

Interactive Real-Time Three-Dimensional

Visualisation of Virtual Textiles

Michael Stuart Alexander Robb, B.Sc, B.Sc. (Hons), M.Sc.

Thesis submitted

for the

Degree of Doctor of Philosophy

Heriot-Watt University

Department of Computer Science

December 2009

The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of
the information contained in it must acknowledge this thesis as the source of the quotation or
information.

 i

Abstract

Virtual textile databases provide a cost-efficient alternative to the use of existing hardcover

sample catalogues. By taking advantage of the high performance features offered by the

latest generation of programmable graphics accelerator boards, it is possible to combine

photometric stereo methods with 3D visualisation methods to implement a virtual textile

database. In this thesis, we investigate and combine rotation invariant texture retrieval with

interactive visualisation techniques.

We use a 3D surface representation that is a generic data representation that allows us to

combine real-time interactive 3D visualisation methods with present day texture retrieval

methods. We begin by investigating the most suitable data format for the 3D surface

representation and identify relief-mapping combined with Bézier surfaces as the most

suitable 3D surface representations for our needs, and go on to describe how these

representation can be combined for real-time rendering. We then investigate ten different

methods of implementing rotation invariant texture retrieval using feature vectors. These

results show that first order statistics in the form of histogram data are very effective for

discriminating colour albedo information, while rotation invariant gradient maps are

effective for distinguishing between different types of micro-geometry using either first or

second order statistics.

 ii

Dedication

To Mum, David, Marie-Louise, Dad and

Fluffy, Tiga, Genjie and Julie and Snooks

 iii

Acknowledgements

The research described by this thesis was conducted in the Department of Mathematics and

Computer Science at Heriot-Watt University in Edinburgh, Scotland. The location for this

research was in TextureLab at the Riccarton Campus as part of the Virtex project. The

journey of discovery for this thesis has taken many years of work in the fields of real-time

computer graphics and signal processing.

First and foremost, I wish to thank my supervisor, Professor Mike Chantler for offering me

the opportunity to conduct this research, his continual support and taking the time to review

the many chapters of this thesis. I would also like to thank Dr. Patrick Green for his advice

on the design of psychophysical experiments. I would also like to thank Mark Timmins

from the School of Textiles and Design for his helpful advice during the early years of this

thesis. I would especially like to thank Andy Spence for helping to co-author the research

papers that we have published over the years. I would also like to thank the team at

TextureLab for their many valuable contributions: Ged McGunnigle, Jerry Wu, Christine

Gullón, OndIej Drbohlav, Jiri Filip, Fraser Halley, Pratik Shah, Junyu Dong, Khemraj

Emrith and Stephano Padilla. I would also like to thank Dr. J.P Siebert for taking the time

to act as the external examiner for this thesis.

I would also like to thank the anonymous reviewers of the papers that were submitted for

publication. I would also like to thank the ESPRC for providing the research funding for the

Virtex project. Finally, I would like to thank my family for their support during the many

years that this thesis has taken from start to completion.

 iv

ACADEMIC REGISTRY
Research Thesis Submission

Name: Mr. Michael Robb

School/PGI: School of Mathematics and Computer Science

Version: (i.e. First,
Resubmission, Final)

 Degree Sought: Ph.D.

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference

to work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be

made available for loan or photocopying, subject to such conditions as the Librarian may require
5) I understand that as a student of the University I am required to abide by the Regulations of the

University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is

submitted.

Signature of
Candidate:

 Date:

Submission

Submitted By (name in capitals):

Signature of Individual
Submitting:

Date Submitted:

For Completion in Academic Registry

Received in the Academic
Registry by (name in capitals):

Method of Submission

(Handed in to Academic Registry;
posted through internal/external
mail):

Signature:

 Date:

 v

Table of Contents

Table of Contents .. v
List of Figures... ix
List of Tables.. xvi
Principal Symbols.. xvii
Abbreviations .. xxii
Definition of Terms ..xxiii
Chapter 1 – Introduction.. 1
1.1 Motivation ... 1
1.2 Scope of the research... 4
1.3 Thesis Organisation ... 7
1.4 Original Work.. 9
Chapter 2 - Literature Survey .. 10
2.1 Review of Candidate 3D Surface Representations.. 11
2.1.1 Selection of the 3D Surface Representation... 12
2.1.2 General and Scattering Functions... 16
2.1.3 Bi-directional Scattering Surface Reflectance Distribution Function (BSSRDF)
... 16
2.1.4 Bi-directional Reflection Distribution Function (BRDF)............................... 17
2.1.5 Bi-directional Texture Function (BTF or Spatially Varying BRDF) 17
2.1.6 Surface Light Fields and Surface Reflectance Fields..................................... 19
2.1.7 Polynomial Texture Map (PTM) .. 20
2.1.8 Texture-mapping and Blinn Bump mapping.. 21
2.1.9 Relief-mapping ... 23
2.1.10 Point-set surfaces (PSS).. 24
2.1.11 Summary of micro-geometry and colour representation.............................. 27
2.2 Review of Real-Time 3D Visualisation methods.. 29
2.2.1 Selection of the lighting and shadowing method.. 30
2.2.2 Shadow volumes... 32
2.2.3 Radiosity/Discontinuity meshing ... 33
2.2.4 Ray-tracing methods... 34
2.2.5 Scan line algorithms ... 35
2.2.6 Subdivision methods .. 35
2.2.7 Shadow mapping .. 37
2.2.8 Shadow fields ... 40
2.2.9 Summary... 40
2.3 Review of Rotation invariant texture retrieval features..................................... 44
2.3.1 Selection of the texture retrieval method.. 44
2.3.2 Statistical methods.. 48
2.3.3 First order statistics... 48
2.3.4 Second order statistics .. 50
2.3.5 Geometrical methods.. 50
2.3.6 Mathematical morphology.. 50
2.3.7 Adaptive Region Extraction ... 51

 vi

2.3.8 Model-based methods... 52
2.3.9 Markov Random Fields .. 52
2.3.10 Fractals ... 53
2.3.11 Multi-Resolution Auto-Regressive Features .. 53
2.3.12 Signal processing methods ... 54
2.3.13 Spatial domain methods ... 54
2.3.14 Frequency domain methods.. 54
2.3.15 Ring and Wedge filter banks .. 55
2.3.16 Gabor filter bank... 57
2.3.17 Shmid filter bank .. 58
2.3.18 Leung-Malik filter bank.. 58
2.3.19 MR-4 and MR-8 filter banks .. 59
2.3.20 The Polarogram .. 60
2.3.21 Summary... 62
2.4 Review of current information retrieval system implementations 63
2.4.1 Ferret: A toolkit for content-based similarity searches 64
2.4.2 Measuring the accuracy rate of information retrieval systems....................... 65
2.4.3 A survey of texture retrieval systems ... 68
2.4.4 Summary... 70
2.5 Conclusions ... 71
2.5.1 3D Surface Representations.. 71
2.5.2 3D Visualisation ... 71
2.5.3 Texture retrieval system ... 72
Chapter 3 – Data Requirements... 73
3.1 Introduction ... 73
3.2 Existing databases ... 74
3.3 Acquisition techniques .. 74
3.4 Conclusion... 76
Chapter 4 – Data Acquisition using Photometric Stereo... 78
4.1 Image Acquisition using Photometric Stereo .. 78
4.2 Using photometric stereo data with 3D graphics accelerator boards 82
Chapter 5 – 3D Surface visualisation methods.. 88
5.1 Introduction ... 88
5.2 Organisation .. 89
5.3 Criteria... 89
5.4 A detailed survey of 3D surface visualisation methods 91
5.4.1 Texture-mapping .. 93
5.4.2 Blinn Bump Mapping ... 93
5.4.3 Shell Mapping .. 93
5.4.4 Displacement Mapping... 94
5.4.5 View-Dependent Displacement Mapping (VDM) ... 94
5.4.6 Horizon Mapping.. 95
5.4.7 Parallax Mapping.. 95
5.4.8 Relief Texture-mapping.. 96
5.4.9 Sphere Mapping.. 97
5.5 The 3D Graphics Pipeline.. 99

 vii

5.5.1 Vertex and Fragment shaders ... 100
5.5.2 The Tangent space coordinate system.. 101
5.5.3 Representation of geometric models using Bézier surfaces 104
5.5.4 Conclusions .. 114
Chapter 6 –Visualisation Implementation and Results.. 117
6.1 Introduction ... 117
6.1.1 Bump-mapping ... 118
6.1.2 Relief-mapping ... 118
6.1.3 Relighting the 3D surface representation ... 121
6.1.4 Implementing the lighting equation using vertex and fragment shaders...... 125
6.1.5 Rendering the contribution of each light source in the scene....................... 126
6.1.6 Rendering the 3D geometric models .. 126
6.2 Demonstration of visualisation methods ... 127
6.2.1 Comparison of the visual effects .. 128
6.2.2 Conclusion.. 133
Chapter 7 – Texture Retrieval Methods .. 135
7.1 Introduction ... 135
7.2 Organisation .. 137
7.3 Criteria... 137
7.4 Using surface normal data ... 139
7.5 The selected texture retrieval methods .. 140
7.5.1 Summary... 142
7.6 Implementation of the selected texture retrieval methods............................... 146
7.6.1 Filter banks and the Fast Fourier Transform (FFT)...................................... 146
7.6.2 The Histogram and Colour Histogram ... 148
7.6.3 The ring filter bank ... 149
7.6.4 The wedge filter bank... 153
7.6.5 The Gabor filter bank ... 156
7.6.6 The Schmid filter bank ... 161
7.6.7 The Leung-Malik filter bank .. 163
7.6.8 The Maximum Response 4 filter bank ... 169
7.6.9 The Maximum Response 8 filter bank ... 170
7.6.10 The Polarogram .. 170
7.6.11 The Combined filter bank... 172
7.6.12 Summary... 172
7.7 Offsetting directionally sensitive features ... 173
7.8 Quantitative assessment of texture retrieval methods 173
7.8.1 Assessment results.. 173
7.8.1.1 Assessment results for albedo data.. 174
7.8.1.2 Assessment results for surface normal data... 176
7.8.1.3 Assessment results for gradient data ... 178
7.8.2 Discussion of the assessment results. ... 180
7.8.2.1 Colour Data ... 180
7.8.2.2 Micro-geometry data ... 181
7.9 Conclusion... 182
Chapter 8 – Conclusions and Further Work .. 185

 viii

Appendix A – Results from texture retrieval experiments 191
A.1 Albedo texture data results ... 192
A.2 Bumpmap texture data results .. 212
A.3 Gradient texture data results ... 232
Appendix B – The Texture Dataset ... 252
Appendix C – OpenGL vertex and fragment shaders.. 257
C.1 Detailed explanation of the lighting vertex shader ... 257
C.2 Detailed explanation of the lighting fragment shader..................................... 261
C.3 Vertex shader for point light sources .. 271
C.4 Vertex shader for directional light sources ... 273
C.5 Fragment shader for directional and specular light sources 275
Appendix D – Chronological index for BRDF research papers............................ 279
D.1 Chronological index for BRDF research papers... 279
D.2 Chronological index for shading languages and hardware............................. 280
D.3 Chronological index for lighting equations .. 281
D.4 Chronological index for CAD/CAM research for textiles.............................. 281
Appendix E – List of publications by the author... 283
References ... 285

 ix

List of Figures

Figure 1: The scope of research conducted by this thesis.. 6

Figure 2: Logical structure of the thesis... 8

Figure 3: Hierarchy of 3D surface representation methods ... 15

Figure 4: Measurement setup for the BTF with textile sample on robot arm...................... 18

Figure 5: Capture equipment for surface light and reflectance fields.................................. 19

Figure 6: Template system for manual placement of light sources over sample................. 21

Figure 7: Automatic camera system for capturing PTM’s... 21

Figure 8: Image rendered using bumpmapping along with associated bumpmap............... 22

Figure 9: Images rendered using bumpmapping along with associated bumpmap 22

Figure 10: Conventional texture-mapping (left) and relief mapping................................... 24

Figure 11: Teapot rendered using relief-mapping.. 24

Figure 12: Images rendered using point set surfaces ... 25

Figure 13: Statue of an angel represented as a point set surface.. 26

Figure 14: Scene rendered using shadow volumes .. 33

Figure 15: Scene rendered using radiosity calculations... 34

Figure 16: Raytraced scenes with shadows.. 35

Figure 17: Subdivision of scene into umbral and penumbral shadows................................ 36

Figure 18: Scene rendered using subdivision methods.. 37

Figure 19: Observer view of shadow mapping scene .. 38

Figure 20: Light source view of shadow mapping scene... 39

Figure 21: Shadowmap of scene .. 39

Figure 22: Observer view of shadow mapped scene combined with shadows.................... 39

 x

Figure 23: Soft shadows generated using shadow fields ... 40

Figure 24: Hierarchy of texture classification methods ... 47

Figure 25: Erosion and Dilation in mathematical morphology.. 51

Figure 26: Texture classification using adaptive feature extraction 52

Figure 27: Ring and wedge filter bank... 56

Figure 28: Dyadic bank of Gabor filters .. 57

Figure 29: Schmid filter bank .. 58

Figure 30: Leung-Malik filter bank ... 59

Figure 31: Calculation of the Polarogram from the frequency domain data........................ 61

Figure 32: Architecture of the Ferret Toolkit for Content-Based Similarity Searches 65

Figure 33: The image acquisition stage of our data representation 78

Figure 34: The photometric stereo apparatus... 79

Figure 35: Photometric Stereo Capture Pipeline.. 84

Figure 36: Textile sample used for photometric stereo.. 85

Figure 37: The set of photometric images each with a different light source direction....... 85

Figure 38: The albedo, P and Q gradient field images... 85

Figure 39: The final normalmap and heightmap images ... 85

Figure 40: Stage three of the data representation... 89

Figure 41: Example of linear search miss with relief-mapping ... 98

Figure 42: Classic 3D graphics pipeline .. 100

Figure 43: Programmable 3D Graphics Pipeline ... 101

Figure 44: The Tangent Space System... 102

Figure 45 : Sample cubic Bézier curves... 106

 xi

Figure 46: Control nets for rectangular and triangulated cubic Bézier surfaces................ 108

Figure 47: Example height-map query for relief-mapping. ... 120

Figure 48: Geometry rendered with standard texure mapping and no lighting 129

Figure 49: Geometry rendered with standard texture mapping and diffuse lighting 129

Figure 50: Geometry rendered using bump-mapping and diffuse lighting........................ 130

Figure 51: Geometry rendered using relief-mapping and diffuse lighting 130

Figure 52: Geometry rendered with relief-mapping, shadows and diffuse lighting 131

Figure 53: Torus knot rendered with relief mapping, diffuse lighting and shadows 131

Figure 54: Utah Teapot rendered with relief mapping, shadows and diffuse lighting....... 132

Figure 55: Torus knot rendered with relief mapping, shadows and diffuse lighting 132

Figure 56: Utah Teapot rendered with relief mapping, shadows and diffuse lighting....... 133

Figure 57: Stage two of the project data representation... 136

Figure 58: Ring filters in the frequency domain .. 151

Figure 59: All Ring Filters in the frequency domain ... 152

Figure 60: Wedge filters in the frequency domain... 155

Figure 61: All wedge filters in the frequency domain ... 155

Figure 62: Gabor filters in the frequency domain.. 159

Figure 63: All Gabor filters in the frequency domain.. 160

Figure 64: The Schmid filter bank in the frequency domain ... 163

Figure 65: Gaussian filters in the frequency domain ... 164

Figure 66: Laplacian-of-Gaussian filters ... 165

Figure 67: Edge filters in the frequency domain.. 167

Figure 68: Bar filters in the frequency domain .. 169

 xii

Figure 69: Example polarogram lookup table - sixteen bin polarogram 171

Figure 70: Calculation of the Polarogram from frequency domain data 171

Figure 71: Polarogram mask filter for the frequency domain.. 172

Figure 72: Recall-Precision graph of all albedo texture retrieval methods........................174

Figure 73: RoC graph of all albedo texture retrieval methods... 175

Figure 74: Recall-Precision graph of all surface normal texture retrieval methods 176

Figure 75: RoC graph of all surface normal texture retrieval methods.............................. 177

Figure 76: Recall-Precision of all gradient texture retrieval methods 178

Figure 77: RoC graph of all gradient texture retrieval methods .. 179

Figure 78: Recall-Precision graph of albedo data retrieved using the colour histogram... 192

Figure 79: RoC graph of albedo data retrieved using the colour histogram 193

Figure 80: Recall-Precision graph of albedo data retrieved using the ring filter bank 194

Figure 81: RoC graph of albedo data retrieved using the ring filter bank 195

Figure 82: Recall-Precision graph of albedo data retrieved using the wedge filter bank .. 196

Figure 83: RoC graph of albedo data retrieved using the wedge filter bank 197

Figure 84: Recall-Precision graph of albedo data retrieved using the Gabor filter bank... 198

Figure 85: RoC graph of albedo data retrieved using the Gabor filter bank...................... 199

Figure 86: Recall-Precision graph of albedo data retrieved using the Schmid filter bank 200

Figure 87: RoC graph of albedo data retrieved using the Schmid filter bank.................... 201

Figure 88: Recall-Precision graph of albedo data retrieved using the Leung-Malik filter

bank.. 202

Figure 89: RoC graph of albedo data retrieved using the Leung-Malik filter bank........... 203

Figure 90: Recall-Precision graph of albedo data retrieved using the MR4 filter bank 204

 xiii

Figure 91: RoC graph of albedo data retrieved using the MR4 filter bank........................ 205

Figure 92: Recall-Precision graph of albedo data retrieved using the MR8 filter bank 206

Figure 93: RoC graph of albedo data retrieved using the MR8 filter bank........................ 207

Figure 94: Recall-Precision graph of albedo data retrieved using the Polarograms.......... 208

Figure 95: RoC graph of albedo data retrieved using the Polarogram............................... 209

Figure 96: Recall-Precision graph of albedo data retrieved using combined filter banks . 210

Figure 97: RoC graph of albedo data retrieved using combined filter banks 211

Figure 98: Recall-Precision graph of bumpmap data retrieved using the colour histogram

.. 212

Figure 99: RoC graph of bumpmap data retrieved using the colour histogram................. 213

Figure 100: Recall-Precision graph of bumpmap data retrieved using the ring filter bank214

Figure 101: RoC graph of bumpmap data retrieved using the ring filter bank.................. 215

Figure 102: Recall-Precision graph of bumpmap data retrieved using the wedge filter bank

.. 216

Figure 103: RoC graph of bumpmap data retrieved using the wedge filter bank 217

Figure 104: Recall-Precision graph of bumpmap data retrieved using the Gabor filter bank

.. 218

Figure 105: RoC graph of bumpmap data retrieved using the Gabor filter bank 219

Figure 106: Recall-Precision graph of bumpmap data retrieved using the Schmid filter bank

.. 220

Figure 107: RoC graph of bumpmap data retrieved using the Schmid filter bank 221

Figure 108: Recall-Precision graph of bumpmap data retrieved using the Leung-Malik filter

bank.. 222

 xiv

Figure 109: RoC graph of bumpmap data retrieved using the Leung-Malik filter bank ... 223

Figure 110: Recall-Precision graph of bumpmap data retrieved using the MR4 filter bank

.. 224

Figure 111: RoC graph of bumpmap data retrieved using the MR4 filter bank 225

Figure 112: Recall-Precision graph of bumpmap data retrieved using the MR8 filter bank

.. 226

Figure 113: RoC graph of bumpmap data retrieved using the MR8 filter bank 227

Figure 114: Recall-Precision graph of bumpmap data retrieved using the Polarogram 228

Figure 115: RoC graph of bumpmap data retrieved using the Polarogram 229

Figure 116: Recall-Precision graph of bumpmap data retrieved using combined filter banks

.. 230

Figure 117: RoC graph of bumpmap data retrieved using combined filter banks 231

Figure 118: Recall-Precision graph of gradient data retrieved using the histogram.......... 232

Figure 119: RoC graph of gradient data retrieved using the histogram............................. 233

Figure 120: Recall-Precision graph of gradient data retrieved using the ring filter bank.. 234

Figure 121: RoC graph of gradient data retrieved using the ring filter bank..................... 235

Figure 122: Recall-Precision graph of gradient data retrieved using the wedge filter bank

.. 236

Figure 123: RoC graph of gradient data retrieved using the wedge filter bank................. 237

Figure 124: Recall-Precision graph of gradient data retrieved using the Gabor filter bank

.. 238

Figure 125: RoC graph of gradient data retrieved using the Gabor filter bank 239

 xv

Figure 126: Recall-Precision graph of gradient data retrieved using the Schmid filter bank

.. 240

Figure 127: RoC graph of gradient data retrieved using the Schmid filter bank 241

Figure 128: Recall-Precision graph of gradient data retrieved using the Leung-Malik filter

bank.. 242

Figure 129: RoC graph of gradient data retrieved using the Leung-Malik filter bank 243

Figure 130: Recall-Precision graph of gradient data retrieved using the MR4 filter bank 244

Figure 131: RoC graph of gradient data retrieved using the MR4 filter bank 245

Figure 132: Recall-Precision graph of gradient data retrieved using the MR8 filter bank 246

Figure 133: RoC graph of gradient data retrieved using the MR8 filter bank 247

Figure 134: Recall-Precision graph of gradient data retrieved using the Polarogram 248

Figure 135: RoC graph of gradient data retrieved using the Polarogram 249

Figure 136: Recall-Precision graph of gradient data retrieved using combined filter banks

.. 250

Figure 137: RoC graph of gradient data retrieved using combined filter banks................ 251

Figure 138: Vertex shader for ambient, diffuse and specular lighting............................... 260

Figure 139: Fragment shader for lighting (ambient and diffuse calculations)................... 268

Figure 140: Fragment shader for lighting (specular calculations) 269

Figure 141: Fragment shader for lighting (shadowing and projective texturing) 270

 xvi

 List of Tables

Table 1: Summary of the candidate 3D surface representations.. 29

Table 2: Summary of basic shadow methods... 43

Table 3: Comparison of histogram methods .. 49

Table 4: List of candidate methods for texture retrieval .. 62

Table 5: Classification table for information retrieval... 66

Table 6: Summary of the candidate nine visualisation methods.. 99

Table 7: List of textures and their assigned texture units... 123

Table 8: Summary of the selected texture retrieval methods... 144

Table 9: Table of Gabor filter frequency bands ... 161

Table 10: Table of Gabor filter bank angular bands .. 161

Table 11: Table of texture retrieval method rankings.. 183

Table 12: Table of texture retrieval methods sorted by overall performance.................... 183

Table 13: Transformation matrices used by the vertex shader .. 257

 xvii

Principal Symbols

Symbol Meaning Section
first
introduced

Type

l Illumation vector 4.1.1 vector
rayrm_ The relief-mapping surface ray

intersection function
E.1.10 function

projectionM The camera perspective projection
matrix.

