmol, 1 equiv.) and BF₃·OEt₂ (0.51 mL, 4.13 mmol, 2.0 equiv.) were added to dichloromethane (20 mL) at –78 °C and the solution stirred for 30 min. 1,2-Bis(trimethylsiloxy)cyclobutene 205 (0.91 mL, 3.54 mmol, 1.8 equiv.) was added and the solution was warmed to room temperature and stirred for 18 h under an inert atmosphere. Additional portions of 1,2-bis(trimethylsiloxy)cyclobutene 205 (0.51 mL, 1.99 mmol, 1.0 equiv.) and BF₃·OEt₂ (0.26 mL, 2.11 mmol, 1.1 equiv.) were
added at −78 °C and the solution allowed to warm to room temperature and stirred for a further 4 h. Water (10 mL) and BF₃·OEt₂ (0.5 mL) were added. Followed by Na₂CO₃ (10 mL) and CHCl₃ (10 mL). The organic layers were separated and the aqueous layer was washed with CHCl₃ (3 × 20 mL). The combined organic layers were washed with brine, dried over MgSO₄ and the solvent evaporated in vacuo. The residue was purified by silica gel column chromatography (10:1→2:1 hexane:EtOAc) to yield 2-methyl-2-\((o\text{-tolyl})\)cyclopentane-1,3-dione 203f as a colourless amorphous solid (144.6 mg, 0.715 mmol, 36%).

White solid; Decomposes at 136 °C; R_f = 0.14 (2:1 hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃): δ = 7.37 – 7.30 (m, 1H, Ar-H), 7.29 – 7.21 (m, 2H, Ar-H), 7.19 – 7.14 (m, 1H, Ar-H), 3.23 – 2.87 (m, 4H, H₂C-CH₂), 1.95 (s, 3H, CH₃), 1.62 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 213.9 (C), 135.6 (C), 135.1 (C), 131.3 (CH), 128.3 (CH), 128.2 (CH), 126.4 (CH), 62.8 (C), 34.9 (CH₂), 21.6 (CH₃), 20.3 (CH₃); ν_max/ cm⁻¹ 3024 w, 2926 w, 1715 v str, 1464 m, 1413 w, 1271 w, 1162 w, 1062 m, 1039 m, 999 w, 744 v str, 717 m; HRMS (NSI) m/z calc. For C₁₃H₁₈O₂N: 220.1332 [M+NH₄]⁺; found: 220.1333.

2-Methyl-2-\((o\text{-tolyl})\)cyclopent-4-ene-1,3-dione (183f)

2-Methyl-2-\((o\text{-tolyl})\)cyclopentane-1,3-dione 203f (144.6 mg, 0.715 mmol, 1 equiv.) was added to a solution of CuBr₂ (355.5 mg, 1.592 mmol, 2.2 equiv.) in anhydrous MeOH (8 mL). The resulting reaction mixture was refluxed for 1 h before being quenched with cold H₂O and 1 M HCl. Et₂O was added to the solution. The aqueous layer was washed with Et₂O until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried over MgSO₄ before solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/EtOAc, 5:1) to yield 2-methyl-2-\((o\text{-tolyl})\)cyclopent-4-ene-1,3-dione 183f (112.4 mg, 0.5614 mmol, 79%) as a yellow oil.

Yellow crystalline solid; M pt. 71–73 °C; R_f = 0.65 (1:1 hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (dd, J = 7.7, 1.6 Hz, 1H, Ar-H), 7.31 (s, 2H, alkene-H), 7.30 – 7.19 (m, 2H, Ar-H), 7.11 – 7.06 (m, 1H, Ar-H), 2.01 (s, 3H, CH₃), 1.67 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 206.2 (C), 146.3 (CH), 135.9 (C), 134.1 (C), 131.5 252
(CH), 128.9 (CH), 128.3 (CH), 126.5 (CH), 56.3 (C), 22.0 (CH), 21.7 (CH); ν \text{max} / \text{cm}^{-1}
3082 w, 2969 w, 1698 v str, 1457 m, 1316 w, 1267 m, 1182 m, 1035 m, 850 m, 772 m, 760 v str; HRMS (NSI) m/z calc. For C_{13}H_{16}O_{2}N: 218.1176 [M+NH_{4}]^{+}; found: 218.1177.

2-(2-Methoxyphenyl)-2-methylcyclopentane-1,3-dione (203g)

2'-Methoxyacetophenone (310 mg, 2.03 mmol, 1 equiv.) and BF_{3}·OEt_{2} (0.51 mL, 4.13 mmol, 2.0 equiv.) were added to dichloromethane (20 mL) at −78 °C and the solution stirred for 30 min. 1,2-Bis(trimethylsiloxy)cyclobutene 205 (0.91 mL, 3.54 mmol, 1.8 equiv.) was added and the solution was warmed to room temperature and stirred for 18 h under an inert atmosphere. Additional portions of 1,2-bis(trimethylsiloxy)cyclobutene 205 (0.51 mL, 1.99 mmol, 1.0 equiv.) and BF_{3}·OEt_{2} (0.26 mL, 2.11 mmol, 1.1 equiv.) were added at −78 °C and the solution allowed to warm to room temperature and stirred for a further 5 h. Water (10 mL) was added and the reaction left to stir for 1 h. The organic layers were separated and the aqueous layer was washed with dichloromethane (3 × 20 mL). The combined organic layers were washed with brine, dried over MgSO_{4} and the solvent evaporated in vacuo. The residue was purified by silica gel column chromatography (10:1→2:1 hexane:EtOAc) to yield 2-(2-methoxyphenyl)-2-methylcyclopentane-1,3-dione 203g as a colourless amorphous solid (148.5 mg, 0.680 mmol, 34%).

R_{f} = 0.35 (2:1 hexane/EtOAc); \text{^1H NMR (400 MHz, CDCl}_{3}): \delta = 7.33 (dd, J = 7.6, 1.6 Hz, 1H, Ar-H), 7.30 (ddd, J = 8.1, 7.6, 1.6 Hz, 1H, Ar-H), 7.04 (td, J = 7.6, 1.1 Hz, 1H, Ar-H), 6.81 (dd, J = 8.1, 1.1 Hz, 1H, Ar-H), 3.70 (s, 3H, OCH_{3}), 3.04 – 2.84 (m, 4H, H_{2}C-CH_{2}), 1.49 (s, 3H, CH_{3}); \text{13C NMR (101 MHz, CDCl}_{3}): \delta = 215.3 (C), 154.6 (C), 129.3 (CH), 128.1 (CH), 127.8 (C), 121.5 (CH), 110.7 (CH), 57.8 (C), 55.2 (CH_{3}), 35.0 (CH_{2}), 17.7 (CH_{3}); ν \text{max/cm}^{-1} 2941 w, 1714 v str, 1490 str, 1459 str, 1259 v str, 1243 v str, 1188 m, 1021, str, 761 v str; HRMS (APCI) m/z calc. For C_{13}H_{15}O_{3}: 219.1016 [M+H]^{+}; found: 219.1017.
2-(2-Methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione (183g)

2-(2-Methoxyphenyl)-2-methylcyclopentane-1,3-dione (203g) (143.0 mg, 0.655 mmol, 1 equiv.) was added to a solution of CuBr\(_2\) (324.8 mg, 1.454 mmol, 2.2 equiv.) in anhydrous MeOH (7 mL). The resulting reaction mixture was refluxed for 16 h before being quenched with cold H\(_2\)O and 1 M HCl. Et\(_2\)O was added to the solution. The aqueous layer was washed with Et\(_2\)O until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried over Na\(_2\)SO\(_4\) before solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/EtOAc, 7:1→5:1) to yield 2-(2-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 183g (112.7 mg, 0.5212 mmol, 80%) as a yellow solid. M.p. 105-107 °C; R\(_f\) = 0.25 (2:1 hexane/EtOAc); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.38\) (dd, \(J = 7.6, 1.6\) Hz, 1H, Ar-H), 7.29 (ddd, \(J = 8.2, 7.6, 1.6\) Hz, 1H, Ar-H), 7.20 (s, 2H, alkene-H), 7.03 (td, \(J = 7.6, 1.2\) Hz, 1H, Ar-H), 6.76 (dd, \(J = 8.2, 1.2\) Hz, 1H, Ar-H), 3.58 (s, 3H, OCH\(_3\)), 1.55 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 206.7\) (C), 156.0 (C), 145.0 (CH), 129.5 (CH), 129.1 (CH), 125.4 (C), 121.4 (CH), 110.7 (CH), 55.0 (CH\(_3\)), 53.3 (C), 18.9 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2972 w, 1697 v str, 1493 m, 1457 m, 1264 m, 1245 m, 1036 str, 1017 m, 845 m, 746 v str; HRMS (NSI) \(m/z\) calc. For C\(_{13}\)H\(_{13}\)O\(_3\): 217.0859 [M+H]\(^+\); found: 217.0862.

2-(3,4-Dimethylphenyl)-2-methylcyclopentane-1,3-dione (203h)

3',4'-Dimethylacetophenone (1.00 g, 6.75 mmol, 1 equiv.) was added to dichloromethane (70 mL) at \(-78\) °C followed by BF\(_3\)-OEt\(_2\) (1.66 mL, 13.46 mmol, 2.0 equiv.) and the solution stirred for 30 min. 1,2-Bis(trimethylsiloxy)cyclobutene 205 (3.12 mL, 12.15 mmol, 1.8 equiv.) was then added, the solution was warmed to room temperature and stirred for 18 h under an inert atmosphere. BF\(_3\)-OEt\(_2\) (2 mL) was added followed by Na\(_2\)CO\(_3\) (20 mL), water (20 mL) and chloroform (20 mL). The organic layer was separated and the aqueous layer was washed with chloroform (3 × 25 mL). The combined organic layers were washed with brine, dried over MgSO\(_4\) and the solvent evaporated \textit{in vacuo}. The residue was purified by silica gel column chromatography (10:1 hexane:EtOAc) to yield
2-(3,4-dimethylphenyl)-2-methylcyclopentane-1,3-dione **203h** (982 mg, 4.54 mmol, 67%).

M.p. 70-72 °C; Rf = 0.24 (2:1 hexane/EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ = 7.09 (d, J = 7.9 Hz, 1H, Ar-H), 6.97 – 6.87 (m, 2H, Ar-H), 3.03 – 2.58 (m, 4H, H\(_2\)C-CH\(_2\)), 2.22 (s, 3H, CH\(_3\)), 2.21 (s, 3H, CH\(_3\)), 1.39 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): δ = 213.1 (C), 137.7 (C), 136.6 (C), 134.3 (C), 130.4 (CH), 127.3 (CH), 123.6 (CH), 61.9 (C), 35.2 (CH\(_2\)), 19.8 (CH\(_3\)), 19.5 (CH\(_3\)), 19.2 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2977 w, 2931 w, 1759 m, 1716 v str, 1608 m, 1500 m, 1447 m, 1417 w, 1403 m, 1330 w, 1267 m, 1120 m, 1076 str, 1022 str, 991 str, 818 str, 715 m; HRMS (APCI) m/z calc. For C\(_{14}\)H\(_{17}\)O\(_2\): 217.1223 [M+H]\(^+\); found: 217.1223.

2-(3,4-Dimethylphenyl)-2-methylcyclopent-4-ene-1,3-dione (183h)

![Structural formula of 2-(3,4-Dimethylphenyl)-2-methylcyclopent-4-ene-1,3-dione](structure.png)

2-(3,4-Dimethylphenyl)-2-methylcyclopentane-1,3-dione **203h** (982.2 mg, 4.541 mmol, 1 equiv.) was added to a solution of CuBr\(_2\) (2.26 g, 10.12 mmol, 2.2 equiv.) in anhydrous MeOH (51 mL). The resulting reaction mixture was refluxed for 1 h before being quenched with cold H\(_2\)O and 1 M HCl. Et\(_2\)O was added to the solution. The aqueous layer was washed with Et\(_2\)O until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried over MgSO\(_4\) before solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/EtOAc 10:1) to yield 2-(3,4-dimethylphenyl)-2-methylcyclopent-4-ene-1,3-dione **183h** (728.1 mg, 3.398 mmol, 75%) as a yellow crystalline solid.

