Detection and characterization of dispersive North Atlantic Right whale up calls in a shallow-water environment using a region-based active contour model

Bashar Ibrahim Mohammad

A dissertation submitted for the degree of Doctor of Philosophy

Heriot-Watt University

School of Engineering and Physical Sciences

October 2010

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author or of the University (as may be appropriate).
Abstract

For mitigation and monitoring of endangered North Atlantic Right whales, identifying their presence from their vocalisations is the essential principle of Passive Acoustic Monitoring (PAM) system. The most common vocalisations of Right whales are characterized as frequency modulated up sweeps with duration of ~1s and a frequency range from 50 to 200 Hz. These species favour shallow waters during their seasonal migration. Such shallow-water acoustic environments act as a waveguide and cause the mono-component up call emitted by the vocalising whale to become a dispersive multi-mode signal with different time arrivals and relative energy at the receiver. As well as the natural variation in species vocalisation, another variation in the characteristic features extracted from dispersive calls results from the dispersion effect.

In this thesis normal mode modelling was used to better understand the influence of shallow water on the parameters of Right whale up calls. Also, examples from data recorded in Cape Cod Bay shows the dispersion influence. Visual scanning indicates that 93% of the data are dispersive and the first mode in 85% of these calls is less excited than the second mode due to the dependence of mode excitation on the depth of the calling whale.

The discrimination between the Northern Right whale up calls and background noise has been investigated using the Support Vector Machine classifier. To perform this task, a region-based active contour segmentation method is proposed. This approach is based on the evolution of the contour within the spectrogram image searching for the uniformity of the target object. In this work both synthesized data based on typical Right whale vocalisations and real data recorded in Cape Cod Bay are used to evaluate the proposed method.

To illustrate the variation in the data caused by the channel effect we compare the descriptive statistics of the call duration using both the single mode and the multi-mode approaches. The single mode analysis was performed by extracting the frequency contour of the first mode.
Acknowledgements

The author would like to thank his supervisor Ron McHugh for the great support and advice he has supplied throughout the PhD study. The author would also like to thank Judith Bell for her support during the first stage of his PhD work. Thanks are also extended to Tishreen University, Lattakia, Syria whose scholarship allowed this research to be undertaken. The author appreciates the efforts made by the British Council to support his study at Heriot-Watt University.

The author also appreciates the cooperation of the International Fund for Animal Welfare (IFAW) for the supply of recorded Right whale data set. The author’s thanks also go to Alexander Belyaev for sharing his knowledge on Computer Vision methods including active contour techniques. The author also thanks Shawn Lankton, Georgia Institute of Technology, USA for the use of his active contours Matlab code.

In particular the author deeply appreciates the support and encouragement of his family who have always supported his educational development. Special thanks are offered to the author’s wife Halla Sulaiman who stands beside him in all his bad and good times during his study.
DECLARATION STATEMENT

(Research Thesis Submission Form should be placed here)