E.1 matrix

albedoM The texture coordinate
transformation matrix for the
albedo and normalmap textures.

E.1 matrix

shadowM The tranformation matrix for the
shadow map texture

E.1 matrix

projectorM The transformation matrix for the
projection texture.

E.1 matrix

modelviewM The combined geometry and
camera transformation matrices.

E.1 matrix

ndgl_texcoor OpenGL output texture coordinates E.1.1 vector

xcoordgl_multite

OpenGL input texture coordinates E.1.1 vector

uvc The texture coordinate vector E.1.10 vector

dodiffusek The control flag for enabling
diffuse lighting

E.2 scalar

dospeculark The control flag for enabling
specular lighting

E.2 scalar

ppingdoreliefmak The control flag for relief-
mapping,

E.2 scalar

doshadowk The control flag for shadow
mapping,

E.2 scalar

shadowk The shadow mapping depth
texture,

E.2 scalar

selfshadowk A factor to represent self-
shadowing,

E.2 vector

normalmapn The surface normal from a
normalmap texture

E.1.11 vector

diffused The dot product for the diffuse
term.

E.1.13 scalar

zeroc A constant representing no
contribution.

E.1.14 vector

rl The reflected light vector in
tangent space.

E.1.15 vector

speculard The dot product of the specular
lighting term.

E.1.16 scalar

specfactorc The specular lighting contribution. E.1.17 vector

 xviii

Symbol Meaning Section
first
introduced

Type

diffusec The colour from the diffuse term. E.1.18 vector

albedoc The colour from the albedo texture. E.1.18 vector

diffusel The diffuse contribution of the
light source.

E.1.18 vector

specularl The specular contribution of the
light source.

E.1.19 vector

specularc The resulting specular contribution
of the light source.

E.1.19 vector

gl_vertex OpenGL input vertex position E.1.2 vector

zeroc A constant colour representing no
contribution.

E.1.20 vector

ambientl The ambient contribution of the
light source.

E.1.21 vector

albedoc The colour retrieved from the
albedo texture,

E.1.21 vector

ambientc The contribution from the ambient
term.

E.1.21 vector

finalc The final colour for the pixel
fragment,

E.1.22 vector

onec A constant representing maximum
colour intensity.

E.1.25 vector

ngl_positio OpenGL output vertex position E.1.3 vector

cetangentspae The eye vector transformed into
tangent space.

E.1.5 vector

positionl The position of light source in
world space.

E.1.6 vector

cetangentspal The light vector transformed into
tangent space.

E.1.6 vector

directionl The direction of the light source in
world space.

E.1.7 vector

cetangentspal' The normalized light vector in
tangent space.

E.1.8 vector

cetangentspae' The normalized eye vector in
tangent space.

E.1.9 vector

tp True positive 2.4.2 scalar
fp False positive 2.4.2 scalar
fn False negative 2.4.2 scalar
tn True negative 2.4.2 scalar

),,(zyx lll Individual elements of the
illumination vector

4.1.1 vector

p First gradient field for photometric
stereo

4.1.9 scalar

q Second gradient field for
photometric stereo

4.1.9 scalar

t Tilt angle 4.1.1 scalar

 xix

Symbol Meaning Section
first
introduced

Type

s Slant angle 4.1.1 scalar

pf Gradient angle in radians 4.2 scalar

qf Gradient angle in radians 4.2 scalar

p' Tangent vector in tangent space 4.2 vector
q' Binormal vector in tangent space 4.2 vector

321 lll ,., Direction vectors of incident
illumination

4.1.2 vector

L Matrix formed from direction
vectors

321 lll ,.,

4.1.3 matrix

n Unit surface normal 4.1.4 vector

rk Reflectance factor (albedo) 4.1.5 scalar

t Scaled surface normal 4.1.6 vector
),,(zyx ttt Components of the scaled surface

normal
4.1.7 scalar

cetangentspaM The inverse transpose of eyespaceM 5.5.2 matrix

t Abbreviated form of the tangent
vector

5.5.2 vector

b Abbreviated form of the binormal
vector

5.5.2 vector

n Abbreviated form of the normal
vector

5.5.2 vector

p Abbreviated form of the world
space coordinate

5.5.2 vector

),,(zyx ttt Scalar components of the tangent
vector

5.5.2 vector

),,(zyx bbb Scalar components of the bi-
normal vector

5.5.2 vector

),,(zyx nnn Scalar components of the surface
normal vector

5.5.2 vector

),,(zyx ppp Scalar components of the point on
the surface

5.5.2 scalar

p Geometric point 5.5.3 vector
U Row vector 5.5.3 matrix

basisM Basis matrix 5.5.3 matrix

C The set of control points 5.5.3 matrix
)(uF The Bézier curve 5.5.3 function

n The degree of the curve 5.5.3 scalar

ic The control points for the Bézier
curve

5.5.3 scalar

nc The control points for a spline
curve

5.5.3 scalar

)(up The cubic Bézier spline curve 5.5.3 function

 xx

Symbol Meaning Section
first
introduced

Type

)(' up The first derivative of the spline
curve

5.5.3 function

nmb The coefficients of the basis matrix 5.5.3 scalar

n The degree of the Bézier rectangle
in u

5.5.3 scalar

m The degree of the Bézier rectangle
in v

5.5.3 scalar

),(vuF The Bézier rectangle function 5.5.3 function

ijc The control points for the Bézier
rectangle

5.5.3 scalar

),,(wvuF The Bézier triangle function 5.5.3 function
),,(wvu Parametric coordinates in three

dimensions
5.5.3 scalar

ijkc The control points for the Bézier
triangle

5.5.3 scalar

il Resulting output intensity for
lighting calculations

6.1.4 vector

ak The fraction of light emitted by
ambient reflection

6.1.4 vector

dk The fraction of light emitted by
diffuse reflection

6.1.4 vector

sk The fraction of light emitted by
specular reflection

6.1.4 vector

spk Specular power factor of a material 6.1.4 vector

attf The fraction of light that reaches
the surface due to the attenuation
of light.

6.1.4 vector

e The eye vector (normalized
direction vector pointing towards
viewpoint)

6.1.4 vector

l The light vector (normalized
direction vector pointing towards
the light source)

6.1.4 vector

r The light vector reflected through
the surface normal

6.1.4 vector

),(yxf A 2D signal in the spatial domain 7.6.1 function
),(vuF A 2D signal in the frequency

domain
7.6.1 function

),(vu Coordinates in the frequency
domain

7.6.1 scalar

),(yx Coordinates in the spatial domain 7.6.1 scalar
),(sr Dimensions of the frequency

domain
7.6.1 scalar

),,(centrerr rrF s The Ring filter function 7.6.3 function

 xxi

Symbol Meaning Section
first
introduced

Type

r Radius in frequency space 7.6.3 scalar

rs Standard deviation of radius in
frequency space

7.6.3 scalar

centrer Arithmetic mean of radius in
frequency space

7.6.3 scalar

),(, centrewF qsq q The Wedge filter function 7.6.3 function

q Angle in the frequency domain 7.6.3 scalar

qs Standard deviation of angle in the
frequency domain

7.6.3 scalar

centreq Arithmetic mean of angle in the
frequency domain

7.6.3 scalar

),(vuI f Image of the filter in the spatial
domain

7.6.3 array

),(vuI t Image of the texture in the spatial
domain

7.6.3 array

),(vuI f¢ Image of the filter in the frequency
domain

7.6.3 array

),(vuI t¢ Image of the texture in the spatial
domain

7.6.3 array

),(vur Combined texture and filter image
in the frequency domain

7.6.3 array

),(yxe Combined texture and filter image
in the spatial domain

7.6.3 array

nO Output value of the filter 7.6.3 scalar

),,,

,,(

centrecentre

rg

r

rF

qsq

s

q

The Gabor filter function 7.6.5 function

),,(tsrFs The Schmid filter function 7.6.6 function

),(0 tsF A constant added to Schmid filters
to ensure a zero DC component.

7.6.6 function

),(rFgm s The Gaussian filter function 7.6.6 function

),(rFLoG s The Laplacian-of-Gaussian filter
function

7.6.6 function

),,(' qyxG The Gaussian first derivative filter
function

7.6.6 function

),,('' qyxG The Gaussian second derivative
filter function

7.6.6 function

 xxii

Abbreviations

Abbreviation Meaning Section first
introduced

2D Two-Dimensional 2.3.11
3D Three-Dimensional 2.4.3
BRDF Bidirectional Reflectance Distribution Function 2.1.1
BSDF Bidirectional Scattering Distribution Function 2.1.3
BSSDF Bidirectional Subsurface Scattering Distribution

Function
2.1.1

BSSRDF Bidirectional Scattering Surface Reflectance
Distribution Function

2.1.1

BTDF Bidirectional Transmission Distribution
Function

2.1.3

BTF Bidirectional Texture Function 2.1.5
CPU Central Processing Unit 2.1.1
CUReT Columbia-Utrecht Reflectance and Texture

Database
3.3

FFT Fast Fourier Transform 3.3
GPU Graphics Processing Unit 2.2.3
IFFT Inverse Fast Fourier Transform 7.6
JPEG Joint Photographics Experts Group 2.3.1
KBytes Kilobytes 2.3.1
LRGB Luminance, Red, Green, Blue 2.1.7
MBytes Megabytes 2.2.8
MR-4 Maximum Response 4 2.3.19
MR-8 Maximum Response 8 2.3.19
NURBS Non-Uniform Rational B-Spline 2.1.1
PTM Polynomial Texture-mapping 2.1.7
RGB Red, Green and Blue 2.1.5
RGBA Red, Green, Blue and Alpha 4.2
VDM View-Dependent Displacement Mapping 5.4.5

 xxiii

Definition of Terms

Terms Definition Section First
introduced

3D Geometric
model

A data structure used to represent a 3D
object. It may be comprised from a
collection of vertices and polygons or a
collection of parametric surfaces.

1.1

3D graphics
pipeline

A series of stages used to render 3D views
given a set of geometric data.

5.4

3D surface
representation

The representation of 3D characteristics of
a surface. This includes gradient and
heightmap information along with colour
information.

1.1

3D visualisation The presentation of mathematical data in a
visual form.

1.2

Accuracy The ability of an information retrieval
system to select relevant items and discard
non relevant items.

2.2.6

Accuracy rate The ability of an information retrieval
system to select relevant items and discard
non relevant items.

2.2.6

Albedo The basic colour information of a texture
sample under ambient light conditions.

1.1

Alpha channel A fourth channel of data used to augment
the existing red, green and blue colour
channels of a pixel. Used for a variety of
purposes including transparency,
heightmap and specularity.

2.1.8

Basis matrix A matrix used to define high-order curves
and surfaces such as NURBS.

5.5.3

Bisection method A method of root finding within an
interval. The interval is subdivided in half
until the root is found.

6.1.3

Boundary
histogram

A colour histogram in which the data is
corrected for variations in illumation
conditions.

2.3.3

Camera
projection space

The area of a scene visible to a camera
perspectively projected into the cube (-1,-
1,-1) to (1,1,1).

5.5.2

Camera space The local coordinate system of a camera. 5.5
Chromatic
aberration

The rainbow effect due to the fact that
refraction angle of a single photon of light
is proportional to the wavelength.

6.1.5

Colour histogram A method of texture classification based
only on the frequency distribution of
individual colours within the texture.

2.3.3

 xxiv

Terms Definition Section First
introduced

Colour ratio
histogram

A histogram in which the derivative or the
logarithm of the data is used to construct
the table of values

2.3.3

Combined filter
banks

A method of texture classification that
combines together all of the existing filter
methods.

7.4.4

Control net A series of vertices used to control the
shape of a parametric surface.

5.5.3

Control points A series of vertices used to control the
shape of a parametric surface.

2.5

Curvature The level at which a two-dimensional
parameteric surface curves in three
dimensional space. As there are two
parametric coordinates, a two-dimensional
can either have a curvature level of 0
(planar), 1 (cylindrical) or 2 (torus, torus-
knot, helix)

5.4.5

DC component A constant used by the Schmid filter set in
order to make the average sum to zero.

2.3.17

Depth texture
map

Another term for a heightmap. The depth
texture map represents the depth into the
geometric model.

6.1.4

Displacement
map

A texture map in which each pixel
represents the displacement on the
resulting surface.

1.1

Environment
mapping

A method of giving a material a reflective
appearance. The reflection vector for each
pixel fragment is calculated, and then used
to index a texture map (the environment
map) which can be a variety of shapes
(two hemispheres, a cylinder or a cube).

6.1.5

Eye vector The direction vector between a point on
the surface of a 3D geometric model and
the observer.

5.4

Fallout The ability of an informationr retrieval
system to retrieve non-relevant items to
the search query.

2.4.2

Feature vector A compact set of data values that
represent the unique properties of a
database entry. These may be easily
compared to facilitate texture retrieval.

1.3

Filter bank A series of filters that operate in the
frequency domain, with the resulting
outputs used to create a feature vector.

2.3.14

Fine scale surface
detail

The appearance of very small detail such
as wrinkles, dents and bulges on a surface,
which change as the position of the light
source changes.

2.1.5

 xxv

Terms Definition Section First
introduced

Fragment shader A programmable stage in the graphics
pipeline.

5..4.7

Frequency
domain

The resulting image created by applying
the FFT to a standard texture image. The
resulting image represents the energy
contribution of particular frequencies and
directions.

2.3

Fresnel reflection The effect that the sides of an object
viewed from side on will appear more
reflective than those viewed from straight
on.

6.1.4

Gabor filters A series of frequency domain filters
which are sensitive to both direction and
frequency.

2.3.16

Gaussian filter A frequency domain filter used to
implement the smoothing of an image.

2.3.18

General lighting
function

A mathematical equation which models
the appearance of a surface down to the
points and times of absorption and
emissson of individual photons of light.

2.1.2

Geometric point A single point on the surface of a 3D
geometric model.

2.1.10

Gloss maps A texture maps that represents the
reflective properties of a material

2.1.8

Gradient field A texture image that defines the gradient
in a selected axis of an image.

1.1

Gradient
histogram

A histogram in which each bin represents
a particular range of gradient values

7.8.3.1

Heightmap A texture image that defines the height of
each pixel on the texture.

2.1.11

Histogram

A statistical method of analyzing data in
which data elements are grouped together
according to particular ranges.

7.8.3.1

Horizon mapping A 3D surface representation method
which defines a horizon map for each
texture pixel. The horizon map uses a
single bit to indicate whether the light
source is visible from a particular
direction.

5.4.6

Illumination
vector

The direction vector towards the light
source.

4.1

Image data The pixel information contained within a
two-dimensional array of pixels.

1.1

Integration
methods

A method of converting surface normal
information into a heightmap.

1.1

 xxvi

Terms Definition Section First
introduced

Inter-reflectance The ability of a lighting equation to model
light reflected between different areas of
the same surface.

3.3

Interval analysis A method of root-finding with complex
surfaces.

5.5.3

Laplacian-of-
Gaussian

A filter in the frequency domain
measuring the 2nd spatial derivative of an
image.

2.3.19

Leung-Malik
filter bank

A frequency domain filter bank based on a
collection of Gaussian, Laplacian-of-
Gaussian, Edge and bar filters.

2.3.18

Light projection
space

The local coordinate system of the
projective texture of a light source.

6.1.5

Light projection
texture

The texture of a light source that is used to
model the light distribution of that light
source.

5.5.2

Light vector The direction vector between a point on
the surface of a 3D geometric model and a
light source.

5.5.4

Lighting equation A mathematical equation used to calculate
the resulting colour of a point on a
surface.

2.1.6

Lighting model A mathematical equation used to
calculate the resulting colours.

1.2

Linear searching The first stage in interval analysis. This
involves stepping forward along the
direction vector of the ray at fixed
intervals.

5.4.9

Local coordinate
system

The coordinate system for a particular
entity in a 3D scene.

5.5.2

Macro-texture The basic topology that gives a 3D object
its recognizable shape. This is the
difference in shape in objects such as a
tea-cup and a plate.

5.4

Magnification The situation when the textured surface of
a 3D geometric model is larger than the
texture applied onto it. Either the nearest
pixel can be selected, or the four nearest
pixels can be interpolated.

6.1.3

Micro-texture The fine scale detail of a texture. From a
distance a surface may appear smooth, but
viewed under large magnification it will
have a unique texture such as scales,
ripples, bumps or grooves. This is the
micro-texture.

5.4

 xxvii

Terms Definition Section First
introduced

Minification The situation when the texture surface of a
3D geometric model is smaller than the
texture applied onto it. Either the nearest
pixel can be selected, or MIP-mapping
can be used.

6.1.3

MIP-mapping A method of improving the visual quality
of a texture. MIP-mapping requires that
each texture is replaced by as a set of
textures, each half the size of the other.

2.1

Model space The local coordinate system of a 3D
geometric model.

5.5.2

Motion parallax The effect of perspective that objects
closer to the camera appear to move
greater distance than those further away.

5.4.7

Normalmap A method of adding detail to a texture by
defining an individual surface normal for
each pixel.

2.1.8

Parallax mapping A method of implementing parallax
motion for 3D surface representations.

5.4.7

Parametric
coordinate

A variable used to define either a
parametric curve or surface.

2.1.7

Parametric curve A curve that is defined using a set of
control points, a basis matrix and a
parametric coordinate.

5.5.3

Parametric
surface

A surface that is defined using a set of
control points, two basis matrices and a
pair of parametric coordinates.

2.2.5

Perspective
projection

The method used to make a distant 3D
geometric model appear smaller than the
same object viewed from close by.

2.2.5

Perspective
projection
matrix

The matrix used to implement perspective
projection

C.1

Phong lighting
model

A lighting model that models specularity
using a power equation based on the eye
vector and the light vector.

6.1.2

Photometric
image

An image used for the purposes of
photometric stereo.

2.3.1

Photometric
stereo

A method of acquiring the 3D surface
representation of a material using a
number of images.