M.p. 73-74 °C; Rf = 0.32 (2:1 hexane/EtOAc); \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ = 7.33 (s, 2H, alkene-H), 7.08 (d, J = 7.7 Hz, 1H, Ar-H), 7.04 – 6.96 (m, 2H, Ar-H), 2.22 (s, 3H, CH\(_3\)), 2.21 (s, 3H, CH\(_3\)), 1.55 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): δ = 205.2 (C), 148.3 (CH), 137.1 (C), 136.3 (C), 134.2 (C), 130.0 (CH), 127.5 (CH), 123.7 (CH), 54.3 (C), 19.9 (CH\(_3\)), 19.4 (CH\(_3\)), 19.3 (CH\(_3\)); \(\nu_{\text{max}}/\text{cm}^{-1}\) 3058 w, 2973 w, 2931 w, 1704 w, 1697 v str, 1608 w, 1503 w, 1444 w, 1330 w, 1253 m, 1047 m, 874 str, 815 m, 711 w; HRMS (APCI) m/z calc. For C\(_{14}\)H\(_{18}\)O\(_2\)N: 232.1332 [M+NH\(_4\)]\(^+\); found: 232.1327.
2-(4-Hydroxy-3-methoxyphenyl)-2-methylcyclopentane-1,3-dione (203i)

4’-Hydroxy-3’-methoxyacetophenone (1.0044 g, 6.044 mmol, 1 equiv.), was added to dichloromethane (60 mL) at –78 °C followed by BF$_3$·OEt$_2$ (1.85 mL, 15.00 mmol, 2.5 equiv.) and the solution stirred for 30 min. 1,2-Bis(trimethylsiloxy)cyclobutene 205 (2.79 mL, 10.9 mmol, 1.8 equiv.) was then added, the solution was warmed to room temperature and stirred for 16 h under an inert atmosphere. BF$_3$·OEt$_2$ (1.5 mL) was added followed by Na$_2$CO$_3$ (20 mL), water (20 mL) and chloroform (20 mL). The organic layer was separated and the aqueous layer was washed with chloroform (3 × 20 mL). The combined organic layers were washed with brine, dried over MgSO$_4$ and the solvent evaporated in vacuo. The residue was purified by silica gel column chromatography (5:1→1:1 hexane:EtOAc). Pure product 203i could not be purified due to coelution with 4’-hydroxy-3’-methoxyacetophenone. Therefore the mixture was used for the following step to synthesise 2-(4-hydroxy-3-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 183i.

2-(4-Hydroxy-3-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione (183i)

A crude mixture of 2-(4-hydroxy-3-methoxyphenyl)-2-methylcyclopentane-1,3-dione 203i from the previous step (0.455 g, 1.94 mmol, 1 equiv.) was added to a solution of CuBr$_2$ (0.964 g, 4.32 mmol, 2.2 equiv.) in anhydrous MeOH (22 mL). The resulting reaction mixture was refluxed for 16 h before being quenched with cold H$_2$O and 1 M HCl. Et$_2$O was added to the solution. The aqueous layer was washed with Et$_2$O until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried over MgSO$_4$, filtered and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/EtOAc, 5:1→3:1) followed by recrystallisation to yield 2-(4-hydroxy-3-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 183i (98.5 mg, 0.424 mmol, 13% over two steps) as a yellow crystalline solid.

M.p. 131-132 °C; R$_f$ = 0.22 (1:1 hexane/EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.32 (s, 2H, alkene-H), 6.87 – 6.81 (m, 2H, Ar-H), 6.74 (dd, δ = 8.4, 2.1 Hz, 1H, Ar-H), 5.57 (s, 1H, OH), 3.88 (s, 3H, CH$_3$), 1.54 (s, 3H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$): δ =
205.1 (C), 148.1 (CH), 146.7 (C), 145.3 (C), 128.5 (C), 119.4 (CH), 114.5 (CH), 109.0 (CH), 55.9 (CH₂), 20.1 (CH₃); ν\textsubscript{max}/cm-1 3320 br str, 2941 w, 1693 v str, 1598 w, 1516 v str, 1257 v str, 1240 v str, 1135 str, 1030 v str, 858 m, 836 str, 779 m; HRMS (APCI) m/z calc. For C\textsubscript{13}H\textsubscript{13}O\textsubscript{4}: 233.0808 [M+H]+; found: 233.0812.

7-Methoxy-2,3-dihydro-1H-inden-1-one (208)

7-Hydroxy-1-indanone 207 (0.508 g, 3.41 mmol, 1 equiv.), K\textsubscript{2}CO\textsubscript{3} (0.950 g, 6.88 mmol, 2.0 equiv.) and methyl iodide (0.25 mL, 4.0 mmol, 1.2 equiv.) were added to acetone (50 mL) and tetrahydrofuran (30 mL) and refluxed for 20 h. Upon completion, brine (50 mL) and dichloromethane (50 mL) were added and the phases separated. The aqueous phase was washed with dichloromethane (4 × 50 mL) and the organic layers combined, dried over MgSO\textsubscript{4}, filtered and the solvent evaporated in vacuo to yield 7-methoxy-2,3-dihydro-1H-inden-1-one 208 as colourless crystals (0.553 g, 3.41 mmol, 100%).

M.p. 99-100 °C; R\textsubscript{f} = 0.36 (1.5:1 EtOAc/hexane); 1H NMR (400 MHz, CDCl\textsubscript{3}): δ = 7.51 (dd, J = 8.2, 7.6 Hz, 1H, Ar-H), 7.01 (dd, J = 7.6, 0.8 Hz, 1H, Ar-H), 6.78 (dd, J = 8.2, 0.8 Hz, 1H, Ar-H), 3.95 (s, 3H, CH\textsubscript{3}), 3.15 – 3.01 (m, 2H, CH\textsubscript{2}), 2.70 – 2.63 (m, 2H, CH\textsubscript{2}); 13C NMR (101 MHz, CDCl\textsubscript{3}): δ = 204.7 (C), 158.2 (C), 157.9 (C), 136.3 (CH), 125.2 (C), 118.4 (CH), 108.8 (CH), 55.7 (CH\textsubscript{3}), 36.8 (CH\textsubscript{2}), 25.5 (CH\textsubscript{2}); HRMS (APCI) m/z calc. For C\textsubscript{10}H\textsubscript{11}O\textsubscript{2}: 163.0754 [M+H]+; found: 163.0750.

7'-Methoxy-2',3'-dihydrospirocyclopentan-1,1'-indene]-2,5-dione (203j)

7-Methoxy-2,3-dihydro-1H-inden-1-one 208 (0.481 g, 2.96 mmol, 1 equiv.), was added to dichloromethane (29 mL) at –78 °C followed by BF\textsubscript{3}-OEt\textsubscript{2} (0.75 mL, 6.08 mmol, 2.1 equiv.) and the solution stirred for 45 min. 1,2-Bis(trimethylsiloxy)cyclobutene 205 (1.35 mL, 5.24 mmol, 1.8 equiv.) was then added, the solution was warmed to room temperature and stirred for 18 h under an inert atmosphere. Upon completion, BF\textsubscript{3}-OEt\textsubscript{2} (1 mL) was added followed by Na\textsubscript{2}CO\textsubscript{3} (20 mL), water (20 mL) and chloroform (20 mL). The organic layer was separated and the aqueous layer was washed with chloroform (3 × 20 mL). The combined organic layers were washed with brine, dried over MgSO\textsubscript{4} and the
solvent evaporated \textit{in vacuo}. The residue was purified by silica gel column chromatography (5:1→1:1 hexane:EtOAc) to yield 7'-methoxy-2',3'-dihydrospiro[cyclopentane-1,1'-indene]-2,5-dione 203j as a white crystalline solid (158.1 mg, 0.688 mmol, 23%).

M.p. 104-105 °C; R$_f$ = 0.57 (1.5:1 EtOAc/hexane); 1H NMR (400 MHz, CDCl$_3$): δ = 7.20 (dd, J = 8.1, 7.6 Hz, 1H, Ar-H), 6.89 (dd, J = 7.6, 0.9 Hz, 1H, Ar-H), 6.67 – 6.57 (m, 1H, Ar-H), 3.72 (s, 3H, CH$_3$), 3.18 (app. t, J = 7.4 Hz, 2H, CH$_2$), *3.12 – 2.95 (m, 2H, CH$_2$), 2.39 – 2.29 (m, 2H, CH$_2$); 13C NMR (101 MHz, CDCl$_3$): δ = 215.6 (C), 154.2 (C), 147.7 (C), 130.3 (C), 130.2 (CH), 117.6 (CH), 108.5 (CH), 65.9 (C), 55.3 (CH$_3$), 36.5 (CH$_2$), 35.5 (CH$_2$), 32.5 (CH$_2$); ν_{max}/cm$^{-1}$ 2938 w, 2839 w, 1715 v str, 1601 w, 1586 m, 1477 m, 1440 w, 1268 str, 1074 str, 777 v str; HRMS (NSI) m/z calc. For C$_{14}$H$_{15}$O$_3$: 231.1016 [M+H]$^+$; found: 231.1019.

7'-Methoxy-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione (183j)

7'-Methoxy-2',3'-dihydrospiro[cyclopentane-1,1'-indene]-2,5-dione 203j (158.1 mg, 0.6879 mmol, 1 equiv.) was added to a solution of CuBr$_2$ (0.342 g, 1.53 mmol, 2.2 equiv.) in anhydrous MeOH (8 mL). The resulting reaction mixture was refluxed for 3 h before being quenched with cold H$_2$O and 1 M HCl·Et$_2$O was added to the solution. The aqueous layer was washed with Et$_2$O until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried over MgSO$_4$ before solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/EtOAc 5:1→3:1) to yield 7'-methoxy-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione 183j (123.7 mg, 0.5425 mmol, 79%) as a yellow crystalline solid.

M.p. 101-103 °C; R$_f$ = 0.26 (1:1 EtOAc/hexane); 1H NMR (400 MHz, CDCl$_3$): δ = 7.32 (s, 2H, alkene-H), 7.21 (dd, J = 8.2, 7.6 Hz, 1H, Ar-H), 6.90 (dd, J = 7.6, 0.9 Hz, 1H, Ar-H), 6.59 (dd, J = 8.2, 0.9 Hz, 1H, Ar-H), 3.62 (s, 3H, CH$_3$), 3.18 (app. t, J = 7.5 Hz, 2H, CH$_2$), *2.32 (t, J = 7.5 Hz, 2H, CH$_2$); 13C NMR (101 MHz, CDCl$_3$): δ = 206.0 (C), 155.1 (C), 148.3 (C), 147.9 (CH), 130.4 (CH), 127.5 (C), 117.4 (CH), 108.4 (CH), 61.2

*11H NMR signal for 203j and 183j at 3.18 ppm is an AB spectrum corresponding to diastereotopic CH$_2$ protons.
(C), 55.2 (CH₃), 34.1 (CH₂), 32.2 (CH₂); HRMS (NSI) m/z calc. For C₁₄H₁₃O₃: 229.0859 [M+H]+; found: 229.0862.

Oxidative Heck Reactions:

Boronic acid screen

4-(4-Acetylphenyl)-2-benzyl-2-methylcyclopent-4-ene-1,3-dione (201bf)

4-Acetylphenyl boronic acid 6f (36.3 mg, 0.221 mmol, 2.2 equiv.) was heated (heat gun) under vacuum to convert it to the boroxine before a N₂ environment was introduced. 2-Benzyl-2-methylcyclopent-4-ene-1,3-dione 183b (19.9 mg, 0.0995 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)₂ (1.3 mg, 5.8 μmol, 0.06 equiv.) were added in order, with a N₂ environment being re-introduced after each addition. Anhydrous DMF (1 mL) was then added before the resulting solution was allowed to stir at 70 °C in an O₂ environment (balloon) for 24 h. The reaction was removed from the heat for further addition of 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)₂ (1.3 mg, 5.8 μmol, 0.06 equiv.) and left to stir at 70 °C under an O₂ atmosphere for a further 17 h. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane:EtOAc, gradient 25:1 to 10:1) to yield 201bf (17.3 mg, 53.4 μmol, 54%) as a yellow oil.

Rᵣ = 0.24 (1:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃); δ = 8.00 – 7.92 (m, 2H, Ar-H), 7.78 – 7.69 (m, 2H, Ar-H), 7.16 – 7.04 (m, 4H, Ar-H and =CH), 7.00 – 6.91 (m, 2H, Ar-H), 3.07 (app. s, 2H, CH₂),* 2.61 (s, 3H, CH₃), 1.35 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃); δ = 205.9 (C), 205.3 (C), 197.2 (C), 155.9 (C), 142.3 (CH), 138.6 (C),

*¹H NMR signal at 3.07 ppm is an AB spectrum corresponding to diastereotopic CH₂ protons.
135.6 (C), 133.0 (C), 129.6 (CH), 129.1 (CH), 128.5 (CH), 128.4 (CH), 127.1 (CH), 54.0 (C), 41.7 (CH$_2$), 26.7 (CH$_3$), 19.3 (CH$_3$); ν_{max}/cm$^{-1}$ 3084 w, 2921 w, 1737 w, 1689 v str, 1593 w, 1555 w, 1454 w, 1356 w, 1262 str, 1237 m, 1017 w, 958 w, 837 str, 757 m, 701 str; HRMS (NSI) m/z calc. for C$_{21}$H$_{19}$O$_3$: 319.1329 [M+H]$^+$; found: 319.1333.

2-Benzyl-4-(4-(hydroxymethyl)phenyl)-2-methylcyclopent-4-ene-1,3-dione (201bg’)

4-Hydroxymethylphenyl boronic acid 6g’ (33.3 mg, 0.219 mmol, 2.2 equiv.) was heated (heat gun) under vacuum to convert it to the boroxine before a N$_2$ environment was introduced. 2-Benzyl-2-methylcyclopent-4-ene-1,3-dione 183b (20.3 mg, 0.101 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)$_2$ (1.3 mg, 5.8 μmol, 0.06 equiv.) were added in order, with a N$_2$ environment being re-introduced after each addition. Anhydrous DMF (1 mL) was then added before the resulting solution was allowed to stir at 70 °C in an O$_2$ environment (balloon). Additional portions of 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)$_2$ (1.2 mg, 5.3 μmol, 0.053 equiv.) were added after 18 h, 21 h and 24 h and the reaction was left to stir at 70 °C under an O$_2$ atmosphere for a further 16 h. On completion, 2:1 EtOAc:Et$_2$O was added to the reaction solution before being washed with H$_2$O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et$_2$O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO$_4$ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane:EtOAc, 1:1) to yield 201bg’ (23.5 mg, 76.7 μmol, 76%) as a yellow oil.

R$_f$ = 0.44 (1:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 7.72 – 7.63 (m, 2H, Ar-H), 7.46 – 7.34 (m, 2H, Ar-H), 7.14 – 7.05 (m, 3H, Ar-H), 7.02 (s, 1H, =CH), 7.00 – 6.91 (m, 2H, Ar-H), 4.72 (s, 2H, CH$_2$), 3.05 (s, 2H, CH$_2$), 1.33 (s, 3H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$): δ = 206.4 (C), 205.6 (C), 156.7 (C), 144.4 (C), 140.8 (CH), 135.7 (C), 129.6 (CH), 129.2 (CH), 128.3 (CH), 128.1 (C), 126.96 (CH), 126.95 (CH), 64.7 (CH$_2$), 53.9 (C), 41.6 (CH$_2$), 19.5 (CH$_3$); ν_{max}/cm$^{-1}$ 3415 br w, 3029 w, 2926 w, 1739 w, 1691 v.
str, 1604 w, 1585 m, 1562 w, 1451 w, 1205 w, 1047 m, 828 m, 753 m, 701 str; HRMS (NSI) m/z calc. for C_{20}H_{19}O_{3}: 307.1329 [M+H]^+; found: 307.1332.

\[\text{N-}(4-\text{(4-benzyl-4-methyl-3,5-dioxocyclopent-1-en-1-yl)phenyl})\text{acetamide (201bh')} \]

4-Acetamidophenyl boronic acid 6h’ (39.4 mg, 0.220 mmol, 2.2 equiv.) was heated (heat gun) under vacuum to convert it to the boroxine before a N\textsubscript{2} environment was introduced. 2-Benzyl-2-methylcyclopent-4-ene-1,3-dione 183b 20.1 mg, 0.100 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)

\(_2\) (1.3 mg, 5.8 μmol, 0.06 equiv.) were added in order, with a N\textsubscript{2} environment being re-introduced after each addition. Anhydrous DMF (1 mL) was then added before the resulting solution was allowed to stir at 70 °C in an O\textsubscript{2} environment (balloon) for 28 h. The reaction was removed from the heat for further addition of 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)

\(_2\) (1.3 mg, 5.8 μmol, 0.058 equiv.) and left to stir at 70 °C under an O\textsubscript{2} atmosphere for a further 17 h. On completion, 2:1 EtOAc:Et\textsubscript{2}O was added to the reaction solution before being washed with H\textsubscript{2}O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et\textsubscript{2}O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO\textsubscript{4} and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane:EtOAc, gradient 5:1 to 1:3) to yield 201bh’ (28.3 mg, 84.8 μmol, 84%) as a yellow oil.

\(R_{f} = 0.31 \) (1:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta = 7.81 – 7.63 \) (m, 3H, Ar-H and NH), 7.62 – 7.51 (m, 2H, Ar-H), 7.17 – 7.02 (m, 3H, Ar-H), 6.99 (s, 1H, =CH), 6.98 – 6.87 (m, 2H, Ar-H), 3.04 (s, 2H, CH\textsubscript{2}Ph), 2.18 (s, 3H, CH\textsubscript{3}), 1.32 (s, 3H, CH\textsubscript{3}); \(^{13}\)C NMR (75 MHz, CDCl\textsubscript{3}): \(\delta = 206.7 \) (C), 205.5 (C), 168.6 (C), 155.8 (C), 140.8 (C), 139.6 (CH), 135.7 (C), 130.1 (CH), 129.6 (CH), 128.2 (CH), 126.3 (CH), 124.4 (C), 119.4 (CH), 53.9 (C), 41.5 (CH\textsubscript{2}), 24.7 (CH\textsubscript{3}), 19.5 (CH\textsubscript{3}); \(\nu_{\text{max}}/\text{cm}^{-1} \) 3307 w, 2964 w, 1739 m, 1688 v str, 1662 str, 1592 str, 1507 v str, 1452 m, 1410 m, 1317 v str, 1258 v.
Enantioselective oxidative Heck reactions

2-Benzyl-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione (201bc)

![Chemical Structure](image)

Racemic procedure carried out by other members of the Lee Group.

Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.3 mg, 11.3 μmol, 0.11 equiv.) was added to a dried flask which was subsequently purged with N₂. DMA (0.5 mL), followed by Pd(OAc)₂ (2.2 mg, 9.8 μmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Benzyl-2-methylcyclopent-4-ene-1,3-dione 183b (20.6 mg, 0.103 mmol, 1 equiv.), was added to the solution followed by DMA (0.5 mL) and 4-methoxyphenyl boronic acid 6c (32.5 mg, 0.24 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine, dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 20:1) to yield (S)-2-benzyl-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 201bc (25.6 mg, 0.0836 mmol, 81%) as yellow crystals (65:35 er).

\[\text{M.p. 89 - 91 \degree C; } R_f = 0.36 \text{ (5:1 petroleum ether/EtOAc); } \]

\[^1\text{H-NMR (300 MHz, CDCl}_3\text{: } \delta = 7.75 \text{ (d, } J = 9.0 \text{ Hz, 2H, Ar-H), 7.11 - 7.06 \text{ (m, 3H, Ar-H), 6.99 - 6.96 \text{ (m, 3H, Ar-H + =CH), 6.91 \text{ (d, } J = 9.0 \text{ Hz, 2H, Ar-H), 3.84 \text{ (s, 3H, OCH}_3\text{), 3.04 \text{ (s, 2H, CH}_2\text{), 1.32 \text{ (s, 3H, CH}_3\text{), } } ^1\text{C-NMR (75 MHz, CDCl}_3\text{: } \delta = 207.1 \text{ (C), 205.6 (C), 162.4 (C), 156.1 (C), 138.8 (CH), 136.0 (C), 131.1 (CH), 129.8 (CH), 128.3 (CH), 127.0 (CH), 121.5 (C), 114.4 (CH), 55.5 (CH}_3\text{), 54.0 (C), 41.6 (CH}_2\text{), 19.8 (CH}_3\text{); } \nu_{\text{max}}/\text{cm}^{-1} 3069, 2972, 2937, 2854, 1458, 1375, 1360, 1330, 1252, 1152, 1122, 1060, 988, 825, 753, 692, 663, 562, 509, 471. } \]
2846, 1731, 1712, 1684, 1604, 1585, 1563, 1509, 1453, 1422, 1372, 1267, 1181, 1025; HRMS (APCI) m/z calc. for C_{20}H_{18}O_{3}H: 307.1329 [M+H]^{+}; found: 307.1331.

[α]_{D}^{22} = +54.0 (c 1.00, CHCl_{3}); 65:35 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 99/1, flow rate: 1.0 mL min^{-1}, detection UV 210 nm, 25 °C) t_{R} of major isomer: 13.7 min, t_{R} of minor isomer: 14.3 min.
Methyl-2-(3-(4-methoxyphenyl)-1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate (201cc)

Racemic procedure carried out by Claire Lamb.

Enantioselective procedure (Table 31, Entry 3):

4-Methoxyphenyl boronic acid 6c (36.5 mg, 0.24 mmol, 2.4 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. Methyl 2-(1-methyl-2,5-dioxocyclopent-3-en-1-yl)acetate 183c (18.2 mg, 0.0999 mmol, 1 equiv.), (S)-4-tert-Butyl-2-(2-pyridyl)oxazoline 210 (1.2 mg, 5.9 μmol, 0.06 equiv.) and Pd(OAc)₂ (1.2 mg, 5.3 μmol, 0.05 equiv.) were added sequentially, with an N₂ environment being reintroduced after each addition. DMF (1 mL) was added and the reaction was left to stir at 70 °C under an O₂ atmosphere (balloon). After 24 h, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude mixture was used for chiral HPLC analysis (using a racemic sample synthesised by C. Lamb for reference) and an enantiomeric ratio of 47:53 was obtained.

47:53 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 99/1, flow rate: 1.0 mL min⁻¹, detection UV 210 nm, 25 °C) t_R of major isomer: 46.3 min, t_R of minor isomer: 28.0 min.
VWD: Signal A, 210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.283</td>
<td>17865450</td>
<td>49.96</td>
<td>5114996</td>
<td>66.48</td>
</tr>
<tr>
<td>46.917</td>
<td>17394335</td>
<td>50.04</td>
<td>2179047</td>
<td>33.52</td>
</tr>
</tbody>
</table>

210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.967</td>
<td>7376386</td>
<td>44.64</td>
<td>2250728</td>
<td>62.45</td>
</tr>
<tr>
<td>46.237</td>
<td>84418983</td>
<td>53.36</td>
<td>1330774</td>
<td>37.55</td>
</tr>
</tbody>
</table>
Racemic procedure carried out by Claire Lamb.

Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.4 mg, 11.8 μmol, 0.12 equiv.) was added to a dried flask which was subsequently purged with N₂. DMA (0.4 mL), followed by Pd(OAc)₂ (2.3 mg, 10.3 μmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(naphthalen-2-ylmethyl)cyclopent-4-ene-1,3-dione 183k (25.0 mg, 0.0998 mmol, 1 equiv.), was added to the solution followed by DMA (0.6 mL) and 4-methoxyphenyl boronic acid 6c (32.1 mg, 0.24 mmol, 2.5 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine, dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 20:1→10:1) to yield (S)-4-(4-methoxyphenyl)-2-methyl-2-(naphthalen-2-ylmethyl)cyclopent-4-ene-1,3-dione 201kc (25.1 mg, 0.0704 mmol, 71%) as a yellow solid (62:38 er).