1.2

Point set surfaces A method of representing 3D geometry
using an array of points

2.1.10

Polarogram A method of implementing rotationally
invariant texture classification

2.3.20

 xxviii

Terms Definition Section First
introduced

Precision The ability of an information retrieval
System to to return only items relevant to
the search query.

2.4.2

Programmable
graphics
accelerator board

A graphics board for a computer which
can accept programs and execute them in
hardware.

1.1

Projective
lighting

A method of modeling the distribution of
light from a light source using a texture.

5.5.2

Real-time
rendering

Rendering of geometric objects and
scenes at no less than 15 frames per
second.

1.1

Recall The ability of an information retrieval
system to return every relevant item to the
search query.

2.4.2

Relief-mapping A rendering method which combines both
normalmaps and heightmaps to texture
surfaces.

1.1

Rendering
method

A technique for visualizing a 3D
geometric model.

1.2

Ring filter A frequency domain filter which is only
sensitive to frequency and not direction.

2.3.15

Rotation
invariant

Independent of surface orientation. 1.2

Scan-line
interpolation

A method of rendering objects into the
framebuffer by determining the bounding
leftlost and rightmost pixels of each row
and processing every pxiel inbetween.

5.5.3

Scattering
function

A 3D surface representation method 2.1.1

Scene-shadowing The ability of a 3D geometric model to
cast shadows onto other 3D geometric
models within a 3D scene.

6.1.3

Schmid filter A frequency domain filter that is only
sensitive to selected frequencies and not
direction.

2.3.17

Self-occlusion The ability of the nearest areas 3D surface
representation to appear in front of more
distant areas.

2.1

Shadow mapping A method of implementing shadows in a
3D scene by using the depth map of the
scene rendered from the viewpoint of the
lightsource to determine whether a point
is in shadow or not.

1.2

Shadowmap The texture used to determine whether a
point in a rendered 3D scene is in shadow
or not.

2.2.7

 xxix

Terms Definition Section First
introduced

Shape from
shading

A method of recovering gradient and
heightmap information of an object from a
number of photometric images.

3.2.3

Spatial domain The default domain for a standard texture
image.

2.3

Specularity map A texture map that allows the glossiness
of a texture to specified on a per pixel
basis.

4.2

Sphere mapping A 3D surface representation that augments
each pixel in the texture with the distance
to the nearest points on the surface, for a
number of height layers.

5.4.9

Spherical
coordinates

Coordinates based on longitude and
latitude.

2.1.3

Spherical
harmonics

The Fourier series applied onto the
surface of sphere.

2.2.8

Surface light field A four dimensional function which
defines the amount of light reflected from
a uniform material.

2.1.1

Surface material A data object which defines how a 3D
geometric model should be textured.

2.1.3

Surface normal The unit vector defined by the cross
product of two partial derivative vectors
(tangent vector and binormal vectors).

2.1.8

Surface
orientation

The rotational position of a texture image
acquired using photometric stereo.

2.3.20

Tangent space The local coordinate system of a single
point on the surface of a 3D geometric
model.

2.5

Tangent space
vectors

Three unit vectors defining a coordinate
system for the current parametric point

5.5.2

Texton filter A filter used to detect a fundamental unit
of texture such as a point, edge or corner.

7.1

Textons Fundamental units of texture such as a
point, edge or corner.

2.3.18

Texton dictionary A collection of textons that are capable of
synthesizing a complete image

2.3.18

Texture analysis The statistical analysis of the properties
that make each texture different.

2.3.5

Texture
classification

The ability for a computer system to
discriminate between textures based on
their statistical properties.

1.2

Texture data The pixel information contained within a
two-dimensional array of pixels.

2.3.14

Texture database A database comprised of texture images. 1.1
Texture features The statistical properties of a texture. 2.3.1
Texture image A single sample of a texture. 2.3.9

 xxx

Terms Definition Section First
introduced

Texture memory Computer memory used to store texture
images.

2.1.11

Texture retrieval The retrieval of texture samples from a
texture database.

1.2

Texture space The local coordinate system of a texture
map. This is based on a number of
parametric coordinates.

5.4.9

Texture-mapping The ability to apply a texture image onto a
3D geometric model when rendered using
the graphics pipeline.

1.4

Translucency The ability of a lighting equation to
represent light that has travelled through
the interior of a 3D geometric model.

3.3

Transparency The ability of a rendered fragment of
texture to allow the final colour to be
combined with existing colour in the
framebuffer. This allows a 3D geometric
model to have a transparent appearance.

2.1.11

Transparency
map

A texture map that allows the level of
transparency to vary per pixel.

5.4.10

Vertex shader One of the programmable stages of the
graphics pipeline. This stage transforms
vertices.

5.4.4

Vertex
transformation

One of the stages of a fixed functionality
graphics pipeline.

5.4

View-dependent
displacement
mapping

A method of displacement mapping
implemented using a single texture.

3.2.1

Visual quality The photorealistic appearance of a
computer generated image.

5.4.2

Wedge filter A frequency domain filter which is
sensitive to direction only.

2.3.14

 1

Chapter 1 – Introduction

1.1 Motivation

The main motivation for the research reported by this thesis was the need of a large

number of manufacturing industries to find an efficient way of implementing both

online and offline virtual textile databases, with such manufacturing industries including

the automobile industry, the aeronautical industry, the interactive-entertainment

industry, the film industry, and in particular the textile manufacturing industry.

Traditionally, a textile manufacturing company presents the range of textile products

available through the distribution of textile sample books. These books can range from

small paperback albums of swatches of fabric to four-inch thick A3 sized binders

containing hundreds of fabric samples. The distribution of such textile sample books

also poses a problem. For a single manufacturer, supplying every customer with a new

set of textile sample books will also incur the cost of national and international

transportation and delivery. Due to the time required to collect, bind and document all

textiles available, publication of such documents is restricted to an annual or seasonal

release date. In addition, customers are only allowed to borrow these books for a short

period of time, rather than allowed to keep them permanently. While alternative

methods such as paper catalogues are readily available, they still have the disadvantage

of requiring the physical distribution of such catalogues to all interested customers.

Fortunately, the rapid availability of Internet based applications such as standalone and

embedded web browsers provides an alternative solution. Rather than distribute the

textile catalogues physically, it is now possible to place an entire textile catalogue

online, and allow potential customers to view or download the catalogue without the

associated physical distribution and collection costs. The use of such catalogues also has

the advantage that search engine technology can be used to enable customers to search

for particular textile patterns, thus effectively creating a texture database.

 2

However, there are two problems with such online catalogues. The first problem is that

the search features of such databases are still very basic, with the simplest feature

consisting of a simple keyword search for a colour or associated name, and the most

complex search feature being able to search for the closest colour. The second problem

is that neither of the existing methods of presenting textile databases (physical books or

web-based online catalogues) solves the problem of allowing the user to visualize

individual textile samples under changing lighting conditions. Such examples of

changing light conditions include the customer physically changing the orientation of

the textile sample, or moving the textile sample past a light source (sunlight, light bulb,

or fluorescent tube). Some textile manufacturers have attempted to provide 3D views of

their products by photographing their products from multiple directions and allowing

the user to switch between these images, thus creating the illusion of rotation. While

making the user-interface interactive, it does not solve the problem of allowing the user

to change or control the lighting conditions of the desired textile sample.

A solution to this problem comes in the form of the combination of shape-from-shading

algorithms [Woodham1980], integration methods [Frankot1988] and the availability of

consumer level programmable graphics accelerator boards. With the use of shape-

from-shading algorithms, it has become possible to acquire the 3D surface

representation of a textile (an albedo image, two gradient fields and/or a height field).

This 3D surface representation can then be used in conjunction with a variety of

rendering techniques such as Blinn bump-mapping [Blinn1978] [Cook1982], relief-

mapping [Olivieria2000], per-pixel displacement mapping with distance functions

[Hart1996] and shell mapping [Porumbescu2005] to enable the user to interactively

view textured 3D geometric models in real-time. With, the availability of the additional

data provided by 3D surface representations, new methods of searching texture

databases are now required, in particular, methods that are capable of finding similar

samples regardless of orientation (rotation invariant) are required.

Thus, there are three objectives for this thesis. The first objective is to determine the

most suitable 3D surface representation for the acquisition, retrieval and visualisation

of textiles. The second objective is to determine the most effective way of searching a

textile database composed from a set of 3D surface representations, and the third

objective is to determine the most effective way of presenting the textile image data to

 3

the user through the use of real-time rendering techniques provided by programmable

graphics accelerator boards and through the use of the appropriate selection of

geometric objects.

 4

1.2 Scope of the research

The research carried out by thesis includes the following:

· Identifying the most suitable method of representing the micro-geometry of

textile samples acquired using photometric stereo techniques (the 3D surface

representation).

· Identifying the most suitable rendering method to present the acquired 3D

surface representations of textile samples (the micro-geometry) combined

with the 3D geometry of an object (the macro-geometry) to the user as

realistically as possible in real-time, using current generation programmable

graphics accelerator boards.

· Identifying the most suitable methods of implementing the feature extraction

and similiarity matching modules of a modern information retrieval system

based upon rotation invariant texture features of 3D surface representations.

The first area of investigation involves identifying the most suitable method of

representing the unique texture characteristics of 3D surface representations of textile

samples that is both compact and flexible enough to be used for similarity matching

using rotation-invariant texture retrieval methods and real-time 3D visualisation using

current graphics hardware. The second area of investigation involves identifying the

most suitable way to present these 3D surface representations to the user in terms of

memory usage, real-time performance, lighting models and shadow-mapping techniques

and 3D geometric objects running on the current generation of programmable graphics

accelerator boards. The third area of investigation is the identification of the most

suitable method of rotation invariant texture classification in order to implement a

texture retrieval system that will allow the user to select textures based upon similarity.

Because the three objectives of this thesis are based upon the acquisition, visualisation

and retrieval of textile samples, implementing a real-time physics system modeling the

animation, draping, folding and wrinkling of cloth is beyond the scope of this thesis,

and we do not perform a survey in this area.

 5

Note that in this thesis we focus our attention on the evaluation of the capabilities of

texture features for texture retrieval rather than examining the issues concerning the

design and implementation of a complete texture retrieval system such as that provided

by the Ferret framework [Lv2006].

 6

Figure 1: The scope of research conducted by this thesis

 7

1.3 Thesis Organisation

We have organized this thesis is into seven chapters (Figure 2). In Chapter 2, we

provide a review of the literature considered most relevant to our research into acquiring

3D surface representations, presenting these 3D surface representations to users via

real-time rendering methods, and retrieving such 3D surface representations using

rotation-invariant texture retrieval methods. In Chapter 3, based upon our review, we

describe a representation suitable for use with both the acquisition of 3D surface

representations of textiles using photometric stereo techniques. In Chapter 4, we

conduct a brief review of the use of photometric stereo to acquire 3D surface

representations which are suitable for use with texture retrieval and visualisation of

textiles. In Chapter 5, we identify ten candidate methods of visualizing these 3D surface

representations in real time using programmable graphics accelerator boards and

identify the one most suited to our needs. In Chapter 6, we describe how we present the

textile samples to users in real-time. In Chapter 7, we identify and evaluate ten different

methods of implementing texture retrieval with 3D surface representations. In Chapter

8, we summarize the research carried out by this thesis and describe the applications of

our research in commercial visualisation applications.

 8

Figure 2: Logical structure of the thesis

 9

1.4 Original Work

We believe that this thesis contains the following original work:

1. In Chapter 6, we describe a method of visualizing the 3D surface

representations that combine together procedural surface generation of

parametric surfaces to represent the macro-structure, texture-mapping and

relief-mapping to represent the micro-structure, dynamic point and infinite

light sources and hardware shadow-mapping, all integrated together in order

to achieve interactive 3D real-time rendering of textile samples. To our

knowledge, this is the first time that all such methods have been combined

together in a single application.

2. We also believe that this thesis, combined with our previous publications,

makes an important contribution to the research fields of texture retrieval

through the evaluation of a set of texture features that exploit both colour and

surface relief periodicity information and that use a common data set with that

used by (1) above.

 10

Chapter 2 - Literature Survey

In this chapter, we perform a survey of the research literature relevant to the areas of

investigation identified and described in Chapter 1. These are:

· Identification of candidate 3D surface representations most suitable for use

with fast, time-efficient acquisition methods, rotation-invariant texture retrieval

and real-time 3D visualisation (section 2.1).

· Identification of the most suitable way to implement the 3D visualisation of

these 3D surface representations of textile samples using real-time lighting and

shadow generation techniques with 3D geometric models that run on

programmable graphics accelerator boards (section 2.2).

· Identification of the most suitable methods of implementing the texture

retrieval of textile samples using rotation- invariant features (section 2.3).

As the objective of this thesis is to implement a textile database system that integrates

3D real-time visualisation with rotation-invariant texture retrieval, it is essential that

each texture database entry should be in a format that can be used to both generate

rotation-invariant feature vectors and generate textures real-time 3D visualisation. This

is the purpose of the 3D surface representation. Because we wish to present the micro-

geometry of textile samples as photorealistically to users as possible, we choose to

investigate suitable methods of visualising 3D geometric objects with shadows. As we

also wish users to be able to select textiles based on similarity to each other, we choose

to investigate methods of generating feature vectors from the micro-geometry and the

colour information. We begin our survey by reviewing candidate 3D surface

representations.

 11

2.1 Review of Candidate 3D Surface Representations

As we mentioned previously in Chapter 1, in order to successfully implement the real-

time 3D visualisation and rotation-invariant texture retrieval stages of this thesis, it is

necessary to have a common data format that is suitable for use by both of these stages.

We refer to this data format as the 3D surface representation.

For the purpose of representing textile samples, we believe that it is important that our

representation can encode the micro-geometry and colour of the textile samples and that

this should be combined with macro-geometry information on the overall shape of the

sample as double curvature and other undulating shapes can be effective for presenting

the textile properties to the user.

To satisfy these requirements, we perform a literature survey of all such documented

representations, and choose the data format that is most suitable to the following

criteria, arranged in the order of importance:

· Must be able to be visualised in real-time

· Must be able to be acquired using time efficient acquisition methods

· Must be able to represent the textile at a suitable high resolution

· Must be compact in the use of system memory or memory usage

· Must be able to represent both the colour and micro-geometry of textiles

samples ie. represent the variation in appearance all across an image

· Must be suitable for the integration with a 3D surface representation that will

be used to define the overall shape of the textile sample

· Must be able to visualize the self-occlusion and self-shadowing of the micro-

geometry of each textile

As the goal of this thesis is to have an interactive database, we require that the system is

able to operate in real-time. As we require our samples to be as photorealistic as

practical, it is essential that the textile samples can be acquired using through some

economic acquisition process and that the acquisition process is also able to present the

micro-geometry of the textile samples at a suitable high resolution to the user. At

present, the two most common screen resolutions are 1024x768 pixels and 1280x1024,

 12

while high end monitors may have resolutions as high as 1920x1200. Since we wish to

present the micro-geometry to the user, this requires a resolution matched to that of the

screen. Since the texture mapping functionality of programmable graphics accelerator

boards operates on dimensions based upon the power of two in order to implement

MIP-mapping, this imposes a constraint on the size of textile sample. For this reason,

we choose 512x512 as the default resolution for all textile samples in this thesis.

At present, there are a large variety of ways of acquiring both the albedo and micro-

geometry of surfaces depending on the dimensions of the target sample. For geographic

terrain hundreds of kilometers in size, the combined use of satellite or airborne

photography, radar and laser ranging are used to acquire this data. For 3D objects such

as buildings and artifacts, laser scanning can be used. Alternatively, silhouette scanning,

stereoscopic and photometric methods are also available. Silhouette scanning builds up

a visual hull of an object by analyzing the silhouette of the object from multiple camera

angles. Stereoscopic methods make use of multiple cameras while photometric methods

use a single camera, but make use of multiple light sources.

We define the albedo of a textile sample as the colour information of a textile under

ambient light conditions where the intensity of light is identical in every direction. We

define the micro-geometry of a textile sample as the variations in height on the surface

of the material that cause the effects of self-shadowing, self-occlusion and rough-edge

silhouettes on the appearance of any geometric object that the textile sample is applied

to. As one of the objectives of this thesis is to create a virtual textile database with

textile samples that are as photorealistic as possible to the original textile, it is essential

that both the albedo and the micro-geometry are represented for visualisation purposes.

The micro-geometry must also be represented in order to allow rotation-invariant

feature vectors to be generated for texture retrieval.

2.1.1 Selection of the 3D Surface Representation

During the past century, researchers have developed many different reflectance

functions which aim to capture particular attributes of the materials under study. These

attributes can include the time between absorption and emission of individual photons,

 13

the way in which light received from a particular direction is reemitted, with the

distribution being measured across the surface of a hemisphere, the variations in

appearance across the surface of a material or micro-geometry.

This is in contrast to the macro-geometry of an object which consists of the physical 3D

geometry of the object itself and is defined by representations such as explicit and

implicit surfaces, triangulated meshes, and more recently, parametric surfaces such as

Bézier patches and trimmed NURBS surfaces [Bézier1974] [Bézier1983] [Piegl1997].

Initially designed for use in the automobile industry, parametric surfaces have rapidly

found applications in the aerospace, animation and textile industries. While Bézier

surfaces are limited to representing solid rectangular or triangular patches, NURBS

surfaces can represent 3D geometry consists of curved shapes with trimmed edges and

holes, but at the cost of requiring considerable more processor time. Because the

mathematics for evaluating the 3D geometry on Bézier surfaces is well documented and

straightforward [Bézier1974] [Bézier1983] [Piegl1997], we will not discuss them

further in this chapter except to note that the geometry is an important issue which we

address in Chapter 5. Therefore, we focus our attention here on the representation of the

micro-geometry.

 As the data set for each reflectance function is measured discretely, each additional

variable will increase the size of the data set accordingly. Thus, there is a trade-off

between the complexity and accuracy of the reflectance function against the size of the

data set. Because of this, many researchers have simplified more complex reflectance

functions by only taking into account angular distance between the direction of received

or emitted light (isotropic), or by assuming that the material has no micro-geometry.

Thus, the goal of this review is to identify the reflectance function that offer the most

accurate representation with an economical use of memory that can be adapted for use

as a 3D surface representation. We begin this review by presenting a version of the

“Hierarchy of reflectance functions” originally presented by Müller [Müller2004b] and

extended to include both general functions and scattering functions (Figure 3).

In this diagram, each 3D surface representation method is placed in the graph

according to the number of parameters required to define that function. At the top of the

chart is the General Function which takes into account both the time delay and the

 14

change in wavelength between the absorbed and emitted photons as well as the

absorption and emission directions. Below are the Scattering Function and the

BSSRDF, both of which assume the time between absorption and emission is

instantaneous and that there is no change in photon absorption and emission

wavelength. Each of these systems requires a ray-tracing system to implement using

either using one or more CPU’s, or a programmable graphics accelerator board.

Below this level are the BTF and BSSRDF, each of which makes different trade-offs.

The BTF assumes that the photon wavelength remains constant between emission and

absorption but that the appearance will vary across the surface, while the BSSRDF

assumes that the appearance will remain constant across the surface, but that the

appearance will vary depending upon emission and absorption directions. Below these

are the Surface Reflectance Field and Polynomial Texture Map, which assume that the

appearance will vary across the surface, but only take into account the direction of the

emitted photon.The Surface Light Field, Homogeneous BRDF, BTDF and Diffuse

Subsurface Reflectance Functions, all assume that there are no variations across the

surface of the material, but that only either the direction of the absorbed or emitted

photon are known. A further simplification of the Homogeneous BRDF is the isotropic

BRDF which only takes into account the angle between the direction of the absorbed

and emitted photon. All of these methods can operate on current programmable

graphics accelerator boards using a suitable data compression algorithm, but have the

disadvantage of being extremely expensive and time consuming to acquire, often

requiring several hundred camera units to acquire each textile image simultaneously.

At the very bottom of the diagram are the simplest models of all. The relief-map and

bump-map assumes that only the intensity of light will vary due to variations in surface

micro-geometry through Lambertian or specular reflection, while the texture map

assumes that the emission wavelength remains constant regardless of direction of

emission. Below that is the gloss-map which assumes that the material is a uniform

colour with no variations across the surface. Each of these systems can run on entry

level graphics boards. We now proceed to describe and evaluate each of these in detail

below:

 15

Figure 3: Hierarchy of 3D surface representation methods

(based upon the paper by Müller [Müller2004b])

 16

2.1.2 General and Scattering Functions

The general lighting function [Müller2004b] attempts to model the complete behaviour

of light at the molecular level taking into account wavelength, direction, location and

time of both the photon being absorbed and the photon emitted. This is of particular use

for modeling the behavior of luminous materials which continue to emit light even after

the original illumination source has been removed. The scattering function simplifies

this function by assuming that the times of absorption and emission are identical and

that the photon wavelength does not change. The advantages of these two methods are

that they are both extremely accurate in the modeling of the exchange of photons.

However, the first disadvantage with both of these methods is that the amount of time

required to perform these calculations through ray-tracing is extremely prohibitive and

not suitable for real-time rendering. The second disadvantage is that it is not possible to

economically acquire this behaviour without complex measuring equipment. Because of

the use of ray-tracing, this method is not suitable to the needs of this thesis.

2.1.3 Bi-directional Scattering Surface Reflectance Distribution

Function (BSSRDF)

The BSSRDF attempts to reduce the complexity of the General and Scattering

functions by decomposing the wavelength of each photon into three colour bands. A

further reduction can be achieved by making the assumption that the surface material is

homogeneous. By making these assumptions, performance gains in the computer

simulation of such materials can be gained. A further simplified version of the BSSRDF

is the Bidirectional Scattering Distribution Function (BSDF) which is a four parameter

function. The two inputs are the spherical coordinates of the direction of incident light,

and the outgoing reflected or transmitted light. The output of the function is the ratio of

the light energy of the two inputs. The BSDF unifies two components.

· The BTDF (Bidirectional Transmission Distribution Function)

· The BRDF (Bidirectional Reflectance Distribution Function)

The BTDF is used to model light refracted through the surface of the material, while the

BRDF is used to model light reflected from the surface of the material. As identified by

Jensen [Jensen2001], the advantage of the BSSRDF is that it provides an accurate

 17

model of light reflection, while the disadvantage of the BSSRDF are that this method

still requires a ray-tracing system for practical usage. Another disadvantage of the

BSSRDF is that measurement of the BSSRDF requires a calibrated measurement

system that not only requires the measurement of the resulting light intensity, but also

the directions of both the light source and receiver. The use of ray-tracing and the

calibrated measurement system thus makes the BSSRDF unsuitable for our needs.

2.1.4 Bi-directional Reflection Distribution Function (BRDF)

The BRDF takes two parameters as input; the first is the direction of the viewer in

spherical coordinates and the second is the direction of the light source also in spherical

coordinates [Nicodemus1977]. Thus accurate representation of the BRDF requires a

four-dimensional table of data consisting of measurements of every combination of

angle of emitted and received light. Due to the size of this table, substantial research

has been performed in the field of data compression of the BRDF. However, as a survey

of BRDF compression methods is beyond the scope of this thesis, we provide a

chronological index in Appendix D.1. The advantages of using the BRDF include a

more accurate lighting model including the ability to implement anisotropic reflections

and that it can be used with current programmable graphics accelerator boards.

However, there are also several disadvantages with using the BRDF. The first is that the

BRDF does not capture the fine scale variations in texture that occur in natural surface

materials. To acquire this information, we would require the spatially varying BRDF

(see 2.1.5). Thus it is not possible to model self-shadowing, self-occlusion or rough-

edge silhouettes. The other disadvantage of the BRDF is that acquisition of the data

requires a custom measurement system that is capable of moving both the light source

and photo-detector. Since the goals of this thesis are to visualize the micro-geometry of

textile samples in real time, we conclude that this method is not suitable to our

objectives.

2.1.5 Bi-directional Texture Function (BTF or Spatially Varying

BRDF)

Dana introduced the BTF (Bi-directional Texture Function) as a means of extending the

BRDF to capture the fine scale surface detail with varied illumination [Dana1999]. The

 18

advantages of this method are that the micro-geometry of the surface material under

varying lighting conditions can be reproduced.

Unfortunately, there are two disadvantages to this method. The first disadvantage is that

the method of measurement of the BTF described in this paper is slow and requires

specialist equipment which includes a personal computer with a RGB framegrabber, a

robot arm with a photometer and a halogen bulb with a Fresnel lens (Figure 4).

Figure 4: Measurement setup for the BTF with textile sample on robot arm

(from [Dana1999])

The second disadvantage of this method are that large amounts of memory are required

to store each sample when no data compression is used, and that the rendering speed of

the system is reduced to below real-time frame rates if data compression is used. Stored

in raw data form, each BTF data set consists of 6561 photometric images (81 camera

positions with 81 light source positions) at 800x800 pixel resolution in RGB data form.

This results in a raw data memory requirement of between 733 Megabytes and 5.3

Terabytes of data [Filip2005]. However, there is a trade-off between the level of

compression and the resulting rendering frame rate, with higher levels of data

compression requiring more time to render. Even with the best data compression

algorithms, storage of a single BTF sample will still require between 4 and 30

Megabytes of data, and also require several hours of processing time to compress the

data. Due to the difficulty of this problem, resesearch into such compression algorithms

for multi-dimensional data sets is ongoing [Filip2004] [Filip2005] [Filip2008]. For

this reason, we consider this method unsuitable for the objectives of this thesis.

 19

2.1.6 Surface Light Fields and Surface Reflectance Fields

Two alternative ways of reducing the amount of memory required to store the BTF

involve reducing the BTF from six to four dimensions by ignoring the spherical

coordinates of either the light source or the viewer. Ignoring the spherical coordinates

of the light source produces the surface light field [Gershun1936] [Wood2000].

Ignoring the spherical coordinates of the viewer produces the surface reflectance field

[Weyrich2005]. Levoy described a method of acquiring the surface light field using a

gantry system comprised of a rotation hub of light sources, a rotating platform and

video camera [Levoy1996]. We present a diagram of the setup in (Figure 5).

Figure 5: Capture equipment for surface light and reflectance fields

(from [Levoy1996])

Ignoring both the spherical coordinates of the viewer and light source produces

standard texture-mapping. The advantages of these methods are the simplification of the

lighting equation which in turn improves performance and pre-calculation. However,

these methods have the disadvantage of no longer having an accurate lighting model

which takes into account both the relative orientation of the local light source and the

light reflected from the micro-geometry of the surface. Because of the necessity for an

 20

an automated system and associated specialized setup to acquire photometric data, we

do not consider this method suitable for this objectives of this thesis.

2.1.7 Polynomial Texture Map (PTM)

Malzbender proposed the PTM (Polynomial Texture Maps) as a solution to reduce the

memory requirements of the BTF [Malzbender2001] and surface reflectance field. This

had the benefit of allowing textures to be rendered at real-time frame rates. Using this

method, a large set of images of the surface are acquired using a combination light

sources or cameras. The PTM is generated through the construction of a bi-quadratic

polynomial for each pixel.Within the texture, ther bi-quadratic polynomial is stored

within each pixel using either LRGB (Luminance, Red, Green and Blue) or RGB

formats. With the LRGB format, nine bytes per pixel are required, while the RGB

format requires eighteen bytes per pixel (six polynomial coefficients for each colour

channel). Acquisition of the PTM is performed through either manual placement of light

sources and a stationary digital camera (Figure 6) or an automated camera system which

can be purchased directly from Hewlett Packard (Figure 7). The advantages of this

method are the reduced memory requirements and the ability to render the texture from

any lighting angle by setting the appropriate parametric coordinates to the PTM. There

are several disadvantages to this method. The first is that this method does not

implement rough-edge silhouette generation or self-occlusion, while the second is that

this method requires custom photographic equipment to acquire a large set of

photographs. As this does conform to our criteria for economic photographics methods,

we do not consider this method suitable for the goals of this thesis.

 21

Figure 6: Template system for manual placement of light sources over sample

Figure 7: Automatic camera system for capturing PTM’s

2.1.8 Texture-mapping and Blinn Bump mapping

Blinn proposed a solution to the problem of adding fine scale surface detail without

changing the underlying geometry by introducing the concept of bump-mapping

[Blinn1978]. With this method, the surface of an object has fine scale surface detail

added by perturbing the surface normal of each visible point on the surface before the

lighting calculation. This method has the advantage of only requiring a mathematical

function to define the perturbation of the surface normal and allows additional detail to

be added to a scene without affecting rendering speeds. We present images from Blinn’s

paper below (Figure 8) (Figure 9). Cook proposed an even more economic solution in

that instead of perturbing the surface normal, the original surface normal is replaced by

a lookup call into a texture map representing encoded surface normals [Cook1982].

 22

Cook refers to this as a normalmap. The advantages of implementing both these

methods are that only a single mathematical equation is required to modify or replace

the surface normal. The disadvantages with both of these methods are the inability to

implement self-shadowing, self-occlusion or rough-edge silhouette generation. The lack

of self-shadowing means that raised areas of the surface will not create shadows on

those areas hidden from the line-of-sight of the light source, and the lack of self-

occlusion means that raised areas will not obscure those areas hidden from the line-of-

sight of the observer. The lack of rough-edge silhouette generation means that while the

surface may appear visually bumpy towards the observer, the surface will still maintain

the appearance of underlying polygon geometry at the boundaries of the object and the

background.

Figure 8: Image rendered using bumpmapping along with associated bumpmap

Figure 9: Images rendered using bumpmapping along with associated bumpmap

 23

A further extension to the texture-mapping combined with bump-mapping is the use of

gloss maps [Blythe1999]. With this method, the alpha channel of each pixel in the base

texture (or albedo) is used to store a coefficient which represents the amount of specular

reflection of that texture region. This value can range from 0.0 for no reflection, to 1.0

for full reflection. One practical use for the use of this method when applied to the

visualisation of textiles is to be able to represent the different specular lighting

properties of individual fabric fibres. The advantage of this method is that all the

information required to store the appearance of the material can be stored compactly in

a pair of texture images, the first image stores the albedo, while the second image stores

the orientation of the individual material samples. The disadvantage of this method is

that it is not as accurate as other more advanced lighting models such as the BSSRDF,

BTF, or BRDF, and in particular does not encode relief data.

2.1.9 Relief-mapping

A further improvement upon the use of Blinn bump-mapping is the use of relief

mapping [Oliveria2000b]. This method improves upon Blinn bump-mapping by using

per pixel relief data in addition to that required for bump-mapping and taking advantage

of programmable graphics accelerator boards to perform ray-casting on a per-pixel

basis, with the desired effect of adding detail to a scene without requiring additional

geometry (Figure 10). Policarpo extended this method to run on programmable

graphics accelerator boards [Policarpo2005]. This method has several advantages. The

first advantage is that it presents the 3D micro-geometry to the user along with self-

occlusion and self-shadowing. The second advantage is that it makes used of MIP-

mapping to avoid aliasing effects. Another advantage is that this method can present

rough-edge silhouettes, but only by discarding those pixels which lie within the

silhouette edge of the geometric object.

 24

Figure 10: Conventional texture-mapping (left) and relief mapping

(from [Oliveria2000b])

Figure 11: Teapot rendered using relief-mapping

(from [Policarpo2005])

2.1.10 Point-set surfaces (PSS)

Levoy and Whitted introduced the concept of point set surfaces (PSS) for the

representation and visualisation of complex three-dimensional geometric objects

[Levoy1985] and later adapted these algorithms to run on high-end graphics hardware

[Rusinkiewicz2000]. Rather than representing a three-dimensional geometric object as a

triangulated or polygonal mesh combined with one or more texture maps, point set

surface rendering methods represent the geometry solely as a list of geometric points;

 25

the point set surface (the PSS). Each geometric point within this set consists of a three

dimensional vertex coordinate, colour, specular lighting and tangent-space information.

Point set surfaces can be acquired either from laser scanning of a real world object, or

from a pre-existing polygon mesh object by rendering the object using an orthographic

projection and then recovering sampled points from each pixel of the framebuffer. Each

individual point can be rendered either as a single pixel, a square block of pixels scaled

by distance, a Gaussian smoothed circle scaled by distance, or an ellipsoid scaled and

rotated according to the alignment of the outward normal of the point. We present

images rendered using point set samples in (Figure 12) and (Figure 13).

Figure 12: Images rendered using point set surfaces

(from [Levoy1985])

For pure software rendering, the advantage of the point set surface is that many of the

complex stages of the traditional graphics pipeline are eliminated. These include the

polygon clipping, triangle rasterisation, texture-mapping and bump-mapping stages

[Grossman1998]. The disadvantages of “splatting” techniques are that “splatting results

in poor image quality under magnification” and that “splatting-based rendering

algorithms typically do not account for secondary effects such as shadows or

reflections” [Adams2005]. The other disadvantage of the “splatting algorithm” is the

slow rendering speed. Even with the latest programmable graphics accelerator boards,

recent research only achieves a frame rate of 28 frames/second (Stanford Bunny dataset)

and 20 frames/second (Horse dataset) with no shadowing effects, and 10 frames/second

(Stanford Bunny dataset) and 11 frames/second (Horse dataset) when shadowing is

implemented [Tejeda2006] [Tejeda2007]. As the goal of this thesis is to render

geometry with shadows in real-time, we do not consider this method suitable to our

needs.

 26

Figure 13: Statue of an angel represented as a point set surface

(from [Alexa2001])

 27

2.1.11 Summary of micro-geometry and colour representation

We have reviewed the literature on lighting models and equations and have made the

following observations with each method:

General and Scattering Functions provide the most accurate modeling of the absorption

and emission of light at different time intervals but at the cost of requiring a ray-tracing

system to model every single photon wavelength [Müller2004b]. Thus, these methods

do not operate in real-time and so are not suitable for our needs.

The BSSRDF attempts to reduce the complexity of the General lighting function and

the Scattering function by using just three photon wavelengths to model the RGB nature

of computer displays [Jensen2001]. However, this still requires a ray-tracing system.

Thus, this method is not suitable for our needs.

The BTF/SLF/SRF methods represent each sample through a set of images which are

combined together mathematically [Weyrich2005]. While this method can operate in

real-time, between 700 Megabytes and 5 Gigabytes of memory are required to represent

a single sample in uncompressed data form and between 4 and 30 Megabytes in

compressed data form, along with several hours of processing time to compress the

data. The data capture process is very time consuming and requires specialized

equipment which typically includes one or two hundred cameras). Because of the data

requirement and the time consuming capture process, we do not consider this to be a

suitable for our needs.

Point-Set Surfaces represents the 3D surface representation simply as an extremely

large number of sample points, in the range of millions of billions. While this method is

able to represent the micro-geometry of a sample, it does not operate in real time and

thus would be difficult to use for texture retrieval purposes. Thus we do not consider

this method suitable for our needs.

The PTM represents each pixel as a polynomial equation derived from a large set of

photometric images, but at the cost of requiring specialized equipment that is not

 28

available off-the-shelf [Malzbender2001]. Thus, this method is not suitable for our

needs.

Texture mapping requires only a single albedo image to represent each textile sample,

which is the most economical method of representing data, but at the cost of not being

able to present the micro-geometry of the textile sample to the user [Catmull1974].

Lighting calculations are based upon the interpolation of vertex normals, rather than on

a per-pixel basis. However, as this method benefits from hardware acceleration and

operates in real-time, we choose to investigate this method further.

Bump-mapping, in contrast to texture-mapping, requires both an albedo image and a

normalmap image in order to represent a textile sample and implement per-pixel

lighting calculations [Blinn1978]. This has the benefit of being able to operate in real-

time, but at the cost of requiring an entry-level or mid-range programmable graphics

accelerator board and not being able to perform self-occlusion or self-shadowing, or

rough edge silhouette generation. For this reason, we consider the bump-mapping

method suitable for further investigation.

As an alternative to the previous two methods, Relief mapping requires both an albedo

image and a combined heightmap and normalmap in order to store the 3D surface

representation, but at the cost of requiring a high-performance programmable graphics

accelerator board [Policarpo2005]. However, as this method is able to perform self-

occlusion and self-shadowing and does provide a rough-edge silhouette, we consider it

suitable for further investigation.

Thus, we consider texture-mapping, bump-mapping and relief-mapping to be the three

methods suitable for further investigation. Each of these methods has the ability to

operate in real-time, have economic memory usage and the data is economically

available via photometric stereo. However, only relief-mapping is able to present the

micro-geometry of a textile sample to the user. Thus, there is a trade-off between

requiring a basic 3D graphics card, and using a high-performance programmable

graphics accelerator board in order to present the micro-geometry to the user and thus

implement self-shadowing and self-occlusion.

 29

We summarize all of the above in the following table, where the terms are now

explained as follows. The term real-time refers to the ability of the technique to render a

complex 3D geometric model at a responsive speed of not less than 15 frames per

second, micro-geometry indicates the ability of that method to represent the fine

variations in height of individual points on the surface, memory usage indicates the

amount of storage memory required to represent a sample relative to a standard

texturemap. Self-occlusion and self-shadowing indicate the ability of a 3D surface

representation to obscure itself from the line of sight of an observer or light source.

Practical acquisition methods include the ability of the 3D surface representation to be

acquired using current image processing technology.

Method Real-
Time

Practical
Acquisition
Methods

Memory
Usage

Micro-
geometry

Self
Occlusion /
Self
Shadowing

General and
Scattering
Functions

No No x3+ No No

BSSRDF Yes No x3+ No No
BTF/SLF/SRF Yes Yes x64 Yes No
BRDF/DSRF Yes Yes x3+ No No
Point-Set Surfaces No Yes x1 Yes Yes
PTM Yes Yes x3/x6 Yes No
Texture-mapping Yes Yes x1 No No
Bump-mapping Yes Yes x2 Yes No
Relief mapping Yes Yes x2 Yes Yes

Table 1: Summary of the candidate 3D surface representations

2.2 Review of Real-Time 3D Visualisation methods

In this section, we survey publications related to the interactive visualisation of 3D

surface representations, with a particular focus on the use of real-time lighting and

shadowing techniques to relight 3D surface representations acquired using photometric

stereo. As mentioned previously, the purpose of the 3D surface representation is to

represent the micro-structure of a textile in a common data format that allows for both

texture retrieval feature vectors and real-time 3D visualisation of the textile samples to

be performed. While the 3D surface representation is used to represent the micro-

structure, the macro-structure or curvature is represented using 3D geometry. The 3D

 30

geometry normally consists of vertices arranged in a mesh to form triangles or polygons

or the 3D geometric object. Having a real-time 3D visualisation system is an essential

part of a modern feature-rich texture retrieval system, as it assists the user in

immediately seeing which textile samples they have selected. For a fully function

interactive texture retrieval application, the user would be able to select a textile sample

along with which particular attributes they preferred and disliked. Such attributes would

include colour, dominant direction and pattern. We begin our review of 3D visualisation

methods by first providing a review of shadowing methods.

2.2.1 Selection of the lighting and shadowing method

As mentioned in the previous section, programmable graphics accelerator boards offer

an unprecedented level of performance. One of the most useful features possible with

programmable graphics accelerator boards is the ability to implement photorealistc

lighting effects with shadows. As one of the goals of this thesis is to render textiles as

realistically as possible, we wish to visualize the geometry with visible shadows. To

achieve this goal, we perform a survey on all related literature on the use of shadow

mapping techniques. We have three criteria for this technique. These are as follows:

· Operating in real-time

· Does not require any preprocessing of geometry – no static light sources

· Can take advantage of hardware acceleration

Real-time operation is essential if the user is to be able to use the application effectively.

Preprocessing of geometry is not desirable as this makes the assumption that all light

sources are stationary, and can take many hours with large geometric objects. Hardware

acceleration is desirable as this allows for the rendering speed to be increased.

Because of the active interest in the field of photorealistic rendering, publications

describing new shadow rendering techniques have been published on a regular basis,

with surveys on the state-of-the-art being published every four years or so. The most

recent survey on shadow rendering techniques was by Hasenfratz who identified seven

general methods of rendering shadows with 3D geometric models [Hasenfratz2003]. We

list these methods below:

 31

· Shadow volume

· Radiosity/Discontinuity meshing

· Ray-tracing

· Scan line algorithms

· Subdivision methods

· Shadow mapping

· Shadow field

Each of these shadowing methods can be implemented in either software or custom

hardware. However, some methods are more suited towards working with large

environment scenes which extend to many times the size of the view frustum, while

others are more suited to small geometric objects which fit entirely the view frustum.

Shadow volumes and radiosity/discontinuity meshing are both examples of

environmental techniques in that they process the entire scene as a whole and will not

work for small convex geometric objects. Shadow volumes require the generation of

shadow planes from the intersection of polygon edges and planes to generate distinct

shadow boundary edges, while radiosity and discontinuity meshes use a finer mesh to

model the gradual change between the penumbral and umbral areas of a scene. We

consider these methods due to their ability to handle scenes of large complexity.