M.p. 91-95 °C; Rf = 0.31 (5:1 petroleum ether/EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.78 – 7.63 (m, 4H, Ar-H), 7.58 (d, J = 8.4 Hz, 1H, Ar-H), 7.46 (s, 1H, Ar-H), 7.39 – 7.33 (m, 2H, Ar-H), 7.10 (dd, J = 8.4, 1.7 Hz, 1H, Ar-H), 6.92 (s, 1H, C=CH), 6.86 (d, J = 9.0 Hz, 2H, Ar-H), 3.81 (s, 3H, OCH₃), 3.21 (s, 2H, CH₂), 1.37 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 207.0 (C), 205.4 (C), 162.2 (C), 156.0 (C), 138.7 (CH), 133.5 (C), 133.2 (C), 132.3 (C), 131.0 (CH), 128.6 (CH), 127.9 (CH), 127.7 (CH), 127.5 (CH), 125.9 (CH), 125.6 (CH), 121.4 (C), 114.3 (CH), 55.4 (CH₃), 54.0 (C), 41.4 (CH₂), 20.0 (CH₃); νmax/cm⁻¹ 2928, 2842, 1736, 1690, 1603, 1583, 1564.
1506, 1453, 1371, 1325, 1294, 1178, 1109, 1052, 1027, 897, 864, 836, 822, 750; HRMS (ESI) m/z calc. for C_{24}H_{21}O_{3}: 357.1485 [M+H]^+; found: 357.1482.

[α]_{D}^{24} = +62.0 (c 1.00, CHCl_{3}); 62:38 er; HPLC (CHIRALPAK IB, hexane/2-propanol: 99/1, flow rate: 1.0 mL min^{-1}, detection UV 254 nm, 25 °C) t_{R} of major isomer: 11.7 min, t_{R} of minor isomer: 12.7 min.
4-(4-Methoxyphenyl)-2-methyl-2-phenylcyclopentene-1,3-dione (201lc)

Racemic procedure carried out by Claire Lamb, MChem project student.

Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.3 mg, 11.3 µmol, 0.11 equiv.) was added to a dried flask, purged with N₂. DMA (0.4 mL), followed by Pd(OAc)₂ (2.3 mg, 10.2 µmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-phenylcyclopentene-1,3-dione 1831 (18.8 mg, 0.101 mmol, 1 equiv.), was added to the solution followed by DMA (0.6 mL) and 4-methoxyphenylboronic acid 6c (32.4 mg, 0.24 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 20:1→15:1) to yield (S)-4-(4-methoxyphenyl)-2-methyl-2-phenylcyclopentene-1,3-dione 201lc (27.5 mg, 0.094 mmol, 93%) as a yellow oil (83:17 er).

M.p. 105-106 °C; Rₐ = 0.1 (10:1 petrol ether:EtoAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.93 (d, J = 9.1 Hz, 2H, Ar-H), 7.31 – 7.13 (m, 6H, Ar-H and alkene-H), 6.91 (d, J = 9.1 Hz, 2H, Ar-H), 3.79 (s, 3H, OCH₃), 1.56 (s, 3H, CH₃); ¹³C NMR (300 MHz, CDCl₃): δ = 204.6 (C), 203.3 (C), 162.6 (C), 155.5 (C), 137.9 (CH), 137.7 (C), 131.3 (CH), 128.8 (CH), 127.6 (CH), 126.4 (CH), 121.5 (C), 114.5 (CH), 56.1 (C), 55.5 (CH₃), 19.9 (CH₃); ν_max/cm⁻¹ 2969, 1736, 1695, 1603, 1508, 1444, 1257, 1180, 1046, 837, 698; HRMS (APCI) m/z calc. for C₁₉H₁₇O₃: 293.1177 [M+H]⁺; found: 293.1178.

[α]D²⁸ = +77.8 (c 0.18, CHCl₃); 83:17 er; HPLC (CHIRALPAK IB, hexane/2-propanol: 99/1, flow rate: 1.0 mL min⁻¹, detection UV 254 nm) tᵣ of major isomer: 14.7 min, tᵣ of minor isomer: 13.6 min.
VWD: Signal A, 254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.647</td>
<td>483560860</td>
<td>50.06</td>
<td>2915702</td>
<td>50.37</td>
</tr>
<tr>
<td>14.817</td>
<td>48233074</td>
<td>49.94</td>
<td>2873310</td>
<td>49.63</td>
</tr>
</tbody>
</table>

VWD: Signal A, 254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.605</td>
<td>35332979</td>
<td>17.20</td>
<td>2173867</td>
<td>18.22</td>
</tr>
<tr>
<td>14.580</td>
<td>170095100</td>
<td>82.80</td>
<td>9742169</td>
<td>81.78</td>
</tr>
</tbody>
</table>
4-(4-Methoxyphenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione (201dc)

Racemic procedure:

4-Methoxyphenyl boronic acid 6c (36.3 mg, 0.24 mmol, 2.4 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. 2-Methyl-2-(naphthalen-2-yl)cyclopentane-1,3-dione (23.6 mg, 0.10 mmol, 1 equiv.) 183d, 1,10-phenanthroline 44 (1.0 mg, 5.6 μmol, 0.056 equiv.) and Pd(OAc)₂ (1.1 mg, 4.9 μmol, 0.049 equiv.) were added sequentially, with an N₂ environment being reintroduced after each addition. DMF (1 mL) was added and the reaction was left to stir at 70 °C for 70 h under an O₂ atmosphere (balloon). On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 20:1→10:1) to yield 4-(4-methoxyphenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201dc (31.1 mg, 0.091 mmol, 91%) as a yellow crystalline solid.

M.p. 144-146 °C; Rᵣ = 0.38 (2:1 hexane:EtoAc); ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, J = 9.0 Hz, 2H, Ar-H), 7.87 – 7.73 (m, 4H, Ar-H), 7.55 – 7.42 (m, 3H, Ar-H), 7.39 (s, 1H, alkene-H), 7.00 (d, J = 9.0 Hz, 2H, Ar-H), 3.87 (s, 3H, OCH₃), 1.75 (s, 3H, CH₃);

¹³C NMR (101 MHz, CDCl₃): δ = 204.5 (C), 203.2 (C), 162.6 (C), 155.4 (C), 137.9 (CH), 135.1 (C), 133.2 (C), 132.5 (C), 131.4 (CH), 128.6 (CH), 128.1 (CH), 127.5 (CH), 126.29 (CH), 126.26 (CH), 125.7 (CH), 124.1 (CH), 121.5 (C), 114.6 (CH), 56.3 (C), 55.5 (CH₃), 20.0 (CH₃); v_{max}/cm⁻¹ 3057 w, 2997 w, 1733 w, 1683 v str, 1599 m, 1580 v str, 1506 str, 1457 m, 1435 w, 1329 m, 1312 m, 1239 str, 1185 str, 1099 m, 1045 m, 902 m, 881 v str, 838 v str, 824 v str; HRMS (APCI) m/z calc. for C₂₃H₁₉O₃: 343.1329 [M+H]⁺; found: 343.1330.
Enantioselective procedure:

(S)-4-(Tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 64 (3.0 mg, 11.0 μmol, 0.11 equiv.) was added to a dried flask, purged with N₂. DMA (0.4 mL), followed by Pd(OAc)₂ (2.4 mg, 10.7 μmol, 0.11 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.7 mg, 0.1003 mmol, 1 equiv.), was added to the solution followed by DMA (0.6 mL) and 4-methoxyphenyl boronic acid 6c (32.6 mg, 0.244 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 25:1) to yield (S)-4-(4-methoxyphenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201dc (34.2 mg, 0.100 mmol, 100%) as a yellow solid (90:10 er).

See racemic procedure above for characterisation.

\[[\alpha]_D^{25} = +133.3 \ (c \ 0.12, \ CHCl_3) \]; 90:10 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 99/1, flow rate: 1.0 mL min⁻¹, detection UV 210 nm, 25 °C) tᵣ of major isomer: 45.8 min, tᵣ of minor isomer: 92.7 min.
VWD: Signal A, 210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.900</td>
<td>168392572</td>
<td>50.15</td>
<td>2503773</td>
<td>67.42</td>
</tr>
<tr>
<td>54.303</td>
<td>167386735</td>
<td>49.85</td>
<td>1210129</td>
<td>32.58</td>
</tr>
</tbody>
</table>

VWD: Signal A, 210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.778</td>
<td>890351112</td>
<td>39.73</td>
<td>12340211</td>
<td>93.29</td>
</tr>
<tr>
<td>92.708</td>
<td>101864324</td>
<td>10.27</td>
<td>802627</td>
<td>6.11</td>
</tr>
</tbody>
</table>
2-(4-Chlorophenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione (201ec)

Racemic procedure:

4-Methoxyphenyl boronic acid 6c (18.2 mg, 0.120 mmol, 2.4 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. 2-(4-Chlorophenyl)-2-methylcyclopent-4-ene-1,3-dione 183e (11.0 mg, 0.0499 mmol, 1 equiv.), 1,10-phenanthroline 44 (0.6 mg, 3.3 μmol, 0.067 equiv.) and Pd(OAc)₂ (0.6 mg, 2.7 μmol, 0.054 equiv.) were added sequentially, with an N₂ environment being reintroduced after each addition. DMF (0.5 mL) was added, the reaction was left to stir at 70 °C for 70 h under an O₂ atmosphere (balloon). On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc gradient 10:1) to yield 2-(4-chlorophenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 201ec (15.5 mg, 0.0474 mmol, 95%) as a yellow oil.

Rᵣ = 0.13 (2:1 hexane:EtOAc); ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, J = 8.9 Hz, 2H, Ar-H), 7.34 – 7.19 (m, 5H, Ar-H and alkene-H), 6.96 (d, J = 8.9 Hz, 2H, Ar-H), 3.84 (s, 3H, CH₃), 1.58 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 204.3 (C), 202.9 (C), 162.8 (C), 155.4 (C), 137.8 (CH), 136.2 (C), 133.7 (C), 131.4 (CH), 128.9 (CH), 128.0 (CH), 121.4 (C), 114.6 (CH), 55.5 (C and CH₃), 20.3 (CH₃); νmax/cm⁻¹ 2933 w, 2839 w, 1737 w, 1689 v str, 1601 str, 1575 str, 1506 v str, 1492 str, 1253 v str, 1177 v str, 1095 str, 1046 str, 1026 str, 836 str, 808 str; HRMS (NSI) m/z calc. for C₁₉H₁₆O₃Cl: 327.0782 [M+H]⁺; found: 327.0786.
Enantioselective procedure:

(S)-4-(Tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 210 (3.0 mg, 11.0 μmol, 0.11 equiv.) was added to a dried flask, purged with N₂. DMA (0.4 mL), followed by Pd(OAc)₂ (2.4 mg, 10.7 μmol, 0.11 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-(4-Chlorophenyl)-2-methylcyclopent-4-ene-1,3-dione 183e (22.0 mg, 0.0997 mmol, 1 equiv.), was added to the solution followed by DMA (0.6 mL) and 4-methoxyphenyl boronic acid 6c (32.3 mg, 0.241 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 10:1) to yield (S)-2-(4-chlorophenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 201ec (29.2 mg, 0.0893 mmol, 90%) as a yellow oil (80:20 er).

See racemic procedure above for characterisation.

[α]D²⁵ = +86.0 (c 1.00, CHCl₃); 80:20 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 99/1, flow rate: 1.0 mL min⁻¹, detection UV 210 nm, 25 °C) tᵣ of major isomer: 29.0 min, tᵣ of minor isomer: 76.2 min.
VWD: Signal A, 210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.442</td>
<td>382016250</td>
<td>50.28</td>
<td>8602387</td>
<td>79.68</td>
</tr>
<tr>
<td>78.400</td>
<td>363966306</td>
<td>49.72</td>
<td>2194144</td>
<td>20.32</td>
</tr>
</tbody>
</table>

VWD: Signal A, 210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.015</td>
<td>847120840</td>
<td>79.82</td>
<td>17456077</td>
<td>91.91</td>
</tr>
<tr>
<td>76.170</td>
<td>214234541</td>
<td>20.18</td>
<td>1536984</td>
<td>8.09</td>
</tr>
</tbody>
</table>
2-(2-Methoxyphenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione (201gc)

Racemic procedure:

4-Methoxyphenyl boronic acid 6c (18.3 mg, 0.120 mmol, 2.4 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. 2-(2-Methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 183g (10.9 mg, 0.0504 mmol, 1 equiv.), 1,10-phenanthroline 44 (0.6 mg, 3.3 μmol, 0.058 equiv.) and Pd(OAc)₂ (0.6 mg, 2.7 μmol, 0.053 equiv.) were added sequentially, with an N₂ environment being reintroduced after each addition. DMF (0.5 mL) was added, the reaction was left to stir at 70 °C for 70 h under an O₂ atmosphere (balloon). On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 20:1→5:1) to yield 2-(2-methoxyphenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 201gc (14.5 mg, 0.0450 mmol, 89%) as a yellow oil.