Ray-tracing, scan line algorithms, subdivision methods and shadow mapping methods

are all forms of view frustum techniques, due to the fast that the calculations performed

will vary according to the location of the observer viewpoint. However, these

techniques differ in that ray-tracing scans the entire framebuffer on a pixel-by-pixel

basis, while scan line algorithms scan individual geometric objects on a pixel-by-pixel

basis, subdivision methods subdivide the polygonal geometry visible within the view

frustum until the depth order is unambiguous, and the shadow mapping method relies

on two views of the scene being rendered; one from each light source, and one from the

observers viewpoint. We choose to investigate these methods because of their ability to

operate with polygonal geometry.

 32

The Shadow field method differs from all the other techniques in that it defines a local

spherical shadow region around each object rather than manipulating polygons or

projecting textures. We choose to investigate this method because of its ability to work

with complex scenes.

The introduction of programmable graphics acceleration boards has allowed each of

these methods such as shadow volumes and shadow mapping to operate in real-time (at

least 15 frames per second). The introduction of programmable graphics accelerator

boards has also allowed researchers to implement methods such as ray-tracing, radiosity

and discontinuity meshes at real-time speeds for small geometric models and close to

real-time for large scenes. We now perform a detailed review of each of these methods:

2.2.2 Shadow volumes

Shadow volumes involve the creation of infinite half volumes by extruding the

silhouette edges of each occluding objects away from the direction of the light source,

and converting each extruded edge into a shadow polygon [Crow1977] [Nishita1983]

[Fuchs1985]. This has the benefits that determining whether a single point in the scene

is in a shadow region or not is achieved simply by counting the number of shadow

planes that are crossed between the viewpoint of the camera and the current point.

Forward facing planes increase the count, while backward facing planes decrease the

count. A point that has a non-zero count is considered to be in a shadow region.

However, one problem with this method involves the situation when the viewpoint is

already in a shadowed region, as this will offset the count by one. The advantages of

this method are that it can take advantage of hardware acceleration and operate in real-

time [Heidmann1991] [Laine2005]. Unfortunately, the disadvantages of this method are

that it requires pre-calculation of all shadow planes using static light sources. As the

criteria for this thesis is to implement shadow rendering using dynamic light sources

under user control, we do not consider this method suitable for the needs of this thesis.

 33

Figure 14: Scene rendered using shadow volumes

(from [Laine2005])

2.2.3 Radiosity/Discontinuity meshing

Radiosity methods involve breaking up a scene into separate regions, and modeling the

amount of light reflected and absorbed between the different regions. The benefits of

this method are that the resolution of the radiosity mesh can be made as small or as

large as required by the user. In the past, radiosity calculations could only be

implemented in software. However in recent years, it has become possible to implement

radiosity calculations using programmable graphics accelerator boards [Coombe2004].

In his paper Coombe describes how scenes comprised of up to ten thousand elements

could be rendered in less than one second using a radiosity rendering algorithm running

on a GPU. For a scene consisting of over one million elements, such a scene would take

86 seconds to render. We present a sample image from this paper in (Figure 15). The

disadvantages of this method are that while it can be implemented using GPU hardware,

it cannot run at real-time frame rates. As our criteria are that our system should be able

to run in real time, we find that this method is not suitable for our needs.

 34

Figure 15: Scene rendered using radiosity calculations

(from [Coombe2004])

2.2.4 Ray-tracing methods

Ray-tracing methods involve scanning the viewing region of the camera pixel by pixel

and performing one or more ray-object intersection tests for each pixel [Kay1979]

[Kay1986]. The benefits of using ray-tracing are that complex reflections and

refractions can be generated, but at the cost of increased processing time per pixel. For

those objects that intersect the ray, the point of intersection is calculated and used to

generate texture coordinates, and new rays to model reflection, refraction and shadow

calculations. Determining whether a region is in shadow or not, is achieved by

performing a ray-object intersection test on the line between the source of illumination

and the point on the surface. If any object intersects this line, then the point is in

shadow; otherwise, it is in full view of the light source. The advantages of this method

are that it offers the highest level of photorealism (Figure 16). The disadvantages of this

method are that it does not run in real-time; ray-tracing a complex scene on a single

processor can take several minutes if not hours. For this reason, we do not consider this

method suitable for the needs of this thesis.

 35

Figure 16: Raytraced scenes with shadows

(from [Kay1986])

2.2.5 Scan line algorithms

Scan line algorithms involve using software to render each individual 3D geometric

model pixel by pixel within each scan-line. The benefits of using software rendering are

that it is extremely flexible in how lighting and shadowing effects may be implemented

especially when combined with the Watkins hidden surface algorithm. Andonian and

Toida describe a method of calculating the shadow projections from multiple light

sources using perspective projections [Andonian1978]. However, the disadvantages of

using software rendering methods are that rendering is not in real-time. With the

introduction of graphics accelerator boards, software implementations of this method

has become less attractive, as it is more efficient to tessellate parametric surfaces into

triangles, and use hardware accelerated triangle rasterisation instead. The software

implementation of method has the disadvantage of not operating in real-time or

supporting hardware acceleration. As the goals of this thesis are to implement real-time

rendering, this method does not match the criteria specified by this thesis.

2.2.6 Subdivision methods

Subdivision methods involve the use of polygon clipping to subdivide the current view

of the scene into smaller and smaller squares until the depth order of the remaining

polygons can be determined. This method has the advantage that a scene need only be

specified in terms of light sources and N-sided polygons, with the subdivision method

 36

generating the resulting rendered geometry. Weiler and Atherton describe how a scene

may be rendered by clipping the visible polygons by the silhouette of each other until

the depth order is determined [Weiler1977]. The method requires that all polygons are

depth sorted relative to the observer, then sorted relative to the nearest polygon. Any

pairs of polygons which intersect in terms of nearest and furtherest vertices are clipped

relative to each other. This depth sorting algorithm could also be adapted to the

calculation of shadow regions by replacing the observer viewpoint with the light source

location not (Figure 18). The advantages of this method are that it generates object

accurate shadows. The disadvantages are that clipping takes a considerable amount of

times, especially with scenes composed of large amounts of geometry. Chin proposed a

method of using BSP trees to speed up the process of the generation of shadow regions

with the enhancement that both penumral and umbral regions of shadows could be

generate [Chin1992]. The advantages of this method are the improved accuracy in

shadow generation. However, there are several disadvantages to this method. The first is

that it only works with static light sources, while the second is that the generation of

shadow regions stills requires pre-computation. Other disadvantages are that this

method does not operate in real-time, nor can it take advantage of hardware

acceleration. Since being able to operate in real-time is one of the criteria of our

visualisation system, we do not consider this method suitable for the needs of this

thesis.

Figure 17: Subdivision of scene into umbral and penumbral shadows

(from [Chin1992])

 37

Figure 18: Scene rendered using subdivision methods

(from [Weiler1977])

2.2.7 Shadow mapping

Shadow-mapping is another method of determing shadow regions [Williams1978]. In

order to eliminate the need for complex data structures, the shadow-mapping method

involves two rendering stages. In the first stage, the application renders a view of the

scene as seen by the lightsource (Figure 20), with the depth map information kept for

use with the second stage (the shadowmap). In the second stage, the application renders

a view of the scene from the viewpoint of the observer (Figure 19), with the depth-value

of each pixel transformed into the coordinate system of the lightsource and compared

against those of lightmap, giving a Boolean result (Figure 21). Depth values further

away than than the value in the depth map indicate areas that are in shadow, while those

closer than the value in the depth map are in view of the light source (Figure 22). The

introduction of depth textures and render-to-texture options in graphics accelerator

boards has also made shadow mapping another one of the most popular methods.

With the introduction of programmable graphics accelerator boards, it has also become

possible to use the shadow-mapping technique to render scenes with either hard or soft

shadows [Valient2005] [Atty2006]. Hard shadows consist exclusively of an unbral

region and have an abrupt change from light to dark, while soft shadows consist of a

shadow region consisting of both penumbral and umbral regions, thus producing a

 38

blended region of illuminated and shadowed regions. A psychophysical study

performed by Wanger [Wanger1992], came to the conclusion that: “Computationally

cheaper hard shadow generation techniques are adequate and in fact may actually be

more beneficial than more expensive soft shadow techniques”.

The advantages of this method are that it can operate in real-time through the use of

hardware acceleration and does not require any preprocessing of geometry. Another

advantage of this method is that it is possible to implement both soft shadows simply by

calculated a weighted sum of multiple sample points within the shadowmap. Because

this method does not require any precomputation, dynamic and multiple light sources

are easy to implement. As this conforms to our criteria, we consider this method suitable

for the objectives of this thesis, and worth further investigation.

Figure 19: Observer view of shadow mapping scene

(from [Williams1978])

 39

Figure 20: Light source view of shadow mapping scene

(from [Williams1978])

Figure 21: Shadowmap of scene

(from [Williams1978])

Figure 22: Observer view of shadow mapped scene combined with shadows

(from [Williams1978])

 40

2.2.8 Shadow fields

Shadow fields are one of the most recent methods of shadow generation [Zhou2005]

[Ren2006] developed to support the rendering of soft shadows. This method represents

the light intensity field surrounding an object as a concentric set of thirty-two low-

resolution cube-maps (32x32 squares x 6 sides) (Figure 23). Fourth or fifth order

spherical harmonics are used to compress this data so that it may be used using a

programmable graphics accelerator board. The memory requirements for this method

take range from 15 Mbytes to 500 Mbytes depending upon the geometry of the model.

Frame render rates range from 0.1 to 18 frames per second. The advantages of this

method are that it can operate in real time and render soft shadows using dynamic light

sources. However, the disadvantages of this method are that precomputation of the

shadow fields can take up to two hours. As the criteria for this thesis is to avoid the need

for pre-computation of data, we find that this method is not suitable for our needs.

Figure 23: Soft shadows generated using shadow fields

(from [Zhou2005])

2.2.9 Summary

We have reviewed the literature relating to shadow rendering techniques and have made

the following observations. We can classify each of these methods into one of three

types of shadowing technique; environmental, view-frustum and local object.

 41

Environment based shadow-mapping techniques

In environmental techniques, the 3D geometry consists of a representation of a complex

topological structure with floors, walls, ceilings, steps and other architectural features

all represented using polygons. In our survey, there are two such methods suitable for

this type of data; shadow volumes and radiosity/discontinuity meshing.

With the Shadow volume method, shadow volumes are pre-calculated from projecting

rays from each point light source to the vertices of the geometry and extending these

until each ray intersects another polygon. For each edge of a polygon, a plane of the

shadow volume is generated. As a result, this method requires that both the location of

every light source and polygon remain static. Thus, for this reason, this method is not

suitable for our needs.

The Radiosity/Discontinuity meshing method supports dynamic light sources through

the statistical calculation of the redistribution of light energy due to reflection. While

radiosity scenes consisting of less than 10,000 elements can be rendered using a GPU in

less than 1 second, radiosity scenes consisting of over 1,000,000 elements take over 80

seconds to render using a GPU If converted to a radiosity scene, a single textile sample

at a resolution of 512x512 would consist of over 520,000 elements, thus requiring a

rendering time far in excess of 15 frames per second. For this reason, we do not

consider this method suitable for our needs.

View-frustum shadow-mapping techniques

With view-frustum techniques, the view of the scene is rendered pixel by pixel using a

suitable algorithm for primitive geometry shapes such as triangles, spheres and N-sided

polygons. For each rendered pixel, a illumination test is performed to see if the

associated point in three dimensional space is illuminated by each light source or not. In

our survey, there are four such methods; scan-line algorithms, subdivision methods,

shadow-mapping and ray-tracing.

With scan-line algorithms, the basic geometry primitives are triangles and N-sides

polygons. However, as this method requires a software implementation, it cannot

 42

benefit from hardware acceleration and thus does not operate in real-time. Thus, we do

not consider this method suitable for further investigation.

Subdivision methods render the current view of the scene by subdividing the scene until

the order of the polygons is consistent. Shadow calculations are implemented by

generating two ordered polygon lists, the first being the scene visible from the light

source, and the second the scene visible from the camera. Whether a polygon is visible

or not from the light source determines whether or not it is in shadow. As this method

requires a software implementation, it cannot benefit from hardware acceleration and

thus does not operate in real-time. Consequently, we not do consider subdivision

methods suitable for our needs.

The ray-tracing method supports dynamic light sources, but does not benefit from

hardware acceleration and thus does not operate in real-time. This we do not consider

this method to be suitable for our needs.

The shadow-mapping method renders the shadow from a single light source in two

passes. In the first pass, the depthmap of the scene visible from the viewpoint of the

lightsource is calculated. In the second pass, the scene is rendered as normal from the

viewpoint of the camera, with a depth comparision test being performed on each

rendered pixel. Because the depth comparison tests can be performed in parallel this

method benefits from hardware and operates in real-time. Thus we consider this method

suitable for our needs. Other advantages of this method are that it is possible to

implement soft-shadows by calculating a weighted sum of multiple sample points

within the depthmap, and that this method can be extended to multiple light sources.

Local object methods

Local object methods differ from the previous two methods in that they represent the

projected shadow of a small dynamic 3D geometric object rather than an entire scene. In

our survey, only the shadow-field method belongs in this category.

The shadow-field method represents the shadow of a 3D geometric object by using a set

of small cube maps (32x32x32) to represent the light intensity in the space surrounding

 43

the object, and then compressing this data using fourth order spherical harmonics

However, due to this representation, this method does not operate in real-time with

complex geometry. For this reason, we do not consider this method suitable for our

needs.

We present a table summarizing the properties of each of these methods below (Table

2). In this table, dynamic light sources indicate the ability of light sources to be moved

around at run time by the user. Hardware accelerated indicates the ability of the shadow

method to take advantage of programmable graphics acceleration hardware. Real-time

indicates the ability of the shadow method to run at 15 frames per second or faster.

Shadow method Dynamic
light
sources

Technique Hardware
accelerated

Real-
Time

Shadow volume No Environment Yes
(Stencil buffer)

Yes

Radiosity/
Discontinuity
meshing

Yes Environment No No

Scan-line
algorithms

Yes View-frustum No No

Subdivision
methods

Yes View-frustum No No

Shadow map Yes View-frustum Yes
(Shadowmap)

Yes

Ray-tracing Yes View-frustum No

No

Shadow field Yes Local object No

Yes
(simple
objects)

Table 2: Summary of basic shadow methods

In this section we have identified seven candidate shadow generation methods, and

identified shadow-mapping as the most suitable for our needs. The shadow-mapping

method is ideally suited to implementation on a programmable graphics accelerator

board due to the built-in shadow-mapping hardware extensions which support 3D

perspective transformation and depth-map comparision tests. Consequently, this method

has the advantage of running in real-time and not requiring any pre-computation of

complex data structures. Based upon the conclusions by Wanger, we choose not to

 44

implement soft shadows but just to implement hard shadows instead, although it would

be trivial to implement soft shadows in the future if required. While the shadow-

mapping method solves the problem of inter-object and convex-object shadow

generation, it does not solve the problem of shadow generation of the micro-geometry of

the textile sample. This problem can only be resolved through the use of relief-mapping.

Combining these two methods together is still an issue that must be resolved.

2.3 Review of Rotation invariant texture retrieval features

As the goal of this thesis is to implement an information retrieval system based upon

rotation invariant texture retrieval, it is necessary to have a method of indexing and

searching through database entries. To achieve this goal with texture image data, it is

necessary to have a simple data field that can be rapidly compared with other entries.

We refer to this as the feature vector. Early texture databases could only define the

feature vector as a short text description due to the limited storage space available.

While easy to use, this method required that every image had to have a detailed

description entered manually in order for the database search requests to be useful. One

solution to this problem is to have the feature vectors generated automatically from the

original texture database images, and then search for a match with the feature vector

derived from the target image selected by the user. This reduces the problem of

searching texture databases down to finding a useful and economical way of generating

and comparing feature vectors. In the follow section we define our criteria for the

selection and evaluation of the selected texture retrieval methods.

2.3.1 Selection of the texture retrieval method

In order to identify the most suitable methods to evaluate, we perform a survey of

existing texture feature classification and retrieval methods and then compare them

against the following criteria:

· Must select textures based upon similarity

We would like the user to be able to select a target texture and have the

retrieval system find those textures in the database that are as similar as

possible to the target texture in terms of colour and micro-geometry.

 45

· Must support colour albedo and surface representation images

As one of the objectives of this thesis is to implement virtual reality textile

catalogues, it is essential that the retrieval methods must be able to work

with true-colour images (at least eight bits for each of the red, green and blue

colour channels).

· Must be rotation invariant

Rotation invariance is the ability of a texture retrieval system to match two

similar images regardless of their rotational orientation. Whenever more than

one photometric image of a textile sample is made, each image will always

have a unique rotation, due to slight differences in the position of each

texture sample relative to the recording device. Consequently, this will

distort any feature vector derived from this image. We describe texture

retrieval methods that are able to overcome this problem as being rotation

invariant.

· Must have efficient memory usage

An uncompressed 512 x 512 pixel true-colour image with 16-bits of data per

pixel for each of the red, green and blue colour channels will occupy 1.5

Mbytes of memory, while a image with 8-bits per colour channel will

occupy 768 Kbytes of memory and a JPEG compressed image will still

occupy more than 400 Kbytes of memory. Even with such high levels of data

compression, these amounts of memory used are still far too high for texture

retrieval to operate interactively. Consequently, any feature vector derived

from a texture image must be considerably smaller than this. Given that the

texture database may be located on a separate server, and accessible only via

a dial-up connection, an upper limit of 8 Kbytes per feature vector is

considered to be efficient memory usage.

· Must be able to encode perioidic information

By their nature, woven textiles have a periodic pattern generated from

various parameters such as the size of thread, the weaving pattern used and

 46

the density of the thread pattern. Any of these parameters can be measured

using 2nd order statistics such as Amplitude, Magnitude and Power spectra.

In her thesis, Taylor [Taylor2003] identified that power spectrum methods were ideally

suited to identifying the characteristics of woven fabrics, due to the fixed distance and

axis alignment of the threads of each woven fabric creating periodic patterns.

In his PhD Thesis, “Rotation Invariant Classification of 3D Surface Texture Using

Photometric Stereo” [Wu2003], Wu performs a survey of methods used to define

texture features.

Wu follows the texture classification scheme as defined by Tuceryan and Jain

[Tuceryan1993] and assigned each texture classification method to one of four

branches; statistical methods, geometrical methods, model-based methods and signal

processing methods. We present this classification as a hierarchical chart in (Figure 24).

There are two main types of signal processing method; these are linear and non-linear

methods. Linear methods involve either a convolution in the spatial domain or a Fourier

transformation into the frequency domain. Non-linear methods are based upon other

relationships between pixels. These can either be based upon geometry, statistics, or

mathematical models. These form four main branches; statistical based methods,

geometrical based methods, model based methods and signal processing based methods.

These techniques have, in general been applied to photometric grey scale or colour

information. Only a few researchers have applied them to micro-geometry data

[Wu2003] [McGunnigle1997] [McGunnigle1998] [McGunnigle1999]. A particular

issue here is that data such as Surface normal fields often contain directional artifacts

which can cause problems for rotation invariant systems.

We now choose to investigate candidate methods in each of these branches due to their

ability to perform texture classification bearing the above issues in mind. We begin our

investigation by examining statistical based methods.

 47

Figure 24: Hierarchy of texture classification methods

 48

2.3.2 Statistical methods

Statistical methods involve the analysis of the spatial distribution of gray values, or in

our case, micro-geometry and colour data, by computing local features for every point

in the image, and using the resulting distribution of the local features to generate a set of

statistics [Julesz1981] [Julesz1983]. Depending upon the number of pixels used for

analysis, the resulting set of statistics is defined as being either first-order, second-order

or third order.

2.3.3 First order statistics

First order statistics calculate a measure of difference in overall brightness. These

include the calculation of the mean average or histogram of the texture image data.

Second order statistics calculate differences in granularity and slope. These include the

gray-level co-occurrence matrix and the the statistics derived from this matrix. Third

order statistics are used to identify deviations from the standard Gaussian distribution.

These include the 3rd order cumulant and 3rd order bispectrum.

Swain and Ballard describe a method of performing similarity matching between

images using colour histograms using a method they call histogram intersection

[Swain1991]. In their paper, they determine that 2048 bins (16x16x8) are required to

implement a colour histogram suitable for matching. The colour histogram transforms

each RGB colour pixel into an index within the corresponding histogram, and

increments the associated bin. Performing a similarity match between two colour

histograms is achieved through the comparison of individual pairs of bins from each of

the two colour histograms. Typical functions include the sum of absolute differences or

the sum of the minimum values. To allow for the comparison of images of different

dimensions, both histograms and colour histograms are normalized by dividing each

bin by the total number of pixels in the image, thus giving a fractional value.

The advantages to this method were that histograms can be rapidly calculated without

requiring a transformation in the frequency domain, and are unaffected by changes in

orientation, viewing position or even shape. The main disadvantage of the color

histogram is that it is sensitive to changes in lighting conditions; either when the

direction of or colour of illumination changed.

 49

Funt proposed a solution to this problem through the use of colour ratio histograms,

where instead of using the colour values of the image directly, the derivative (Laplacian

or first directional derivatives) of the “logarithm of the colours” would be used to index

the histogram bins [Funt1991]. This method had the advantage of removing any

variation due to illumination direction but had the disadvantage of requiring a

convolution filter to be applied to the entire image before the generation of the

histogram.

However, this is not a concern for us as we require the image to be captured under

controlled condition required to obtain the micro-geometry.

Stricker proposed an alternative solution through the use of “boundary histograms”

[Stricker1992]. Using this technique, the entire image is processed by a colour

constancy algorithm in order to correct for any variations in colour of the illumination

light source, then processed another time to convert the color space into a discrete

colour space before 2x2 blocks of pixels are analyzed. The length of the boundary edge

is estimated from analysis of the color distances from the four pixels within that block.

The resulting edge length is then used to increment the associated histogram bin. The

advantage of this method are the the boundary histograms are compact in size, are not

affected by noise. The disadvantages of this method are that the length of boundary

edges are only estimated to within a 5% error tolerance, and are thus not completely

rotation invariant. We present a table comparing the features of these different

histogram methods below (Table 3):

Method Rotation invariant Pre-processing

Colour histograms
[Swain1991]

Yes No

Colour ratio histograms
[Funt1991]

Yes Yes

Boundary histograms
[Stricker1992]

No Yes

Table 3: Comparison of histogram methods

From this table it can be seen that both colour histograms and colour ratio histograms

are rotation invariant. However, it can also be seen that while all of these statistical

 50

methods have the advantage of not requiring transformation into the frequency domain,

methods such as the colour ratio histogram and boundary histograms require pre-

processing in terms of a convolution filter. Another disadvantage with these methods is

the high dimensionality of the histogram data. As each histogram can have up to 256

bins, each histogram can be considered to be a 256 dimension vector. However, this

disadvantage is outweighed by the speed of calculation. While regular photographs

would have the disadvantage of having different lighting conditions, in our thesis, the

lighting conditions are under our complete control and are identical for every

photometric image taken. Thus, for this thesis we choose to use colour histograms as

described by Swain and Ballard.

2.3.4 Second order statistics

Second order statistical methods include grey-level co-occurrence matrices [Davis1981]

and the statistics derived from this matrix; the entropy, energy (angular second moment

or Haralick second moment), contrast, homogeneity, mean, variance, correlation,

maximum probability, inverse difference moment and cluster tendancy [Clausi2002].

The advantages of this method are that it does not require a transformation into the

frequency domain in order to generate the statistics.

2.3.5 Geometrical methods

Geometrical methods attempt to model the appearance of a texture by reducing the

texture down to a combination of fundamental geometric primitives and placement

rules. This transforms the problem of texture classification into the identification of the

fundamental geometric primitives that form each texture or texture analysis. There are

two geometrical methods that have been developed; mathematical morphology and

adaptive region extraction. However, in previous research, these have in general been

applied to photometric rather than geometric data.

2.3.6 Mathematical morphology

Mathematical morphology is a technique originally developed by Matheron and Serra in

order to perform texture analysis on ore grades still underground [Matheron1975]

[Serra1973]. This method involves the application of set theory to geometry. Operations

supported by mathematical morphology include “erosion” and “dilation” [Ledda2002].

 51

 Through these two operations it is possible to determine the skeleton and convex hull

of the components of an image. The advantage of this method is that it does not require

images to be transformed into the frequency domain, and that similarity can be

measured through pattern spectrum analysis. However, the disadvantage of this method

is that it is intended for use with images with distinct silhouette edges rather than

continuous patterns. For this reason, this method does not conform to our criteria for

candidate methods of the classification of textile textures.

Figure 25: Erosion and Dilation in mathematical morphology

(from [Ledda2002])

2.3.7 Adaptive Region Extraction

Adaptive Region Extraction is based upon the extraction of contours from an analysis

of pixel intensity values [Hong1980]. Hong describes a method of implementing such a

system in four stages. The first stage is to apply an edge detection operators to the

image to identify candidate edges. The second stage applies a thresholding filter to

eliminate noise while the third stage is to apply non-maximum suppression to eliminate

redundant responses to a single boundary. The fourth stage is the application of eight

3x3 convolution filters to identify edges in the horizontal, vertical and diagonal

orientations. Classification of the resulting texture was then achieved through the

calculation of six first-order statistics which included the area of each region, the

perimeter of each region, the dispersedness of the region, the elongatedness of each

region, the eccentricity of each region, the major axis direction and the average gray

level.

 52

The advantage of this method is that it does not require a transformation into the

frequency domain and that the statistics generated are rotation invariant. However, the

disadvantage of this method is that it has been designed to work with edge thresholding

with grey-scale data to identify areas of differing intensity rather than colour textures or

geometric data, and so we do not consider it any further.

Figure 26: Texture classification using adaptive feature extraction

(from [Hong1980])

2.3.8 Model-based methods

Model-based methods attempt to mimic the process that generated the original texture

through the use of stochastic models, and can be subdivided into three main methods:

· Markov Random Fields

· Fractals

· Multi-Resolution Auto-Regressive Features

2.3.9 Markov Random Fields

Markov Random Fields are a way of generating random patterns through the use of

Gibbs random field models. The Markov Random Field assumes that there is a

conditional relationship between the grey-scale intensity of one pixel and the immediate

surrounding neighbourhood of pixels. Such models are described as local random fields.

In the case when it is necessary for each pixel to have an influence over the entire

texture images the model is described as a global random field. Chellappa describes the

Gaussian Markov Random Field (GMRF) in which the Gaussian distribution is used to

define the probability function for a small region around each pixel [Chellappa1993].

 53

Because of this dependence on pixel intensity values, analysis of colour images requires

conversion to grey scale before processing. Another disadvantage with the GMRF is

that the dependence on the Guassian distribution constrains the texture analysis to the

highest frequencies within the texture. Haindl and Vácha describe a solution to the use

of this problem through the use of multiscale decomposition using the Gaussian

pyramid, a sequence of images in which each image is downsampled from its

predecessor and has a low-pass filter applied. This allows a feature vector to be

generated from the set of GMRF values derived from the Gaussian pyramid. However,

GMRF techniques encode only 2nd order information, and therefore have no more

discrimination power over linear filtering while being more difficult to understand and

design.

2.3.10 Fractals

Fractals have traditionally been a method of classifying the complexity of textures and

geometry by deriving a ratio or the “fractal dimension” between the perimeter and the

surface area of a texture or the surface area and volume of a three-dimensional object

[Mandelbrot1983]. However, this single parameter simply defines the linear frequency

roll-off factor of the power spectrum and is incapable of modeling the periodic nature of

weaves, and thus we do not consider it any further.

2.3.11 Multi-Resolution Auto-Regressive Features

Sarkar, Sharma and Sonak described a method of using the two-dimensional

autoregressive moving average (ARMA) model to perfom texture analysis on the

Brodatz database [Sarkar1997]. In their paper, they describe a method of solving the set

of 2D transcendental functions of the autoregressive components through the use of

singular value decomposition (SVD) and factorization techniques, to generate a feature

vector of twenty-four dimensions. This method exploits power spectrum data but in the

spatial domain. When considering a complete filter bank, this method is more than

likely to be computationally more expensive than frequency domain techniques.

 54

2.3.12 Signal processing methods

Signal processing methods can be implemented in the spatial domain and the frequency

domain. Signal processing methods operating with spatial domain data operate on pixel

data directly, while signal processing methods operating with frequency domain data

operate upon the data generated from a Fourier transformation. Linear methods can be

implemented in either domain with the choice being made on coding pragmatics and

computational efficiency.

2.3.13 Spatial domain methods

These include edge detection filters such as the Law’s filter (linear spatial convolution),

the Sobel operator, the Laplacian operator, Moments, Wavelet Analysis and the

Difference-of-Gaussian operator. Each method works by performing a mathematical

function on each pixel and the surrounding block of neighbouring pixels around it,

typically for a block size of 3x3 or larger. Texture classification using spatial domain

methods simply involves applying the filter to the image and calculating the rectified

sum of all pixel intensity values. For larger block sizes, frequency domain methods are

more efficient in terms of processing time. The advantages of using spatial domain

methods are that they are easy to calculate and more efficient for small masks. As we

are considering linear techniques that can be implemented in either domain, and as the

frequency domain provides easier methods for designing banks of filters we will

consider the frequency domain characteristics of these filters.

2.3.14 Frequency domain methods

With frequency domain methods, the spatial domain texture image is transformed by

the discrete FFT as the first stage of calculating the feature vector. Calculation of the

feature vector using a set of filters or filter bank involves multiplying the frequency

domain image of each filter in the filter bank and then applying the inverse discrete FFT

to return the combined image back into the spatial domain. The coefficient value for the

filter is then calculated by summing together all the rectified pixel values in the

resulting image. All filter banks have the advantage of being able to be used with colour

texture data as well as grey scale texture data. Another advantage of frequency domain

filter banks is that the feature vectors are either naturally rotation invariant, or can be

 55

made to be through the use of index offsetting when comparing feature vectors. The

main disadvantage to the use of frequency domain method is that computation of the

Fast Fourier Transform and its inverse which can be inefficient for small masks.

However, as they conform to our criteria of being able to exploit periodic data and be

used with colour texture data and are rotation invariant, we consider them to be of use

to this thesis. Randen performed a survey of both spatial domain and frequency domain

methods for texture classification [Randen1999]. In his paper, Randen identified the

following classes of frequency domain filter banks:

· Ring and Wedge filter banks

· Gabor filter bank

In addition to these we consider the following filter banks:

· Schmid filter bank

· Leung-Malik filter bank

· MR4 and MR8 filter banks

· The Polarogram

2.3.15 Ring and Wedge filter banks

Coggins and Jain identified both the ring filter bank and the wedge filter banks as being

suitable for the task of texture classification [Coggins1985]. In their system, seven

dyadically spaced ring filters and four wedge filters for texture classification (Figure

27). This system forms a feature vector of eleven elements for gray scale data and

thirty-three for red, green and blue colour textures. While the ring filters are rotation

invariant and are sensitive to frequency only, the wedge filters are not rotation invariant

and are sensitive to direction only. However as a wedge filter bank can be made to be

rotation invariant through the use of index offseting, the combined filter bank can be

made to be rotation invariant. As this method conforms to both our critieria that the

texture retrieval method should be rotation invariant and support the use of colour

texture data, we consider both the ring filter bank and wedge filter bank to be candidate

methods for rotation invariant texture retrieval.

 56

Figure 27: Ring and wedge filter bank

(from [Coggins1985]. All axes are in normalized spatial frequencies)

 57

2.3.16 Gabor filter bank

Bovik and Jain proposed the use of the Gabor filter bank as a means of implementing a

texture retrieval system [Bovik1990] [Jain1990]. This decision was based on studies on

how the human visual system processes texture and how the retina was composed of

cells sensitive to oriented patterns such as grating patterns [Campbell1968]

[Gabor1946]. In their system, Bovik and Jain select a Gabor filter bank sensitive to four

directions and seven frequencies, giving a total of twenty-eight filters (Figure 28). This

forms a feature vector comprised of twenty-eight vectors for monochrome texture data

and eighty-four vectors for colour texture data. While a feature vector constructed from

a Gabor filter bank is not rotation invariant due to the directional sensitivity, it can be

made to be rotation invariant through the use of index offseting during similarity

matching. As this texture retrieval method conforms to two of our criteria of being both

rotation invariant and able to work with colour texture data, we consider the Gabor

filter bank to be a candidate method for rotation invariant texture retrieval.

Figure 28: Dyadic bank of Gabor filters

(from [Randen1999] – All axes are in normalised spatial frequencies)

 58

2.3.17 Shmid filter bank

Schmid introduced a filter bank comprised of a set of isotropic filters [Schmid2001].

This filter bank consists of thirteen rotation invariant filters, each based on a Gaussian

envelope modulated by the cosine of the distance plus a constant to ensure a zero DC

component (Figure 29). Since each filter is rotation invariant, the entire filter bank as a

whole is also rotation invariant. For grey scale texture images, the Schmid filter bank

forms a feature vector consisting of thirteen dimensions, For colour texture image data,

the Schmid filter bank forms a feature vector of thirty nine dimensions is formed. As

this texture retrieval method conforms to our criteria of being able to work with colour

texture data and is also rotation invariant, we consider the Schmid filter bank a

candidate method for rotation invariant texture retrieval.

Figure 29: Schmid filter bank

(from [Varma2002])

2.3.18 Leung-Malik filter bank

Leung and Malik proposed a filter bank of forty-eight filters for texture filters

[Leung2001]. The motivation begin the design of this filter bank was to construct a

filter bank that was capable of detecting the fundamental elements of texture within a

surface or textons. Such detail included edges, corners and spots. Each of the filters in

this filter bank can be categorised into two types; thirty-six directional filters and twelve

rotation invariant filters (Figure 30). The directional filters are sensitive to any one of

six directions; one of three scales; and either one of two phases while the twelve

rotation invariant filters consist of eight centre-surround derivative filters and four

Gaussian filters. Because of the presence of the directional filters, the Leung-Malik

filter bank is not rotation invariant, but through the use of index offsets during

similarity matching, this obstacle can be overcome. For grey-scale texture image data,

 59

the Leung-Malik filter bank consists of forty-eight feature vectors, while for colour

texture data, the Leung-Malik filter bank consists of one hundred and eighty four

feature vectors. While the Leung-Malik filter bank is not rotation invariant, it can be

made to be so through the use of index offsetting during similarity searches. As the

Leung-Malik filter bank matches our criteria of being rotation invariant and being able

to work with colour texture data, we consider this method a candidate method for

rotation invariant texture retrieval.

Figure 30: Leung-Malik filter bank

(from [Varma2005])

2.3.19 MR-4 and MR-8 filter banks

Varma and Zisserman proposed two modified versions of the Leung-Malik filter bank,

the Maximum-Response-4 filter bank (MR-4) and Maximum-Response-8 filter bank

(MR-8) [Varma2005]. The motivation behind the design of these two filter banks was to

solve the problem that other rotation invariant filter banks were not sensitive to highly

directional texture features such as stripes. Varma and Zisserman resolve this problem

through the use of edge and bar filters. The MR-8 filter bank consists of the following

set of filters:

· One Gaussian filter

· One Laplacian-of-Gaussian filter

· Eighteen edge filters (six directions with three frequencies)

· Eighteen bar filters (six directions with three frequencies)

 60

The MR-4 filter bank is a simplified version of the MR-8 filter bank and consists of the

following set of filters:

· One Gaussian filter

· One Laplacian-of-Gaussian filter

· Six edge filters (six directions with one frequency)

· Six bar filters (six directions with one frequency)

Both the MR-4 filter bank and MR-8 filter bank differ from other rotation-invariant

filter banks in that they each “collapse” the responses of the edge and bar filters into a

single value by only selecting the strongest response from each set of edge and bar

filters with identical frequencies. Thus, for grey-scale texture data, the MR-4 filter bank

forms a feature vector comprised of four dimensions and the MR-8 forms a feature

vector comprised of eight dimensions. To represent colour texture data, the feature

vector for the MR-4 filter bank requires twelve dimensions, and the feature vector for

the MR-8 filter bank requires twenty-four dimensions. As both the MR-4 filter bank and

the MR-8 filter bank are rotation invariant and can operate with colour texture data, we

consider this a candidate method for rotation invariant texture retrieval.

2.3.20 The Polarogram

Davis introduced the concept of the Polarogram for the purposes of texture retrieval

[Davis1981]. This method combines the transformation of a texture image into the

frequency domain with the statistical analysis techniques of histograms. For every

direction in the frequency domain image, an associated bin in the Polarogram sums the

contribution of every frequency in that direction. The resulting set of data forms a graph

or Polarogram (Figure 31).

 61

Figure 31: Calculation of the Polarogram from the frequency domain data

In his thesis, Wu chooses to focus on the application of Polarograms [Davis1981] for

rotation invariant texture classification and proposes a novel surface rotation invariant

approach to texture classification derived from surface derivative spectra (P and Q

gradient fields). Wu observed that the major problem with all of the other texture

classification methods is that none directly handle the problem of identifying either

directional or isotropic textures with different surface orientations, and that robust

rotation invariant features are required [Tan1995]. Wu also considers the method

proposed by Smith, in which surface texture information is gained directly from

photometric stereo and features derived from the gradient field (attitude, principal

orientation, shape factor, and shape distribution) are used for the “quantitative analysis

of repetitive surface textures” [Smith1999a].

Wu used photometric stereo to acquire surface gradient field information, Fourier

analysis to transform it into the frequency domain and combined together using a

frequency domain function that eliminates the directional artefacts associated with

partial derivatives through the calculation of the sum of squares. Wu then uses a

goodness-of-fit measure is used to compare Polarograms of this function are compared

with those of training classes in order to provide rotation invariant texture

classification.

 62

2.3.21 Summary

In the previous sections we have identified nine candidate methods for rotation

invariant texture retrieval and discussed their ability to encode data concerning

periodicity and colour while being rotation invariant. We list all nine methods in (Table

4) to summarize these findings.

Method Frequency
domain
Implementation

All filters
Rotation-
invariant

All filters
can detect
periodic
Patterns

Colour Histograms No Yes No
Ring Filter bank Yes Yes Yes
Wedge Filter bank Yes No No
Gabor Filter bank Yes No Yes
Schmid Filter bank Yes Yes Yes
Leung-Malik filter bank Yes No Yes
MR-4 filter bank Yes No Yes
MR-8 filter bank Yes No Yes
Polarogram Yes Yes No
Combined Both No No

Table 4: List of candidate methods for texture retrieval

It should be noted that any linear convolution filter in the spatial domain may also be

performed in the frequency domain. However, for small filters (3x3 sample points) it is

more efficient to apply the filter in the spatial domain than it is in the frequency domain.

Colour histograms operate in the spatial domain and are naturally rotation invariant as

they operate on pixel intensity data alone. For this reason, we consider this method

suitable for our needs.

With the exception of the histogram all of the above techniques are based on linear

filters and are such they merely divide the power spectra up into different “chunks”

within which they calculate the variance of the signal that is left after application of the

relevant band pass filter. Ring type filters (including the Polarogram) are by their nature

rotational insensitive and therefore not rotation invariant. Wedge filters and other

rotational sensitive filters require some offsetting technique in order to make them

 63

rotation invariant. It is therefore just a question of which filter sets are better at

discriminating between the different power spectra characteristics of textures that will

determine which are most suitable for our task. However, it should be noted that these

filters are not normally applied to micro-geometry data and as such we need to apply the

techniques of Wu in order to remove the directional bias present in the bumpmap data.

Having reviewed all the literature related to texture retrieval, we now proceed to discuss

how the current information retrieval system evaluation methods can be used to identify

the most suitable texture retrieval methods for virtual textile database queries.

2.4 Review of current information retrieval system implementations

As the ability to capture and store feature-rich data such as images, video, audio, multi-

channel sensors and three-dimensional geometry has increased due to the availability of

high capacity storage and acquisition equipment, the need for users to be able to index

and search this data has also increased. Unlike traditional alphabetic and numeric value

based databases where a search can be implemented using a combination of basic

arithmetic comparison operators, searching feature-rich data requires complex similarity

operators customised to each type of data. One solution to this problem is to construct a

modular information retrieval system which separates the generic database management

tasks from the custom feature extraction and similarity operator functions required for

different types of multimedia data such as images, video and audio. This enables

researchers to focus their attention on the development of these functions rather than on

the entire information retrieval system. In this thesis, we take advantage of this design

and keep the scope of this thesis purely to the identification of the feature vectors most

suited to being extracted from textile image data and for the implementation of rotation

invariant similarity operators. Thus there are two issues which must be resolved in order

to implement such a system; which filter banks and frequencies should be used and how

important is colour information when attempting rotation invariant texture retrieval.