Rᶠ = 0.31 (2:1 hexane:EtOAc); ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, J = 9.0 Hz, 2H, Ar-H), 7.41 (dd, J = 7.7, 1.6 Hz, 1H, Ar-H), 7.31 – 7.26 (m, 1H, Ar-H), 7.20 (s, 1H, alkene-H), 7.07 – 7.02 (m, 1H, Ar-H), 7.01 (d, J = 9.0 Hz, 2H, Ar-H), 6.77 (dd, J = 8.2, 1.1 Hz, 1H, Ar-H), 3.88 (s, 3H, CH₃), 3.54 (s, 3H, CH₃), 1.63 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 206.1 (C), 205.3 (C), 162.2 (C), 156.2 (C), 153.0 (C), 134.9 (CH), 131.0 (CH), 129.3 (CH), 129.1 (CH), 126.2 (C), 122.2 (C), 121.3 (CH), 114.5 (CH), 110.9 (CH), 55.4 (CH₃), 55.3 (CH₃), 54.8 (C), 19.4 (CH₃); νmax/cm⁻¹ 2978 w, 2939 w, 1733 w, 1687 v str, 1601 str, 1585 str, 1508 str, 1491 str, 1319 s, 1251 v str, 1176 v str, 1040 m, 1014 str, 835 str, 773 str; HRMS (NSI) m/z calc. for C₂₀H₁₉O₄: 323.1278 [M+H]⁺; found: 323.1276.
Enantioselective procedure:

(S)-4-\textit{Tert}-Butyl-2-(2-pyridyl)oxazoline \textbf{210} (2.2 mg, 10.8 \text{\textmu}mol, 0.11 equiv.) was added to a dried flask, purged with N\textsubscript{2}. DMA (0.8 mL), followed by Pd(OAc)$_2$ (2.3 mg, 10.2 \text{\textmu}mol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-(2-Methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione \textbf{183g} (21.4 mg, 0.0990 mmol, 1 equiv.), was added to the solution followed by DMA (0.2 mL) and 4-methoxyphenyl boronic acid \textbf{6c} (32.8 mg, 0.245 mmol, 2.5 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O\textsubscript{2} atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et\textsubscript{2}O was added to the reaction solution before being washed with H\textsubscript{2}O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et\textsubscript{2}O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO\textsubscript{4} and solvent was removed \textit{via} reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 15:1→7:1) to yield (S)-2-(2-methoxyphenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione \textbf{201gc} (27.1 mg, 0.0841 mmol, 85%) as a yellow oil (78:22) er.

See racemic procedure for characterisation.

\([\alpha]D^{24} = -56.0 (c 1.00, \text{CHCl}_3); 78:22 \text{er}; \text{HPLC (CHIRALPAK IB, hexane/2-propanol: 99/1, flow rate: 1.0 mL min}^{-1}, \text{detection UV 254 nm, 25 °C}) t_R \text{ of major isomer: 27.1 min, } t_R \text{ of minor isomer: 44.4 min.}
VWD: Signal A,
254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.075</td>
<td>50347435</td>
<td>50.21%</td>
<td>1139289</td>
<td>58.92%</td>
</tr>
<tr>
<td>43.908</td>
<td>49926816</td>
<td>49.79%</td>
<td>794258</td>
<td>41.08%</td>
</tr>
</tbody>
</table>

VWD: Signal A, 254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.112</td>
<td>38264978</td>
<td>78.31%</td>
<td>882509</td>
<td>82.65%</td>
</tr>
<tr>
<td>44.442</td>
<td>10596134</td>
<td>21.69%</td>
<td>183305</td>
<td>17.35%</td>
</tr>
</tbody>
</table>
7'-Methoxy-3-(4-methoxyphenyl)-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione (201jc)

4-Methoxyphenyl boronic acid 6c (18.2 mg, 0.120 mmol, 2.4 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. 7'-Methoxy-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione 183j (11.5 mg, 0.0504 mmol, 1 equiv.), 1,10-phenanthroline 44 (0.6 mg, 3.3 μmol, 0.066 equiv.) and Pd(OAc)₂ (0.6 mg, 2.7 μmol, 0.053 equiv.) were added sequentially, with an N₂ environment being reintroduced after each addition. DMF (0.5 mL) was added and the reaction was left to stir at 70 °C for 70 h under an O₂ atmosphere (balloon). On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 15:1→7:1) to yield 7'-methoxy-3-(4-methoxyphenyl)-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione 201jc (13.8 mg, 0.0413 mmol, 82%) as a yellow solid.

M. p. 147-149 °C; Rᵣ = 0.31 (1:1 hexane:EtOAc); ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, J = 9.0 Hz, 2H, Ar-H), 7.31 (s, 1H, alkene-H), 7.21 (dd, J = 8.2, 7.6 Hz, 1H, Ar-H), 7.01 (d, J = 9.0 Hz, 2H, Ar-H), 6.91 (dd, J = 7.6, 0.9 Hz, 1H, Ar-H), 6.59 (dd, J = 8.2, 0.9 Hz, 1H, Ar-H), 3.88 (s, 3H, CH₃), 3.57 (s, 3H, CH₃), 3.35 – 3.08 (m, 2H, CH₂), 2.49 – 2.29 (m, 2H, CH₂); ¹³C NMR (101 MHz, CDCl₃): δ = 205.5 (C), 204.4 (C), 162.2 (C), 155.5 (C), 155.2 (C), 148.2 (C), 137.7 (CH), 131.1 (CH), 130.2 (CH), 128.3 (C), 122.2 (C), 117.4 (CH), 114.5 (CH), 108.5 (CH), 62.9 (C), 55.4 (CH₃), 55.3 (CH₃), 34.4 (CH₂), 32.3 (CH₂); ν₀max/cm⁻¹ 2933 w, 2843 w, 1737 m, 1686 v str, 1601 m, 1580 v str, 1506 m, 1262 v str, 1202 m, 1178 m, 1078 m, 778 str; HRMS (NSI) m/z calc. for C₂₁H₁₉O₄: 335.1278 [M+H]⁺; found: 335.1281.
Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.3 mg, 11.3 μmol, 0.12 equiv.) was added to a dried flask, purged with N₂. DMA (0.8 mL), followed by Pd(OAc)₂ (2.3 mg, 10.2 μmol, 0.11 equiv.) were added and the solution was left to stir at room temperature for 1 h. 7'-Methoxy-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione 183j (22.2 mg, 0.0973 mmol, 1 equiv.), was added to the solution followed by DMA (0.2 mL) and 4-methoxyphenyl boronic acid 6c (32.8 mg, 0.245 mmol, 2.5 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 10:1→7:1) to yield 7'-methoxy-3-(4-methoxyphenyl)-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-3-ene-2,5-dione 201jc (27.7 mg, 0.0828 mmol, 85%) as a yellow solid (45:55 er).

See racemic procedure for characterisation.

[α]D²⁴ = +0.06 (c 1.00, CHCl₃); 55:45 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 99/1, flow rate: 1.0 mL min⁻¹, detection UV 210 nm, 25 °C) tR of major isomer: 37.9 min, tR of minor isomer: 33.7 min.
4-(4-Methoxyphenyl)-2-methyl-2-(o-tolyl)cyclopent-4-ene-1,3-dione (201fc)

Racemic procedure:

4-Methoxyphenyl boronic acid 6c (18.2 mg, 0.120 mmol, 2.4 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. 2-Methyl-2-(o-tolyl)cyclopent-4-ene-1,3-dione 183f (10.0 mg, 0.0499 mmol, 1 equiv.), 1,10-phenanthroline 44 (0.6 mg, 3.3 μmol, 0.067 equiv.) and Pd(OAc)₂ (0.6 mg, 2.7 μmol, 0.054 equiv.) were added sequentially, with an N₂ environment being reintroduced after each addition. DMF (0.5 mL) was added and the reaction was left to stir at 70 °C for 70 h under an O₂ atmosphere (balloon). On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 10:1→5:1) to yield 4-(4-Methoxyphenyl)-2-methyl-2-(o-tolyl)cyclopent-4-ene-1,3-dione (201fc) (8.2 mg, 0.0268 mmol, 54%) as a yellow oil.

Rₐ = 0.71 (2:1 hexane:EtOAc); \(^1\)H NMR (400 MHz, CDCl₃): \(\delta = 8.04\) (d, \(J = 9.1\) Hz, 2 H), 7.44 (dd, \(J = 7.8, 1.5\) Hz, 1H, Ar-H), 7.30 (s, 1H, alkene H), 7.30 – 7.16 (m, 2H, Ar-H), 7.11 – 7.06 (m, 1H, Ar-H), 7.02 (d, \(J = 9.1\) Hz, 2H, Ar-H), 3.89 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 1.75 (s, 3H, CH₃); \(^{13}\)C NMR (101 MHz, CDCl₃): \(\delta = 206.0\) (C), 204.6 (C), 162.6 (C), 153.5 (C), 136.1 (C), 135.9 (CH), 135.0 (C), 131.6 (CH), 131.3 (CH), 128.9 (CH), 128.2 (CH), 126.4 (CH), 121.6 (C), 114.6 (CH), 57.8 (C), 55.5 (CH₃), 22.1 (CH₃), 22.0 (CH₃); \(ν_{max}/cm^{-1}\) 2967 w, 2839 w, 1739 w, 1693 v str, 1601 v str, 1507 v str, 1459 w, 1424 w, 1255 v str, 1176 v str, 1088 m, 1046 m, 1022 m, 836 str, 747 v str; HRMS (NSI) \(m/z\) calc. for C₂₀H₁₉O₃: 307.1329 [M+H]^+; found: 307.1331.
Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.3 mg, 11.3 μmol, 0.11 equiv.) was added to a dried flask, purged with N₂. DMA (0.8 mL), followed by Pd(OAc)₂ (2.3 mg, 10.2 μmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(o-tolyl)cyclopent-4-ene-1,3-dione 183f (20.0 mg, 0.0999 mmol, 1 equiv.), was added to the solution followed by DMA (0.2 mL) and 4-methoxyphenyl boronic acid 6e (32.7 mg, 0.244 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 10:1). A pure sample of product 201fc unfortunately could not be isolated due to coelution with an impurity yet the impure sample was sufficient to use for HPLC analysis to give an indication of er (61:39 er).

61:39 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 95/5, flow rate: 1.0 mL min⁻¹, detection UV 210 nm, 25 °C) tᵣ of major isomer: 26.8 min, tᵣ of minor isomer: 29.1 min.
2-(3,4-Dimethylphenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione (201hc)

Racemic procedure:

4-Methoxyphenyl boronic acid 6c (36.7 mg, 0.242 mmol, 2.4 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. 2-(3,4-Dimethylphenyl)-2-methylcyclopent-4-ene-1,3-dione 183h (21.3 mg, 0.0994 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.067 equiv.) and Pd(OAc)₂ (1.1 mg, 4.9 μmol, 0.049 equiv.) were added sequentially, with an N₂ environment being reintroduced after each addition. DMF (1.0 mL) was added and the reaction was left to stir at 70 °C for 70 h under an O₂ atmosphere (balloon). On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc gradient 15:1) to yield 2-(3,4-dimethylphenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 201hc (29.0 mg, 0.0905 mmol, 91%) as a yellow oil.