However, before we investigate their performance in detail in Chapter 7, we will briefly

examine the Ferret toolkit and review the techniques that researchers normally employ

to evaluate retrieval systems.

 64

2.4.1 Ferret: A toolkit for content-based similarity searches

The Ferret Toolkit has been designed to allow system designers to rapidly construct

search engines with such feature-rich data [Lv2006]. The Ferret toolkit separates the

task of implementing an information retrieval into several layers (Figure 32).

At the top layer are the data acquisition, web interface and performance evaluation

tools. The data acquisition module allows the database system to receive new data and

pass it through to the similarity based search engine. The web interface allows the client

side of the database to be implemented using standard web page layout. The

performance evaluation toolkit allows maintainers to generate batch queries to compare

performance and search quality results against benchmark values. This is of particular

interest to this thesis due to the need to evaluate the performance of the candidate

texture retrieval methods.

Below the web interface and performance evaluation tool is the command line query

interface which communicates with the similarity search API. Beneath the similarity

search API lie the generic functionality of the data base system; the attribute based

search tool, metadata management (transaction management) and the core similarity

search engine. The core similarity engine is responsible for the construction of

‘sketches’ from feature vector data and implements the generic similarity search

functionality, which enables the search engine to work with file objects. Ferret

optimises the calculation of similarity comparisons by generating and comparing

‘sketches’ of each feature vectors before comparing the actual feature vectors. Each

‘sketch’ consists of a bit vector of a specific length derived from the associated feature

vector. This allows a similarity comparison to be performed between two ‘sketches’ by

using the Hamming distance calculation.

Along with the performance evaluation tool, the two plug-in components are of

particular interest to this thesis; the first is the segmentation and feature extraction tools,

while the second is the distance functions used to perform similarity matching. In this

thesis, our candidate texture retrieval functions correspond to these two components.

However, we choose not to use this implementation of a complete information retrieval

system as the scope of this thesis is to identify feature vectors suitable for the

 65

implementation of rotation invariant texture retrieval of textile data and that to do so

would have required considerable more resource than was available.

Figure 32: Architecture of the Ferret Toolkit for Content-Based Similarity Searches

2.4.2 Measuring the accuracy rate of information retrieval systems

In the previous section, we described how modern information retrieval systems are

implemented through the separation of the system into separate modules, with the Ferret

toolkit as a practical example. In this thesis, our candidate texture retrieval methods

correspond to both the segmentation and feature extraction modules and the distance

function modules of this toolkit.

However, in order to determine which of the candidate texture retrieval are most suited

to this task, we must have some measure of being able to benchmark or measure

statistically the success rate of each texture retrieval method. Buckland describes a

method of achieving this through the concepts of recall and precision when applied to

information retrieval system queries [Buckland1993]. This has now become the

standard way of comparing the performance of different information retrieval systems

 66

for a wide variety of content including text, images and video. One such working group,

Text Retrieval Conference (TREC) conducts an annual survey of the performance of

video retrieval systems [Smeaton2004] [Smeaton2006]. During each survey, sample

datasets and queries are distributed out to researchers, who then return the results of

their implementations through the measurement of precision, recall and the F-measure.

We describe the method of calculating the precision, recall, accuracy and fallout for a

selected information retrieval method. For any particular search query, four results are

generated:

· The number of items relevant and retrieved (true-positive)

· The number of items not relevant and retrieved (false-positive)

· The number of items relevant and not retrieved (false-negative)

· The number of item relevant and not retrieved (true-negative)

Of particular concern to the designer of an information retrieval system, is the rate of

failure, when either a relevant item is not retrieved (false-negative), or when a non-

relevant item is retrieved (false-positive). False-positive outcomes are referred to as

Type I Errors, while false-negative outcomes as Type II Errors. We can place these

results into a table and assign them labels (Table 5).

Expected result / classification
Relevant Not Relevant

Relevant
tp

(true positive)

fp
(false positive)
Type I Error Obtained result /

classification
Not

Relevant

fn
(false negative)
Type II Error

tn
(true negative)

Table 5: Classification table for information retrieval

From these four values, four statistical values can be determined; precision, recall,

accuracy and fallout. Each of these values is a fraction in the range 0.0 to 1.0. Precision

is the ability of the retrieval system to return only items relevant to the search query.

Recall is the ability of the retrieval system to retrieve every relevant item to the search

query. Fall-out is the ability of the retrieval system to retrieve non-relevant items to the

 67

current search query. Accuracy is the ability of the retrieval system to retrieve relevant

items and discard non-relevent items.

Precision =
fptp

tp
+

 (2.4.2.1)

Recall =
fntp

tp
+

 (2.4.2.2)

Fall-out =
tnfp

fp
+

 (2.4.2.3)

Accuracy =
tnfnfptp

tntp
+++

+
 (2.4.2.4)

Where: tp is the number of true positive results,

 fp is the number of false positive results,

 tn is the number of true negative results,

and fn is the number of false negative results.

Measurement of the accuracy rate of a texture retrieval method is performed by

generating a large set of test queries and comparing the expected results returned against

the actual returned results. These results may be averaged and used to create two types

of graph:

· Receiver-operator-Characteristic graphs (ROC graphs)

· Recall-Precision graphs

With ROC graphs, the Y-axis is in the range 0.0 to 1.0 and represents the true-positive

rate, while the X-axis in in the range 0.0 to 1.0 and represents the false-positive rate. A

typical graph curves will start at the coordinate (0.0, 0.0) and finish at the coordinate

(1.0, 1.0). Information retrieval methods with a high accuracy rate will have a curve

that rapidly approaches the top left corner of the graph (1.0, 0.0) before rapidly leveling

out towards the top right of the graph (1.0, 1.0). Different retrieval methods may be

compared against each other by comparing the position and gradient of such graph

curves.

 68

Recall-Precision graphs use the Y-axis to represent the precision and the X-axis to

represent the recall. A typical recall-precision graph will have a graph curve that begins

somewhere near the top left of the graph (0.0,1.0) and moves towards (1.0,0.0). As with

the ROC graph, it is possible to compare retrieval methods by comparing the slope and

gradient of such graph curves.

2.4.3 A survey of texture retrieval systems

While there is a vast amount of literature related to texture retrieval using standard

images illuminated by natural or artificial light (the albedo), less research has been

conducted on rotation invariant texture retrieval, especially with 3D surface

representations.

Dana investigated applications of the BTF to represent and relight 3D surfaces

[Dana1997] [Dana1999] and also the classification of 3D texture using histograms

[Dana1998]. As this system was designed for image samples with constant albedo, this

system used only a grey-scale histogram and to eliminate the effect of self-shadowing,

pixel values below a selected threshold are discarded. This method has the advantage of

not requiring image data to be transformed into the frequency domain, but has the

disadvantage of not working with images with varying albedo.

McGunnigle investigated the use of photometric-stereo techniques combined with the

use of a feature vector comprised of thirty-two Gabor filters to implement texture

classification with illuminant direction invariance in the spatial domain

[McGunnigle1997] [McGunnigle1998] [McGunnigle1999]. This decision was based on

the research documented by Jain and Farrokhia [Jain1991] which aimed to develop a

texture retrieval system based upon biological models. This method has the advantage

of modeling human perception of textures but at the disadvantage of requiring a large

feature vector.

Varma investigated texture classification of images from the Columbia-Utrecht

database using texton dictionaries generated from k-means clustering techniques

 69

[Varma2002a] [Varma2005]. In the more recent paper, Varma performs a comparison

of the Leung-Malik filter bank, the Schmid filter bank, the MR4 filter bank and the MR8

filter bank in order to determine the texture classification rates of each method. In each

case, texture classification operates in two stages. In the first stage, the training stage,

the texton dictionary is generated from the set of existing images. In the second stage,

the retrieval stage, textures are classified using the texton dictionary. This system has

the advantage of using rotation invariant texture retrieval but at the disadvantage of

requiring a learning stage.

Wu investigated the use of photometric stereo to implement rotation-invariant

classification of 3D surface texture using the polar spectrum (the Polarogram) and the

radial spectrum in conjunction with both gradient and albedo data [Wu2003]. In this

system, the two dimensional image generated from transforming textures images into

the frequency domain is reduced in complexity from two dimensions to one dimension.

This method has the advantage of avoiding the computation time required to compare a

single texture image against an entire filter bank. It also has the advantage of being

made rotation invariant through the use of index offseting.

Drbohlav investigated the use of single training images to implement illumination

invariant texture classification [Drbohlav2005] [Drbohlav2005b]. Using this method,

the class that every new image added to the database is determined by calculating the

feature vector distance between the image and each of the pre-existing training images.

The training image with the shortest feature vector distance identifies the class that the

new image belongs to. The feature vector used by this system is comprised from fifteen

Gabor filters arranged as three rings of five filters each separated by 36 degrees. This

method has the advantage of using a smaller feature vector than the system described by

McGunnigle, but with the disadvantage of requiring a training set of images.

We extend the research carried out by these papers by investigating the application of

rotation invariant texture retrieval using p and q gradient fields in both the frequency

domain and the spatial domain. As our criteria require the use of colour texture data, we

choose not to use the grey-scale histogram method described by Dana, but instead use

the colour histogram method described by Funt and Swain. We choose to use a large

 70

Gabor filter bank as described by McGunnigle rather than the smaller filter bank as

described by Drbohlav. Based upon the research conducted by Varma, we choose to

investigate the Schmid filter bank, the Leung-Malik filter bank, the MR-8 filter bank and

the MR-4 filter bank but without the use of a set of training images. Finally, based upon

the research conducted by Wu, we choose to investigate the use of the Polarogram as a

means of reducing the size (or dimensionality) of the feature vector for texture retrieval.

As we were unable to find any documented research in the combined use of colour

(albedo) and micro-geometry (gradient field data, normalmaps and heightmaps) we

choose to investigate the use of rotation invariant texture retrieval methods with this

data. We also attempt to combine all ten methods together in an attempt to improve

performance with the disadvantage of increasing the size of the feature vector.

2.4.4 Summary

In this section, we have performed a review of current information retrieval systems

designed to work with generic types of data. We have identified that both the feature

extraction and segmentation module and the distance function module of the Ferret

toolkit correspond to the feature vectors required for rotation invariant texture retrieval.

We have also identified the need to measure the accuracy rates of each of the selected

texture retrieval methods based upon the standard measures of precision and recall in

order to compare and evaluate the performance of the candidate texture retrieval

methods. It is our intention to combine these together in order to evaluate and compare

the most suitable rotation invariant texture retrieval method for virtual textile

databases. We will present out findings using both ROC and Precision-Recall graphs.

Having performed a review of information retrieval systems and benchmarking, we now

proceed to present the conclusions from our literature survey.

 71

2.5 Conclusions

In this chapter, we have performed a literature review in the main research fields

relevant to our thesis (3D surface representations, textile visualisation, texture retrieval

and information retrieval database validation methods).

Our summary conclusions are as follows:

2.5.1 3D Surface Representations

We choose to use relief mapping to represent textile samples as this is the only 3D

surface representation that can be obtained using a simple camera setup and that

represents both the albedo and micro-geometry of textile samples and thus allow the

implementation of self-shadowing and self-occlusion. As relief-mapping is an extension

of both texture mapping and bump-mapping, we also choose to investigate both of these

simple methods. However, one problem with the use of normalmap data for rotation

invariant texture retrieval is that there is a directional dependency due to the use of axis

coordinates to represent the per-pixel outward normals. We describe this process in

Chapter 3, and discuss suitable methods for acquiring these data in Chapters 4 and 5.

2.5.2 3D Visualisation

For the real-time visualisation of the 3D surface representations, we choose to use the

generic texture description provided by Stürzlinger. We base this decision due to the

ability of the texture description to represent every possible combination of surface

appearance from matte surfaces to shiny reflective and translucent surfaces. To improve

the visual realism of the visualisation system, we also choose to implement hard

shadows using the shadow mapping method. We base this decision due to the ability of

the shadow-mapping method to support dynamic light sources and not require any pre-

calculation of scene geometry along with being supported by 3D graphics hardware. In

order to combine together the rendering of relief-mapping and hard shadows with

multiple light sources will require the development of a rendering algorithms and

shaders. While shadow-mapping allows 3D geometric objects to project shadows onto

each other and concave 3D geometric objects to project shadows onto itself, it does not

solve the problem of self-shadowing of the micro-geometry. This can only be performed

 72

through the use of relief-mapping. The requirement for relief-mapping and shadow-

mapping techniques thus necessitates the use of a programmable graphics accelerator

board in order to implement per-pixel lighting. Combining these two techniques is an

issue that remains to be resolved.

Furthermore, as the visual properties of textiles as encoded by the micro-geometry are

often more obvious when presented on a curved surface we will investigate the use of

3D geometric objects represented using Bézier patches as the use of parametric surfaces

with control points will allow for the rapid construction and simple animation of

complex geometry. To generate the tangent space required for both relief-mapping and

bump-mapping will require the development of parametric surface evaluation

algorithms. We describe our approach to integrating micro-geometry and macro-

geometry in Chapter 5, then present the integrated visualisation system in Chapter 6.

2.5.3 Texture retrieval system

We have decided not to implement a complete information retrieval system with a

complete front-end user interface due to the time constraints imposed by this thesis, and

so we choose not make use of the Ferret toolkit. Instead we choose to focus our

attention on the implementation of feature extraction and similarity operators in order to

determine which filter bank is best for the analysis of texture periodicity. To this aim we

will investigate the use of rotation invariant filter banks in the frequency domain, and

colour histograms in the spatial domain as we consider periodicity and colour important

to texture retrieval. These methods will include the ring filter bank, the wedge filter

bank, the Gabor filter bank, the Schmid filter bank, the Leung-Malik filter bank, the

MR4 filter bank, the MR8 filter bank and the Polarogram. To benchmark the operation

of each of these texture retrieval methods, we will make use of the precision and recall

measurement techniques as described earlier. We describe our research in this area in

Chapter 7 of this thesis.

 73

Chapter 3 – Data Requirements

3.1 Introduction

In the previous chapter we reviewed several candidate representations of virtual textiles

that would be suitable for both texture retrieval and rendering purposes, and identified

that reliefmaps, bumpmaps and texturemaps would all warrant further investigation. The

purpose of this chapter is to review possible sources for thesis data both in terms of

existing public databases and acquisition methods, but before this, we will quickly

discuss the requirements we have of these data. From our literature survey, we have

identified the following requirements:

The data must be able to encode relief-maps, bump-maps, and colour texture maps in a

form suitable for use with current generation programmable graphics accelerator

boards and for the derivation of suitable feature vectors and at sufficient resolution. For

visualisation, we require height data (h), unit surface normals)(n , and colour albedo

(r,g,b) sampled on a regular Cartesian grid in xand y .

The feature vector will be used to encode periodic characteristics of weaves and other

fabrics together with colour data in a rotation invariant manner. As many features are

computed in the frequency domain, it will be more efficient if the data are organized in

a form suitable for processing by FFT ie. a regular grid of side n2 . It should be noted

that the xand y components of the surface normal),(yx nn are naturally directional and

are therefore not directly suited to computing rotationally invariant features. This will

be addressed in Chapter 7.

The above requirements mean that we require height, normal and colour data sampled in

a regular grid at a resolution of 512 x 512 or greater.

 74

3.2 Existing databases

While many texture databases already exist; the Brodatz collection [Brodatz1966],

MeasTex [Ohanian1992] [Smith1997], the CUReT data set [Dana1997] [Dana1999],

the VisTex Database [Vistex2002], the Outex data set [Ojala1996] [Ojala2002]

[Cola2004], PhoTex [McGunnigle2001], PMTex [Wu2003] very few if any deal

exclusively with textiles. Instead, many consist of a wide variety of colour image

samples with objects ranging from vegetation and foodstuffs to natural and human

architecture (VisTex, CURet), while others consist entirely of monochromatic image

data (Brodatz, MeasTex, PhoTex, PMTex, OUTex) and/or only have one orientation of

each object. Furthermore, these databases do not contain explicit gradient data. In a few

cases such as CURET, data from multiple sample orientations is available and in

principle as normals could have been estimated from these images but this requires

registration and interpretation of what is already comparatively low resolution data.

As the focus of this thesis is exclusively on virtual textile databases and in particular the

use of micro-geometry data, we consider none of the existing texture databases to be

suitable for the research described in this thesis.

3.3 Acquisition techniques

The main requirements for an acquisition system are that it should produce the data as

described in the introduction and that it should be economic and simple to set up. At

present, there are a wide variety of methods for the acquisition of the micro-geometry of

the surfaces of solid objects. These include tunneling electron microscopes, laser and

ultrasound scanners. However, all of these methods have the disadvantage of requiring

expensive data acquisition systems, and in the case of tunneling electron microscopes,

require that each sample be coated with a thin layer of gold before being placed in a

vacuum chamber. With some laser scanners, there is also the disadvantage that the

 75

system will not generate a regular mesh of data points. Other systems such as hand-held

digitizer pens have the disadvantage of requiring manual sampling with each single

sample point taking five seconds to acquire. As our requirements are that at least

256,000 sample points must be acquired, this method is not practical. The only

alternative to all of these methods are photographic techniques such as photometric

stereo. This method provides surface normal and colour albedo data and requires only a

digital camera as an acquisition source, along with three digital images of the target

surface taken with different light source angles. Note that the height data may be

obtained through integration [Frankot1988].

Thus when compared to the architecture of the Ferret toolkit, we observe that the Data

Acquisition module of Ferret matches the Photometric Stereo stage of our thesis, while

the Feature Extraction modules also match. However, our framework differs from Ferret

in that we use photometric stereo to acquire albedo, gradient field and heightmap

information, and 3D rendering techniques to visualize this texture data applied onto 3D

geometric models.

For each texture sample, we acquire four images of the texture at different orientations

using a fixed camera (Canon SLR camera). For each orientation of the textile sample,

we capture a set of three images under different lighting orientations. We refer to these

image data sets as “photometric images” [Woodham1980]. These are sufficient to

accurately acquire the albedo, gradient field and heightmap data. We provide detailed

explanation of the process used to convert these photometric images into albedo,

gradient field and heightmap data in (Chapter 4). We acquire all images at an original

pixel resolution of 1280x1024 at 24-bits per pixel, as this is the optimum resolution to

capture the repetitive nature of a regular pattern as seen from the camera while

maintaining the highest level of detail of micro-geometry. We represent all samples in

the database as true colour quality images at a pixel resolution of 512x512 as a square

dimensions is required for our discrete FFT conversion process. Our method of

acquiring and generating texture samples is based upon the conclusions reached by the

research conducted by the other researchers at Texturelab; Gullón, McGunnigle and

Spence investigated modifications to the Frankot integration method [Gullón2003]

[McGunnigle1998] [Spence2005]. McGunnigle initially set up the camera system and

created the Photex database [McGunnigle2001]. Spence developed the software to

 76

convert photometric stereo image data sets into gradient field and heightmap data

[Spence2005].

To determine whether an image data set is added to the Virtex texture database or not,

we use the following criteria. The texture sample must consist of a regular pattern and

not a simple image. Thus, knitted cartoon images are not suitable for inclusion in our

database. Secondly, the texture sample must fill the entire area of the texture frame with

a solid pattern. Thus, textile samples which are comprised of a fishnet pattern that can

be seen through or which are too small to fill the frame of the digital camera are not

suitable for inclusion in our database. We choose a large number of textile samples to

provide a wide variety of texture patterns. These include fine-weave patterns with a near

Lambertian reflectance model; rough weave patterns that create self-shadowing and

inter-reflectance lighting effects; textiles with semi-transparent threads that allow for

translucency, and others with a glossy coating that provide specular highlights.

Altogether, we acquire twenty textile samples with each sample taken at four randomly

chosen orientations. As each textile sample requires three photometric images, this

results in a total of 240 images. This relatively low number of samples is due to the time

taken to process each textile sample, as described in Chapter 4 – Image Acquisition

using Photometric Stereo.

We present the complete set of textile images in (Appendix B – The Texture Dataset)

3.4 Conclusion

In this chapter, we defined our data requirements for the acquisition, retrieval and 3D

visualisation of textile samples. Based upon these requirements, we introduced the data

environment used to perform all texture retrieval experiments in this thesis.