Rf = 0.31 (2:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 8.02 (d, J = 8.9 Hz, 2H, Ar-H), 7.34 (s, 1H, alkene-H), 7.12 – 7.05 (m, 3H, Ar-H), 6.99 (d, J = 8.9 Hz, 2H, Ar-H), 3.88 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 1.62 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 204.8 (C), 203.6 (C), 162.5 (C), 155.4 (C), 137.9 (CH), 137.0 (C), 136.1 (C), 135.2 (C), 131.3 (CH), 130.0 (CH), 127.5 (CH), 123.8 (CH), 121.6 (C), 114.5 (CH), 55.9 (C), 55.4 (CH₃), 19.9 (CH₃), 19.6 (CH₃), 19.3 (CH₃); νmax/cm⁻¹ 2925 w, 2838 w, 1731 m, 1680 v str, 1601 m, 1577 v str, 1505 m, 1238 v str, 1185 v str, 1103 m, 1049 m, 847 m; HRMS (NSI) m/z calc. for C₂₁H₂₁O₃: 321.1485 [M+H]⁺; found: 321.1491.
Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.4 mg, 11.8 μmol, 0.12 equiv.) was added to a dried flask, purged with N₂. DMA (0.8 mL), followed by Pd(OAc)₂ (2.3 mg, 10.2 μmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-(3,4-Dimethylphenyl)-2-methylcyclopent-4-ene-1,3-dione 183h (21.4 mg, 0.0999 mmol, 1 equiv.), was added to the solution followed by DMA (0.2 mL) and 4-methoxyphenyl boronic acid 6c (32.1 mg, 0.240 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 15:1) to yield (S)-2-(3,4-dimethylphenyl)-4-(4-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 201hc (32.0 mg, 0.0999 mmol, 100%) as a yellow oil (80:20 er).

See racemic procedure for characterisation.

\([\alpha]_D^{24} = +122.0 \ (c \ 1.00, \ CHCl_3); \ 80:20 \ er; \ HPLC \ (CHIRALPAK \ IA, \ hexane/2-propanol: \ 95/5, \ flow \ rate: \ 1.0 \ mL \ min^{-1}, \ detection \ UV \ 210 \ nm, \ 25 ^\circ C) \ t_R \ of \ major \ isomer: \ 13.8 \ min, \ t_R \ of \ minor \ isomer: \ 22.7 \ min.\)
VWD: Signal A, 210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.818</td>
<td>185381899</td>
<td>48.74</td>
<td>10293325</td>
<td>62.43</td>
</tr>
<tr>
<td>22.695</td>
<td>196229670</td>
<td>51.26</td>
<td>6195540</td>
<td>37.57</td>
</tr>
</tbody>
</table>

VWD: Signal A, 210 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.785</td>
<td>685046108</td>
<td>80.37</td>
<td>37299761</td>
<td>87.64</td>
</tr>
<tr>
<td>22.727</td>
<td>167208107</td>
<td>19.63</td>
<td>5260784</td>
<td>12.36</td>
</tr>
</tbody>
</table>
4-(3-Chlorophenyl)-2-methyl-2-phenylcyclopent-4-ene-1,3-dione (201ll)

Racemic procedure:

3-(Chloro)phenylboronic acid 6l (34.6 mg, 0.221 mmol, 2.2 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N₂ atmosphere was introduced. 2-Methyl-2-phenylcyclopentene-1,3-dione 183l (18.6 mg, 0.099 mmol, 1 equiv.) and DMF (0.4 mL) were added, followed by 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.067 equiv.) and Pd(OAc)₂ (1.2 mg, 5.3 μmol, 0.054 equiv.), with an N₂ environment being reintroduced after each addition. DMF (0.6 mL) was added and the reaction was left to stir at 70 °C. After 24 h, an additional portion of ligand 44 (1.2 mg, 0.007 mmol, 0.07 equiv.) and catalyst (1.2 mg, 0.0053 mmol, 0.053 equiv.) were added and the reaction left to stir for a further 48 h under O₂ atmosphere (balloon). On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine, dried over MgSO₄ and the solvent was removed in vacuo. The resulting crude was purified by silica gel column chromatography (25:1 hexane:EtOAc) to obtain 4-(3-Chlorophenyl)-2-methyl-2-phenylcyclopent-4-ene-1,3-dione 201ll (21.0 mg, 0.071 mmol, 71%) as a yellow oil.

R_f = 0.75 (2:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.90 (1 H, t, J = 1.8 Hz, Ar-H), 7.79 – 7.74 (1 H, m, Ar-H), 7.45 – 7.16 (8 H, m, Ar-H and =CH), 1.58 (3 H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 203.5 (C), 203.1 (C), 154.8 (C), 141.1 (CH), 137.2 (C), 135.1 (C), 131.7 (CH), 130.6 (C), 130.2 (CH), 129.2 (CH), 128.9 (CH), 127.8 (CH), 127.3 (CH), 126.4 (CH), 56.2 (C), 20.0 (CH₃); ν_max/cm⁻¹ 3022 w, 1741 w, 1698 v str, 1599 w, 1586 w, 1563 w, 1250 m, 1093 m, 1047 m, 885 m, 794 m, 749 v str, 711 w, 667 w; HRMS (APCI) m/z calc. for C₁₈H₁₄O₂Cl: 297.0677 [M+H]⁺; found: 297.0680.
Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.3 mg, 11.3 μmol, 0.11 equiv.) was added to a dried flask, purged with N₂, DMA (0.4 mL), followed by Pd(OAc)₂ (2.3 mg, 10.2 μmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-phenylcyclopentene-1,3-dione 183l (18.6 mg, 0.100 mmol, 1 equiv.), was added to the solution followed by DMA (0.6 mL) and 3-chlorophenylboronic acid (33.8 mg, 0.24 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 27 h under an O₂ atmosphere (balloon) and with an air condenser. Additional portions of (S)-4-tert-Butyl-2-(2-pyridyl)oxazoline 210 (1.1 mg, 5.4 μmol, 0.05 equiv.) and Pd(OAc)₂ (1.1 mg, 4.9 μmol, 0.05 equiv.) were added and the reaction was left to stir for a further 68 h at 50 °C under an O₂ atmosphere. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (25:1 hexane:EtOAc.) to obtain 4-(3-chlorophenyl)-2-methyl-2-phenylcyclopent-4-ene-1,3-dione 201ll (14.7 mg, 0.049 mmol, 49%) as a yellow oil (56:44 er).

See racemic procedure above for characterisation.

\[\alpha\]_D^26 = +18.6 (c 0.22, CHCl₃); 56:44 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 99/1, flow rate: 1.0 mL min⁻¹, detection UV 210 nm) t_R of major isomer: 10.8 min, t_R of minor isomer: 12.6 min.
4-(4-Hydroxyphenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione (201dd)

Racemic procedure:

4-Hydroxyphenyl boronic acid 6d (30.7 mg, 0.223 mmol, 2.2 equiv.) was added to dried glassware and dehydrated to the boroxine under vacuum with a heat gun, then an N\textsubscript{2} atmosphere was introduced. 2-Methyl-2-(naphthalen-2-yl)cyclopentane-1,3-dione 183d (23.7 mg, 0.100 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.2 mg, 6.6 μmol, 0.066 equiv.) and Pd(OAc)\textsubscript{2} (1.2 mg, 5.3 μmol, 0.053 equiv.) were added sequentially, with an N\textsubscript{2} environment being reintroduced after each addition. DMF (1 mL) was added and the reaction was left to stir at 70 °C under an O\textsubscript{2} atmosphere (balloon). After 20 h, additional portions of 1,10-phenanthroline 44 (1.2 mg, 6.6 μmol, 0.066 equiv.), Pd(OAc)\textsubscript{2} (1.2 mg, 5.3 μmol, 0.053 equiv.) and DMF (0.1 mL) were added and the reaction was left to stir for a further 48 h. On completion, 2:1 EtOAc:Et\textsubscript{2}O was added to the reaction solution before being washed with H\textsubscript{2}O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et\textsubscript{2}O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO\textsubscript{4} and solvent was removed \textit{via} reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 15:1→2:1) to yield 4-(4-hydroxyphenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201dd (28.3 mg, 0.086 mmol, 86%) as an orange solid.

M.p. 159-161 °C; R\textsubscript{f} = 0.26 (1:1 hexane:EtOAc); 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta = 7.94\) (d, \(J = 8.8\) Hz, 2H, Ar-H), 7.83 – 7.75 (m, 4H, Ar-H), 7.53 – 7.42 (m, 3H, Ar-H), 7.37 (s, 1H, alkene-H), 6.89 (d, \(J = 8.8\) Hz, 2H, Ar-H), 6.38 (s, 1H, O\textsubscript{H}), 1.76 (s, 3H, CH\textsubscript{3}); 13C NMR (101 MHz, CDCl\textsubscript{3}): \(\delta = 204.6\) (C), 203.9 (C), 159.4 (C), 155.8 (C), 137.8 (CH), 134.9 (C), 133.2 (C), 132.5 (C), 131.7 (CH), 128.7 (CH), 128.1 (CH), 127.5 (CH), 126.36 (CH), 126.34 (CH), 125.7 (CH), 124.1 (CH), 121.4 (C), 116.2 (CH), 56.4 (C), 19.8 (CH\textsubscript{3}); \(\nu_{\text{max}}/\text{cm}^{-1}\) 3380 br, 3052 w, 2984 w, 1733 w, 1683 v str, 1605 m, 1568 v str, 1580 v str, 1510 str, 1434 m, 1236 v str, 1179 v str, 1102 str, 840 str, 816 str, 743 str; HRMS (NSI) \(m/z\) calc. for C\textsubscript{22}H\textsubscript{17}O\textsubscript{3}: 329.1172 [M+H]+; found: 329.1175.
Enantioselective procedure:

(S)-4-((Tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 64 (3.0 mg, 11.0 μmol, 0.11 equiv.) was added to a dried flask, purged with N₂. DMA (0.4 mL), followed by Pd(OAc)₂ (2.4 mg, 10.7 μmol, 0.11 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.7 mg, 0.1003 mmol, 1 equiv.), was added to the solution followed by DMA (0.6 mL) and 4-hydroxyphenyl boronic acid 6d (29.2 mg, 0.244 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 10:1→2:1) to yield (S)-4-((4-hydroxyphenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201dd (33.6 mg, 0.100 mmol, 100%) as a yellow solid (83:17 er).

See racemic procedure above for characterisation.

\[[\alpha]_{D}^{22} = +122.0 \ (c \ 1.00, \ CHCl_{3}) \]; 83:17 er; HPLC (CHIRALPAK IA, hexane/2-propanol: 90/10, flow rate: 1.0 mL min⁻¹, detection UV 210 nm, 25 °C) tᵣ of major isomer: 34.4 min, tᵣ of minor isomer: 30.2 min.
4-(4-Chlorophenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione (201di’)

Racemic procedure:

4-Chlorophenyl boronic acid 6l’ (34.6 mg, 0.221 mmol, 2.2 equiv.) was heated (heat gun) under vacuum in the reaction flask to convert it to the boroxine before an N₂ environment was introduced. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.8 mg, 0.101 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.0 mg, 5.6 μmol, 0.06 equiv.) and Pd(OAc)₂ (1.1 mg, 4.9 μmol, 0.05 equiv.) were then added in order, with a N₂ environment being re-introduced after each addition. Anhydrous DMF (1 mL) was then added before the solution was stirred at 70 °C in an O₂ environment (balloon) for 72 h. On completion, diethyl ether and ethyl acetate were added to the reaction solution before being washed with water (10 mL) and brine (10 mL). The aqueous layer was washed with Et₂O (5 mL) and EtOAc (2.5 mL) until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried with MgSO₄ before solvent was removed under reduced pressure. The crude was purified by silica-gel column chromatography (hexane/ethyl acetate 50:1), to yield 4-(4-chlorophenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201di’ (27.7 mg, 0.0799 mmol, 79%) as a yellow solid.

M. p. 130-135 °C; Yellow solid; Rᵣ = 0.87 (2:1 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.96 (d, J = 8.6 Hz, 2H, Ar-H), 7.86 – 7.73 (m, 4H, Ar-H), 7.56 – 7.39 (m, 6H, Ar-H and alkene-H), 1.75 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 203.8 (C), 203.1 (C), 154.9 (C), 140.3 (CH), 138.2 (C), 134.6 (C), 133.2 (C), 132.5 (C), 130.6 (CH), 129.4 (CH), 128.8 (CH), 128.1 (CH), 127.5 (CH), 127.4 (C), 126.4 (CH × 2), 125.6 (CH), 124.0 (CH), 56.3 (C), 20.1 (CH₃); νmax/cm⁻¹ 3051 w, 1738 w, 1689 v str, 1589 str, 1558 w, 1484 m, 1314 m, 1244 str, 1092 v str, 1014 m, 826 v str, 749 str; HRMS (APCI) m/z calc. for C₂₂H₁₆O₂Cl: 347.0833 [M+H]⁺; found: 347.0830.
Enantioselective procedure:

(S)-4-((Tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 64 (3.1 mg, 11.0 μmol, 0.11 equiv.) was added to a dried flask, purged with N\textsubscript{2}. DMA (0.4 mL), followed by Pd(OAc)	extsubscript{2} (2.4 mg, 10.7 μmol, 0.11 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.7 mg, 0.1003 mmol, 1 equiv.), was added to the solution followed by DMA (0.6 mL) and 4-chlorophenyl boronic acid 6i’ (33.6 mg, 0.243 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O\textsubscript{2} atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et\textsubscript{2}O was added to the reaction solution before being washed with H\textsubscript{2}O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et\textsubscript{2}O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO\textsubscript{4} and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 50:1) to yield (S)-4-(4-chlorophenyl)-2-methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201di’ (29.7 mg, 0.0856 mmol, 85%) as a yellow solid (94:6 er).

See racemic procedure for characterisation.

\[[\alpha]_D^{23} = +56.8 \text{ (c 0.35, CHCl}_3) \text{; 94:6 er; HPLC (CHIRALPAK IB, hexane/2-propanol: 99/1, flow rate: 1.0 mL min}^{-1}, \text{ detection UV 254 nm, 25 °C) t}_R \text{ of major isomer: 14.4 min, } t_R \text{ of minor isomer: 32.2 min.} \]
VWD: Signal A, 254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.337</td>
<td>137807233</td>
<td>50.46</td>
<td>7240160</td>
<td>73.33</td>
</tr>
<tr>
<td>30.997</td>
<td>135267797</td>
<td>49.54</td>
<td>2633611</td>
<td>26.67</td>
</tr>
</tbody>
</table>

VWD: Signal A, 254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.402</td>
<td>1.57246667</td>
<td>93.98</td>
<td>3323327</td>
<td>97.41</td>
</tr>
<tr>
<td>32.182</td>
<td>16068139</td>
<td>6.02</td>
<td>221416</td>
<td>2.59</td>
</tr>
</tbody>
</table>
2-Methyl-2,4-di(naphthalen-2-yl)cyclopent-4-ene-1,3-dione (201dm)

Racemic procedure:

2-Naphthalene boronic acid 6m (38.2 mg, 0.222 mmol, 2.2 equiv.) was heated (heat gun) under vacuum in the reaction flask to convert it to the boroxine before an N$_2$ environment was introduced. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.5 mg, 0.995 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.0 mg, 5.6 μmol, 0.06 equiv.) and Pd(OAc)$_2$ (1.1 mg, 4.9 μmol, 0.05 equiv.) were then added in order, with a N$_2$ environment being re-introduced after each addition. Anhydrous DMF (1 mL) was then added before the solution was stirred at 70 °C in an O$_2$ environment (balloon) for 72 h. On completion, diethyl ether and ethyl acetate were added to the reaction solution before being washed with water (10 mL) and brine (10 mL). The aqueous layer was washed with Et$_2$O (5 mL) and EtOAc (2.5 mL) until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried with Na$_2$SO$_4$ before solvent was removed under reduced pressure. The crude was purified by silica-gel column chromatography (hexane/ethyl acetate 25:1→20:1), to yield 2-methyl-2,4-di(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201dm (29.9 mg, 0.0825 mmol, 83%) as a yellow solid.

M. p. 160-162 °C; R$_f$ = 0.80 (2:1 hexane:EtOAc); 1H NMR (300 MHz, CDCl$_3$): δ = 8.87 – 8.71 (m, 1H, Ar-H), 8.11 – 7.72 (m, 8H, Ar-H), 7.67 – 7.39 (m, 6H, Ar-H and alkene H), 1.81 (s, 3H, CH$_3$); 13C NMR (75 MHz, CDCl$_3$): δ = 204.3 (C), 203.3 (C), 155.8 (C), 140.2 (CH), 134.9 (C), 134.6 (C), 133.2 (C), 132.9 (C), 132.5 (C), 131.1 (CH), 129.5 (CH), 128.9 (CH), 128.7 (CH), 128.3 (CH), 128.1 (CH), 127.7 (CH), 127.5 (CH), 126.9 (CH), 126.4 (CH), 126.3 (CH), 126.2 (C), 125.7 (CH), 124.9 (CH), 124.1 (CH), 56.5 (C), 20.1 (CH$_3$); ν$_{\text{max}}$/cm$^{-1}$ 3053 w, 1736 w, 1689 v str, 1600 w, 1565 w, 1581 w, 1263 m, 898 m, 863 m, 813 m, 741 v str; HRMS (APCI) m/z calc. for C$_{26}$H$_{19}$O$_2$: 363.1380 [M+H]$^+$; found: 363.1380.
Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.3 mg, 11.3 μmol, 0.11 equiv.) was added to a dried flask, purged with N₂. DMA (0.8 mL), followed by Pd(OAc)₂ (2.3 mg, 10.2 μmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.8 mg, 0.1007 mmol, 1 equiv.), was added to the solution followed by DMA (0.2 mL) and 2-Naphthalene boronic acid 6m (37.6 mg, 0.244 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O₂ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 20:1) to yield (S)-2-methyl-2,4-di(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 201dm (33.6 mg, 0.093 mmol, 92%) as a yellow solid (74:26 er).

See racemic procedure for characterisation.

\([\alpha]_{D}^{23} = +184.0 \ (c \ 1.00, \ CHCl₃); \ 74:26 \ er; \ HPLC \ (CHIRALPAK \ IB, \ hexane/2-propanol: \ 99/1, \ flow \ rate: \ 1.0 \ mL \ min^{-1}, \ detection \ UV \ 254 \ nm, \ 25 °C) \ t_R \ of \ major \ isomer: \ 21.4 \ min, \ t_R \ of \ minor \ isomer: \ 18.3 \ min.
VWD: Signal A,
254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.912</td>
<td>34143414</td>
<td>50.35</td>
<td>1451936</td>
<td>54.73</td>
</tr>
<tr>
<td>21.210</td>
<td>33385414</td>
<td>49.44</td>
<td>1201031</td>
<td>45.27</td>
</tr>
</tbody>
</table>

VWD: Signal A,
254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.323</td>
<td>164900728</td>
<td>26.37</td>
<td>6100329</td>
<td>33.96</td>
</tr>
<tr>
<td>21.360</td>
<td>460398841</td>
<td>73.63</td>
<td>12638868</td>
<td>66.04</td>
</tr>
</tbody>
</table>
2-Methyl-2-(naphthalen-2-yl)-4-phenylcyclopent-4-ene-1,3-dione (201da)

Racemic procedure:

Phenyl boronic acid 6a (27.0 mg, 0.222 mmol, 2.2 equiv.) was heated (heat gun) under vacuum in the reaction flask to convert it to the boroxine before an N₂ environment was introduced. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.9 mg, 0.101 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.0 mg, 5.6 μmol, 0.05 equiv.) and Pd(OAc)₂ (1.1 mg, 4.9 μmol, 0.05 equiv.) were then added in order, with a N₂ environment being re-introduced after each addition. Anhydrous DMF (1 mL) was then added before the solution was stirred at 70 °C in an O₂ environment (balloon) for 72 h. On completion, diethyl ether and ethyl acetate were added to the reaction solution before being washed with water (10 mL) and brine (10 mL). The aqueous layer was washed with Et₂O (5 mL) and EtOAc (2.5 mL) until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried with Na₂SO₄ before solvent was removed under reduced pressure. The crude was purified by silica-gel column chromatography (hexane/ethyl acetate 20:1), to yield 2-methyl-2-(naphthalen-2-yl)-4-phenylcyclopent-4-ene-1,3-dione 201da (26.4 mg, 0.0845 mmol, 84%) as a yellow solid.

M. p. 108-110 °C; R₁ = 0.74 (1:1 hexane:EtOAc); \(^1\)H NMR (300 MHz, CDCl₃); δ = 8.08 – 7.94 (m, 2H, Ar-H), 7.89 – 7.73 (m, 4H, Ar-H), 7.59 – 7.40 (m, 7H, Ar-H and alkene-H), 1.76 (s, 3H, CH₃); \(^{13}\)C NMR (75 MHz, CDCl₃); δ = 204.0 (C), 203.4 (C), 156.3 (C), 140.4 (CH), 134.8 (C), 133.2 (C), 132.5 (C), 131.8 (CH), 129.4 (CH), 129.01 (CH), 128.97 (C), 128.7 (CH), 128.1 (CH), 127.5 (CH), 126.4 (CH × 2), 125.7 (CH), 124.1 (CH), 56.3 (C), 20.0 (CH₃); ν\(_{\text{max}}/\text{cm}^{-1}\) 3054 w, 1737 w, 1691 v str, 1596 m, 1506 m, 1446 m, 1246 str, 1104 m, 1050 m, 922 str, 808 str, 762 str; HRMS (NSI) m/z calc. for C₂₂H₁₇O₂: 313.1223 [M+H]^⁺; found: 313.1227.
Enantioselective procedure:

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (2.4 mg, 11.8 μmol, 0.12 equiv.) was added to a dried flask, purged with N₂. DMA (0.8 mL), followed by Pd(OAc)$_2$ (2.3 mg, 10.2 μmol, 0.10 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.6 mg, 0.0999 mmol, 1 equiv.), was added to the solution followed by DMA (0.2 mL) and phenyl boronic acid 6a (24.7 mg, 0.24 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was left to stir at 50 °C for 95 h under an O$_2$ atmosphere (balloon) and with an air condenser. On completion, 2:1 EtOAc:Et$_2$O was added to the reaction solution before being washed with H$_2$O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et$_2$O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO$_4$ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane / EtOAc, 20:1) to yield (S)-2-methyl-2-(naphthalen-2-yl)-4-phenylcyclopent-4-ene-1,3-dione 201da (30.4 mg, 0.097 mmol, 97%) as a yellow solid (74:26 er).

See racemic procedure for characterisation.

$[\alpha]_D^{23} = +74.0$ (c 1.00, CHCl$_3$); 74:26 er; HPLC (CHIRALPAK IB, hexane/2-propanol: 99/1, flow rate: 1.0 mL min$^{-1}$, detection UV 254 nm, 25 °C) t_R of major isomer: 12.8 min, t_R of minor isomer: 11.5 min.
VWD: Signal A, 254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.233</td>
<td>42444601</td>
<td>50.07</td>
<td>3114921</td>
<td>52.74</td>
</tr>
<tr>
<td>12.370</td>
<td>42333898</td>
<td>49.93</td>
<td>2791206</td>
<td>47.26</td>
</tr>
</tbody>
</table>

VWD: Signal A, 254 nm Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.540</td>
<td>24260799</td>
<td>26.32</td>
<td>1714583</td>
<td>29.15</td>
</tr>
<tr>
<td>12.807</td>
<td>67934195</td>
<td>73.68</td>
<td>4167749</td>
<td>70.85</td>
</tr>
</tbody>
</table>
N-(4-(4-Methyl-4-(naphthalen-2-yl)-3,5-dioxocyclopent-1-en-1-yl)phenyl)acetamide (201dh’)

Racemic procedure:

4-Acetamidophenylboronic acid 6h’ (39.5 mg, 0.221 mmol, 2.2 equiv.) was heated (heat gun) under vacuum in the reaction flask to convert it to the boroxine before an N₂ environment was introduced. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.6 mg, 0.999 mmol, 1 equiv.), 1,10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)₂ (1.3 mg, 5.8 μmol, 0.06 equiv.) were then added in order, with a N₂ environment being re-introduced after each addition. Anhydrous DMF (1 mL) was then added before the solution was stirred at 70 °C in an O₂ environment (balloon). After 24 h, further portions of 10-phenanthroline 44 (1.2 mg, 6.7 μmol, 0.07 equiv.) and Pd(OAc)₂ (1.3 mg, 5.8 μmol, 0.06 equiv.) were added and the reaction stirred for a further 24 h. On completion, diethyl ether and ethyl acetate were added to the reaction solution before being washed with water (10 mL) and brine (10 mL). The aqueous layer was washed with Et₂O (5 mL) and EtOAc (2.5 mL) until the organic layer was colourless. The combined organic layers were washed with brine (15 mL) and dried with Na₂SO₄ before solvent was removed under reduced pressure. The crude was purified by silica-gel column chromatography (hexane/ethyl acetate 1:1), to yield N-(4-(4-methyl-4-(naphthalen-2-yl)-3,5-dioxocyclopent-1-en-1-yl)phenyl)acetamide 201dh’ (31.5 mg, 0.0853 mmol, 85%) as a thick yellow oil.

Rₜ = 0.29 (1:2 hexane:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ = 7.98 (d, J = 8.8 Hz, 2H, Ar-H), 7.89 – 7.71 (m, 5H, Ar-H and NH), 7.64 (d, J = 8.7 Hz, 2H, Ar-H), 7.53 – 7.37 (m, 4H, Ar-H and alkene H), 2.18 (s, 3H, CH₃), 1.74 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 204.3 (C), 203.3 (C), 168.4 (C), 155.2 (C), 141.2 (C), 139.0 (CH), 134.9 (C), 133.2 (C), 132.5 (C), 130.6 (CH), 128.7 (CH), 128.1 (CH), 127.5 (CH), 126.4 (CH), 126.3 (CH), 125.7 (CH), 124.5 (C), 124.1 (CH), 119.5 (CH), 56.3 (C), 24.8 (CH₃), 20.0 (CH₃); νmax/cm⁻¹ 3312 w, 2973 w, 1737 w, 1689 v str, 1590 str, 1507 v str, 1410 m, 1368 m, 1317 str, 1244 v str, 1183 m, 745 v str; HRMS (NSI) m/z calc. for C₂₄H₂₀O₃N: 370.1438 [M+H]^+; found: 370.1428.
Enantioselective procedure:

(S)-4-(Tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 64 (3.0 mg, 11.0 μmol, 0.11 equiv.) was added to a dried flask, purged with N₂. DMA (0.5 mL), followed by Pd(OAc)₂ (2.4 mg, 10.7 μmol, 0.11 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-Methyl-2-(naphthalen-2-yl)cyclopent-4-ene-1,3-dione 183d (23.8 mg, 0.1007 mmol, 1 equiv.), was added to the solution followed by DMA (0.5 mL) and 4-acetamidophenylboronic acid 6h’ (38.8 mg, 0.241 mmol, 2.4 equiv.) which was freshly dehydrated under vacuum with a heat gun to form the boroxine. The reaction was then left to stir at 50 °C under an O₂ atmosphere (balloon) and with an air condenser. After 48 h, additional portions of ligand 64 (3.0 mg, 11.0 μmol, 0.11 equiv.) and Pd(OAc)₂ (2.4 mg, 10.7 μmol, 0.11 equiv.) were added and the reaction left for a further 48 h. On completion, 2:1 EtOAc:Et₂O was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with 2:1 EtOAc:Et₂O until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc, 20:1) to yield (S)-N-(4-(methyl-4-(naphthalen-2-yl)-3,5-dioxocyclopent-1-en-1-yl)phenyl)acetamide 201dh’ (10.5 mg, 0.028 mmol, 28%) as a yellow solid (80:20 er).

See racemic procedure for characterisation.

[α]D₁⁰⁰ = +207.0 (c 0.155, CHCl₃); 80:20 er determined by high resolution ¹H NMR spectroscopy (400 MHz, CDCl₃) in the presence of 4.0 equivalents (R)-(+-1-(9-anthryl)-2,2,2-trifluoroethanol.
Synthesis of Preussidone (189)

(4-Hydroxy-3-methoxyphenyl)boronic acid (6b’)

(4-Hydroxy-3-methoxyphenyl)boronic acid pinacol ester 215 (0.500 g, 2.00 mmol 1 equiv.), ammonium acetate (0.4627 g, 5.99 mmol, 3 equiv.) acetone (15 mL) and water (7 mL) were added to a flask. Once all reagents had dissolved, NaIO₄ (1.288 g, 6.00 mmol, 3 equiv.) was added and the reaction stirred for 18 h. The resulting reaction mixture was filtered, EtOAc (20 mL) and brine (20 mL) were added and the phases separated. The aqueous phase was washed with EtOAc (5 × 20 mL) and the combined organic layers were washed with brine (15 mL), dried over MgSO₄ before solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/EtOAc, 2:1→1:1) followed by recrystallisation from acetone to yield (4-hydroxy-3-methoxyphenyl)boronic acid 6b’ (53.3 mg, 0.317 mmol, 16%) as a brown solid.

M.p. decomp. 210 °C; Rf = 0.43 (1:2 hexane/EtOAc); ¹H NMR (300 MHz, Acetone-d₆): δ = 7.68 (s, 1H, OH), 7.46 (d, J = 1.5 Hz, 1H, Ar-H), 7.39 (dd, J = 7.8, 1.5 Hz, 1H, Ar-H), 6.91 (s, 2H, OH), 6.81 (d, J = 7.8 Hz, 1H, Ar-H), 3.84 (s, 3H, CH₃); ¹³C NMR (75 MHz, Acetone-d₆): δ = 149.8 (C), 147.7 (C), 130.9 (C), 128.9 (CH), 117.9 (CH), 115.3 (CH), 56.1 (CH₃); νmax/cm⁻¹: 3258 br str, 1595 str, 1518 str, 1458 w, 1417 str, 1336 v str, 1261 m, 1230 str, 1159 str, 1092 str, 1030 v str, 878 m, 819 m; HRMS (APCI) m/z calc. For C₇H₉O₄⁵⁵B: 167.0625; found: 167.0621.
2,4-Bis(4-hydroxy-3-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione (189)*

(S)-4-(Tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 64 (1.5 mg, 5.5 μmol, 0.055 equiv.) was added to a dried flask, purged with N₂. DMA (0.5 mL), followed by Pd(OAc)₂ (1.1 mg, 4.9 μmol, 0.049 equiv.) were added and the solution was left to stir at room temperature for 1 h. 2-(4-Hydroxy-3-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione 183i (23.2 mg, 0.0999 mmol, 1 equiv.), was added to the solution followed by DMA (0.5 mL) and 4-hydroxy-3-methoxyphenyl boronic acid pinacol ester 215 (62.5 mg, 0.250 mmol, 2.5 equiv.) and the reaction was left to stir at 50 °C under an O₂ atmosphere (balloon) and with an air condenser. Additional portions of both (S)-4-(Tert-Butyl)-2-[4-(trifluoromethyl)pyridin-2-yl]-4,5-dihydrooxazole 64 (1.5 mg, 5.5 μmol, 0.055 equiv.) and Pd(OAc)₂ (1.1 mg, 4.9 μmol, 0.049 equiv.) were added after 24 and 48 h. After a further 24 h, EtOAc was added to the reaction solution before being washed with H₂O and brine. The aqueous layer was extracted with EtOAc until the organic layer was colourless. The combined organic layers were washed with brine and dried over MgSO₄ and solvent was removed via reduced pressure. The resulting crude was purified by silica gel column chromatography (hexane/EtOAc 2:1) to yield 2,4-bis(4-hydroxy-3-methoxyphenyl)-2-methylcyclopent-4-ene-1,3-dione [(+)-preussi done] 189 (28.1 mg, 0.0793 mmol, 79%) as a red oil (85:15 er).

Red oil; Rf = 0.27 (2:1 EtOAc:hexane); ¹H NMR (300 MHz, CDCl₃): δ = 7.70 (d, J = 2.0 Hz, 1H, Ar-H), 7.59 (dd, J = 8.4, 2.0 Hz, 1H, Ar-H), 7.33 (s, 1H, alkene-H), 7.02 (d, J = 8.4 Hz, 1H, Ar-H), 6.90 (d, J = 2.0 Hz, 1H, Ar-H), 6.85 (d, J = 8.3 Hz, 1H, Ar-H), 6.80 (dd, J = 8.3, 2.0 Hz, 1H, Ar-H), 6.15 (s, 1H, OH), 5.65 (s, 1H, OH), 3.96 (s, 3H, CH₃), 3.87 (s, 3H, CH₃), 1.61 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ = 204.8 (C), 203.4 (C), 155.2 (C), 149.3 (C), 146.67 (C), 146.65 (C), 145.2 (C), 137.8 (CH), 129.5 (C), 129.1 (CH), 121.3 (C), 119.5 (CH), 115.1 (CH), 114.4 (CH), 111.6 (CH), 109.1 (CH), 56.1 (CH₃), 55.9 (CH₃), 55.7 (C), 20.2 (CH₃); 3411 br str, 2937 w, 1735 w, 1687 v str, 1573 m, 1508 v str, 1449 m, 1424 m, 1246 v str, 1204 v str, 1127 str, 1028 v

*¹H and ¹³C NMR spectra also obtained using acetone-d₆ as reference and data corresponds with literature data from Cichewicz and co-workers, *J. Nat. Prod.*, 2012, 75, 1819-1823.
str, 908 str, 727 v str; HRMS (APCI) m/z calc. for C_{20}H_{19}O_6: 355.1176 [M+H]^+ found: 355.1181.

[α]_D^{20} = +78.0 (c 1.00, CHCl_3); 85:15 er determined by high resolution ^1H NMR spectroscopy (400 MHz, CDCl_3) in the presence of 5.0 equivalents (S)-(+)1-(9-anthryl)-2,2,2-trifluoroethanol.
Pd-pyridinyl-oxazoline acetate complex 56

(S)-4-Tert-Butyl-2-(2-pyridyl)oxazoline 210 (25.1 mg, 0.123 mmol, 1.0 equiv.), Pd(MeCN)$_2$Cl$_2$ (31.8 mg, 0.123 mmol, 1.0 equiv.) and dichloromethane (1 mL) were stirred for 5 hours under an argon atmosphere at room temperature and with the exclusion of light. The mixture was then filtered through celite and concentrated to 0.1 mL in vacuo. The crude substrate was precipitated with hexane and the solid filtered and washed with Et$_2$O to yield 212 (31.0 mg, 0.0813 mmol, 66%, orange solid).

To a suspension of 212 (31.0 mg, 0.0813 mmol, 1 equiv.) in dichloromethane (2 mL), silver acetate (27.1 mg, 0.162 mmol, 2 equiv.) was added and the solution stirred in the absence of light for 15 min at room temperature. The suspension was then filtered and the filtrate was evaporated to dryness in vacuo to afford 56 as a orange solid (29.1 mg, 0.0679 mmol, 84%).

1H NMR (300 MHz, CDCl$_3$): $\delta = 8.33$ (s, 1H, Ar-H), 8.12 (t, $J = 7.8$ Hz, 1H, Ar-H), 7.80 – 7.54 (m, 2H, Ar-H), 4.82 (dd, $J = 9.3$, 3.9 Hz, 1H, CH$_2$H), 4.74 (t, $J = 9.3$ Hz, 1H, CHH), 4.10 (dd, $J = 9.3$, 3.9 Hz, 1H, CH$_2$-Bu), 2.10 (s, 3H, CH$_3$), 2.03 (s, 3H, CH$_3$), 1.01 (s, 9H, t-Bu); 13C NMR (101 MHz, CDCl$_3$): $\delta = 178.4$ (C), 178.3 (C), 168.5 (C), 151.1 (CH), 144.3 (C), 140.1 (CH), 129.0 (CH), 124.7 (CH), 74.1 (CH$_2$), 72.5 (CH), 34.7 (C), 25.8 (CH$_3$), 23.0 (CH$_3$); HRMS (NSI) m/z calc. for C$_{14}$H$_{19}$O$_3$N$_2$: 365.0446 [M-OAc]$^+$; found: 365.0451.
4.9 References

Appendix: Publications