The data representation enables integration of both texture retrieval methods based

upon 3D surface texture and 3D visualisation methods in order to implement real-time

3D visualisation of virtual textile databases. The data acquisition and processing thus

consists of three stages: the first stage acquires a set of 3D surface representations using

 77

photometric stereo, the second stage implements a texture retrieval system obtained

using the images acquired by the first stage, and the third stage consists of the

visualisation of these texture on 3D geometric models. However, the use of normalmaps

introduces the problem of directional artifacts, which must be resolved if rotation

invariant texture retrieval is to be implemented successfully.

We now proceed to describe how photometric stereo techniques may be used to acquire

the data required to represent the 3D surface representation of textile samples. This

information includes the albedo, surface normals represented as a normalmap and also

a heightmap.

 78

Chapter 4 – Data Acquisition using Photometric Stereo

4.1 Image Acquisition using Photometric Stereo

In Chapter 3, we described the generic data representation for this thesis that would

allow us to use a single 3D surface representation in conjunction with texture retrieval

and 3D visualisation techniques. In this chapter, we describe how a standard digital

camera and light source can be used with photometric stereo to acquire the albedo,

heightmap and normalmap components of the 3D surface representation and how these

data may be converted for use with current programmable graphics accelerator boards.

This forms the first stage of our data representation (Figure 33).

Figure 33: The image acquisition stage of our data representation

One method of capturing the micro-geometry of a texture is through the technique

known as photometric stereo. This method requires three pieces of equipment: (1) a

camera that is fixed directly above the textile sample, (2) the textile sample itself fixed

so that it does not move between image captures, and (3) a light source that is a constant

distance away from the textile sample, but is free to rotate in a circular path (Figure 34).

 79

Using photometric stereo, three images are captured, each with the light source at the

same distance and height, but with a different direction. By using photometric stereo

methods [Woodham1980] [McGunnigle1997] [McGunnigle1999] [Spence2005]

[Wu2003], it is possible to estimate the p and qgradient fields (or partial derivatives)

of each pixel in the image. From these gradient fields, it is possible to calculate a

normalmap. Using the normalmap, and integration methods, it is possible to calculate

the albedo and heightmap of the image. Woodham demonstrated that it was possible to

recover both thep gradient field and qgradient field information, as well as the albedo

at every image point from just three images [Woodham1980] illuminated by three

different non-coplanar light sources.

Figure 34: The photometric stereo apparatus

(Due to the preliminary nature of this work, only a figure diagram is available)

 80

We can define the illumination vector in terms of tilt and slant angles:

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�
=

s
st
st

cos

sinsin

sincos

z

y

x

l

l

l

l (4.1.1)

 Where: t is the tilt angle,

 s is the slant angle,

 l is the illumination vector,

 and),,(zyx lll are the individual elements of the illumination vector

The three directions of incident illumination 1l , 2l and 3l are defined as:

][111 zyx lll=1l

][2222 zyx lll=l (4.1.2)

][3333 zyx lll=l

Combined together, these form the light matrix L :

�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�
=

333

222

111

zyx

zyx

zyx

lll

lll

lll

L

3

2

1

l

l

l

 (4.1.3)

We define the column vector n as the unit surface normal at),(yx as:

�
�
�

�

�

�
�
�

�

�
=

z

y

x

n

n

n

n (4.1.4)

Assuming Lambertian reflectance, the intensity of the three images at the point),(yx

are related to the albedo pk by the equation:

 81

 n..

3

2

1

Lk

i

i

i

I r=

�
�
�

�

�

�
�
�

�

�
= (4.1.5)

However, the light matrix L is known through the positioning of each light source, and

the intensities I are known through the acquisition of photometric images. This leaves

the both the albedo rk and surface normal n as unknown.

Rearranging this equation gives the “scaled surface normal”:

 ILk .. 1-== nt r (4.1.6)

Providing that the three vectors 1l , 2l and 3l are not collinear, then the inverse1-L exists,

and this equation is solvable. Then the albedo rk is determined from:

 222
zyx tttk ++== tr (4.1.7)

Where (xt , yt , zt) are the components of the scaled surface normal t

The unit surface normal n can be simply derived:

t
t

n = (4.1.8)

Integration of the surface normal using Fourier analysis [Frankot1988] [Gullón2008]

allows the surface heightmap to be calculated from the p and qgradient fields, which

are defined as:

z
x

p
¶
¶

= and
z
y

q
¶
¶

= (4.1.9)

and may be simply derived from the surface normal (n).

For this thesis, we chose to use a command line utility program written in the ‘C’

programming language running on Linux [Spence2005]. Input to this utility program

consists of the three photometric images stored in 16-bit format raw image camera files,

the spherical coordinates of each light source expressed as floating-point values and the

output consists of an albedo image stored as a 32-bit floating point image, two gradient

field images in p and q stored as 32-bit floating point images and the heightmap.

 82

4.2 Using photometric stereo data with 3D graphics accelerator boards

We begin this section by describing the decision made for the representation and

processing of texture data required for the relief-mapping of textile samples. We have

chosen to use these techniques in this thesis due to the fact that the standard methods of

texture-mapping do not allow for the accurate photorealistic visualisation of the micro-

geometry of textile samples. This is particularly important when curved geometry is

rendered using point and directional light sources. Due to their intrinsic method of

manufacture, textiles have a complex surface appearance which can only be captured

and reproduced through the use of three types of high-resolution image, which we refer

to as albedo, bump-map and height-map images. The albedo image defines the

appearance of the surface material under optimal ambient lighting conditions. The

bump-map image defines the individual surface normal for each sample point in the

albedo image. The height-map defines the height of each individual sample in the

albedo image relative to a fixed reference point. Rendering 3D geometry in real-time

with such surface materials requires the use of a programmable graphics accelerator

board. Implementing either Blinn bump-mapping or relief-mapping on a programmable

graphics accelerator board requires a minimum of two images. For Blinn bump-

mapping, only the albedo and normal-map are required, while for relief-mapping, the

height-map is also required along with the albedo and normal-map. We present example

albedo, bump-map and height-map images in (Figure 38) and (Figure 39).

In the previous section, we described how to use the photometric stereo process to

convert three intensity images into the albedo and gradient field represented as 32-bit

floating point data. However, in order to convert these images for use with

programmable graphics accelerator boards, the albedo image must be in an 8-bit RGB

or RGBA image and the normalmap must be combined together with the heightmap to

form a single 8-bit per channel RGBA image in order for use with hardware accelerated

bump-mapping or relief-mapping

In order to make both the albedo image suitable for use with a programmable graphics

accelerator board, we convert the albedo into an 8-bit RGBA texture. Conversion from

floating point to 8-bit data simply involves the normalization of the floating point data

 83

to the range 0.0 to 1.0, rescaling to the range 0 to 255, and then conversion to 8-bit

integer data.

We use the alpha channel of the albedo texture to represent the gloss map (also known

as the specularity map). If no gloss map is present, this field is assumed to be 1.0 as

attempts to read the alpha channel of a RGB texture will always return the constant 1.0.

For both bump-mapping and relief-mapping methods, the second texture is referred to

as the normalmap and encodes the surface normal of each pixel as either a floating

point or eight-bit signed vector in the RGB channel. Because each surface normal is a

unit vector, each component will range from –1.0 to 1.0.

The resulting unit vector is then scaled and biased for compression into an 8-bit signed

RGB colour value. The surface normal is encoded be converted each component into an

8-bit unsigned value by adding 1.0 and multiplying by 127. For relief-mapping, the

surface normal is represented the same as before, but the alpha channel is now used to

represent the heightmap, encoded into the range 0.0 to 1.0.

We present a diagram of the complete conversion process in (Figure 35). We present a

typical textile sample that has been framed and fixed to a backing board in (Figure 36).

Using the digital camera and multiple light sources, we acquire a set of four photometric

images (Figure 37) of which only three are used to generate the p and q gradient field

images (Figure 38). From these two gradient field images, the albedo, bumpmap and

heightmap images are generated.

 84

Figure 35: Photometric Stereo Capture Pipeline

 85

Figure 36: Textile sample used for photometric stereo

Figure 37: The set of photometric images each with a different light source direction

Figure 38: The albedo, P and Q gradient field images

Figure 39: The final normalmap and heightmap images

 86

The system used to implement this process was developed by Andrew Spence and

Stefano Padilla on a standard Windows PC with both a professional SLR camera

attached and controlled through an USB connection and a dedicated controller for the

set of flash-lamps. The software for the control of the camera and flash lamps was

written MFC and C++. The resulting images from the digital camera were in the raw

file format for the digital camera and were converted into standard TIFF (Tagged Image

File Format) files using a Linux command line utility called ‘dcraw’ [Coffin2000].

Conversion of the set of three photometric images was performed using the process

described in section 4.1. Each of these stages was implemented using a Linux command

line utility. In this way, the entire pipeline could be implemented using simple shell

scripts. Using this system, the total amount of time required generating a pair of albedo

and combined normalmap with heightmap images from a single textile sample would

take on average 25 minutes. This time could be broken down as follows:

· Setup of the dark room, camera and automated lighting equipment – 10 minutes

· Placement of the textile sample below the digital camera and automated capture

of the three photometric images used for photometric stereo – 5 minutes

· Transfer of the digital images from the camera to the controlling desktop

computer and file transfer to the Linux system – 5 minutes

· Conversion of the three photometric images to the final albedo and combined

normalmap/heightmap – 5 minutes

Much of this time can be attributed to the manual transfer of data between different

systems; the transfer of image data from the camera to the controlling desktop computer

and then to the file system of the Linux system. Because the automated camera and

flash-lighting system is controlled by software written for the Microsoft Windows

environment, this imposes a requirement that this operating system environment is used.

While the processing time of a set of textile images is on the order of 25 minutes, this

could be reduced through the use of a single integrated application that could control the

acquisition of photometric stereo and automatically perform the conversion to the

albedo and a normalmap combined with a heightmap. Another way in which the

processing time could be reduced would be to use a smaller self contained unit in which

the material sample is placed. This would eliminate the need for the use of a dark room.

 87

In our current setup the flash-lighting system require several minutes for the capacitor to

become fully charged.

4.2.1 Conclusions

In this chapter, we have described a system that utilizes photometric stereo for the

conversion of photometric images to texture data that can be used for both 3D

visualisation and texture retrieval.

We can see that photometric stereo has the ability to capture the micro-geometry of

textiles through the use of digital photographic methods. The use of standard digital

cameras means that the photometric stereo technique can take advantage of features

found on a modern digital camera such as high frame resolutions and macro-lens to

capture the micro-geometry of textiles at extremely high magnifications. The process of

converting the data generated from photometric stereo can be performed on standard

desktop computer systems. These two features gives photometric stereo the advantage

over other image acquisition techniques in that it can capture the micro-geometry of

textiles, and that it does not require expensive custom hardware.

Having described the principles behind photometric stereo, we can now proceed to

describe how texture database queries can be implemented using the resulting data.

However, first we investigate how the same data can be used for 3D visualisation

purposes.

 88

Chapter 5 – 3D Surface visualisation methods

5.1 Introduction

In Chapter 1, we identified the two research objectives for this thesis. In Chapter 2, we

performed a literature survey that identified the state-of-the-art in both texture retrieval

and 3D visualisation techniques and we identified that while Bézier patches are suitable

for the representation for macro-geometry, they are not suitable for the representation

for the micro-geometry important to textiles. In Chapter 3 we proposed a 3D surface

representation that can be used with texture retrieval and real-time 3D visualisation

techniques. In Chapter 4, we described how we used photometric stereo to acquire 3D

surface representations. This formed the first stage of our data representation.

In this chapter, we state our criteria for suitable 3D surface visualisation methods then

perform a survey of existing methods and finally present a summary of the candidate

methods. We then describe how the 3D graphics pipeline has been adapted to support

programmable graphics accelerator boards using both vertex shaders and fragment

shaders, before finally describing our novel method of rendering parametric surfaces

(Bézier patches) textured with textile samples acquired using photometric stereo and

illuminated using both relief mapping and shadow mapping with dynamic light sources

to achieve real-time visualisation of 3D geometric objects. This forms our core

contribution of research in this thesis and the second stage of our data representation

(Figure 40).

 89

Figure 40: Stage three of the data representation

5.2 Organisation

The remainder of this chapter is organised as follows: We first present the set of criteria

used to evaluate the different rendering methods that can deal with both the macro-

geometry and micro-geometry (3D surface descriptions) of textile data in section 5.3

and a detailed survey of photorealistic rendering methods in section 5.4. Section 5.5

describes the underlying data representation common to all visualisation methods.

Section 5.6 provides a quantitative assessment and discussion of these visualisation

methods, with section 5.7 presenting our conclusions.

5.3 Criteria

As the main objective of this thesis is to implement real-time 3D visualisation of texture

data acquired using photometric stereo, the choice of rendering method is of particular

importance with regard to the presentation of the micro-geometry and macro-geometry

of textile samples to the user. In order to satisfy this objective, we specify the following

six criteria that must be satisfied by the candidate rendering method:

1. Real-time performance

The user must be able to interact with light sources, rendered geometry, and

camera positions in a used-friendly way as possible. All changes must occur in

real-time at a rate not less than 15 frames per second. At frames rates lower

 90

than this, the application will be perceived as slow and unresponsive by the

users.

2. Economic usage of memory for texture-mapping

The method must make efficient use of texture memory, especially with regard

to the storage of a large collection of textile samples on the target computer.

As the goal of this thesis is to be able to present a virtual catalogue of such

textiles in real time, and that programmable graphics accelerator boards have

a fixed amount of texture memory (currently 256 Megabytes to 2 Gigabytes), it

is essential that each textile sample uses an economic amount of texture

memory.

3. Self-occlusion, self-shadowing and rough-edge silhouette generation

The method must also provide a solution to the problems of self-occlusion,

self-shadowing and rough-edge silhouette generation.

We define self-occlusion as the ability of a rendering method to model the

ability of the raised contours of a 3D surface representation to obscure other

parts of the 3D surface representation further away from the observer. This is

different from Z-buffering in that Z-buffering only models the ability of one

segment of rendered geometry to obscure other segments of geometry. The

ability of a rendering method to model self-occlusion is extremely desirable if

the micro-geometry of the textile sample is to be presented accurately to the

user.

We define self-shadowing as the ability of a rendering method to model the

ability of raised contours of a 3D surface representation to cast shadows on

other parts of the 3D surface representation further away from the observer.

This is different from hardware shadow-mapping in that hardware shadow-

mapping only models the shadows cast by different segments of rendered

geometry. The ability of a rendering method to model self-occlusion is also

extremely desirable if the micro-geometry of the textile sample is to be

presented accurately to the user.

 91

We define rough-edge silhouette generation as the ability of a rendering

method to model the raised contours of a material when viewed from side on,

even when the underlying geometry is a curved 3D geometric object. The

ability of a rendering method to model rough-edge silhouette generation is

desirable but not absolutely essential to the accurate presentation of the micro-

geometry of a textile sample to the user.

4. Compatible with image data acquired from photometric stereo

The rendering method must make use of the image data acquired from

photometric stereo. This image data includes both thep and qgradient fields

as well as the derived heightmap.

5. Compatible with existing 2D texture-mapping techniques

The rendering method must be able to apply existing 2D texture-mapping

techniques using current programmable graphics accelerator boards.

6. Compatible with existing lighting equations models

The rendering method must be able to operate in conjunction with existing

lighting equation models that incorporate lighting terms such as diffuse and

specular lighting with gloss maps.

5.4 A detailed survey of 3D surface visualisation methods

The purpose of this section is to present a detailed survey of recent papers on the

visualisation of 3D surfaces representations with particular interest in the rendering of

the macro-texture. Then we investigate the ability of these methods to operate in real-

time and how the user perceives the textures presented by them.

Memory usage defines the increase in memory required to store both the albedo and

normalmap textures. Typically, a single RGB texture with an alpha channel for

transparency will require 4 bytes per pixel. Adding a normalmap with the alpha

channel used to store the heightmap information will require an additional four bytes

 92

per pixel. As a standard texture can be anywhere between 1x1 and 4096x4096 pixels in

size, the total amount of texture memory required can range from 500 Kbytes to 16

Mbytes. While larger textures have the advantage of providing smaller detail, they have

the disadvantage of reducing the number of textures that can be stored in texture

memory. At the time of writing, current graphics accelerator boards have between 256

and 2 Gigabytes of texture memory, (although some of which may be pre-allocated to

the framebuffer). The term real-time refers to the ability of the technique to render a

complex 3D geometric model at a responsive speed of not less than 15 frames per

second.

Within the past few years, there has been a rapid advance in the capabilities of display

systems for desktop computer systems. Less than a decade ago, the most demanding

task for a graphics accelerator board was simply to accelerate framebuffer operations

such as block filling and block copying, with all 3D rendering being implemented as

separate application libraries or graphics engines running on general purpose CPU’s.

Consequently, such boards required less than 1 million transistors, and the only way to

render complex 3D scenes was by using rasterisation based algorithms. To achieve

practical ray-tracing, multi-processor systems such as supercomputers or render farms

had to be used.

Today, a standard graphics accelerator board consists of over 330 million transistors

and can render complex scenes consisting of well over 80 million triangles/second using

a programmable 3D graphics pipeline for vertex transformation and pixel shading.

However, while this polygon rendering rate would seem to be extremely generous, this

amounts to less than 1 million polygons per frame when multi-pass texturing rendering

techniques [Peercy2000] are used, and even less if fine scale surface detail such as

micro-structure or micro-geometry needs to be rendered [Koenderink1996] [Dana1999].

Following the introduction of affordable programmable graphics accelerator boards,

many researchers have published new methods for improving the realism of rendered

bump-mapped surfaces.

 93

5.4.1 Texture-mapping

Texture-mapping is the simplest method in use by current programmable graphics

accelerator boards. The advantages of this method are that memory usage is extremely

efficient. However, the disadvantages of this method are that it does not provide a

solution to the problem of of self-shadowing, self-occlusion or rough-edge silhouette

generation. Thus to provide a high level of detail, a 3D geometric object must use an

extremely large number of vertices.

5.4.2 Blinn Bump Mapping

Blinn bump-mapping aims to improve the visual quality of a texture by replacing the

need for high resolution geometry with the use of a second texture image, the

normalmap. The advantages of this method are that more efficient use is made of

system memory. The disadvantages of this method are that that it does not provide a

solution to the problem of of self-shadowing, self-occlusion or rough-edge silhouette

generation.

5.4.3 Shell Mapping

Porumbescu, Budge, Feng, and Joy proposed an extension to displacement mapping that

supports 3D geometric models and procedural volume textures [Porumbescu2005].

Using this method, the 2D space defined by three vertices on the surface of the 3D

geometric model is converted into 3D by extruding the third dimension along the

direction of the surface normal of each vertex, thus forming a thin shell. Each group of

three vertices then forms a triangular prism that converts the 2D coordinate system of

the displacement map into a 3D volume. By mapping the texture coordinates of the

displacement map into this volume, it is possible to create small detail by adding extra

geometry. The advantage of this method is that it only requires the modification of the

3D geometric object and no complex lighting models, and that rendering can be

achieved in a single pass. The disadvantages of this method are the memory required to

store the additional geometry, and that it does not provide any solution to the problems

of self-shadowing, self-occlusion or rough-edge silhouette generation.

 94

5.4.4 Displacement Mapping

Cook proposed a solution to solve the problem of rough-edge silhouette generation and

self-shadowing by introducing displacement maps [Cook1984]. Rather than just

modifying the surface normal of a pixel before lighting, the displacement map modifies

the actual location of each geometry vertex before the rendering process. By doing this,

a polygon mesh can be deformed without creating any artifacts. While solving all three

problems of self-occlusion, rough-edge silhouette generation and self-shadowing, this

technique requires that each 3D geometric model is rendered at a sufficiently high level

of detail for each pixel of the displacement map to correspond to a single vertex. A

compromise solution to this problem is to make use of subdivision surfaces, where a

relatively low-resolution geometry model is repeatedly subdivided to gain the desired

level of detail [Catmull1974], and then applying the displacement map. If a

displacement map is applied to a regularly space quad grid, then it may also be referred

to as a heightmap. Until recently, it was not possible to implement this method on

graphics accelerator boards, as there were no instructions to support texture reading

within a vertex shader. Becker and Max proposed a solution to unify the BRDF, bump-

mapping, displacement mapping into a single algorithm [Becker1993]. Gumhold and

Hüttner proposed a hardware architecture that would allow multiresolution rendering

with displacement mapping [Gumhold1999]. Doggett and Hirche proposed a new 3D

graphics pipeline architecture that would allow adaptive tessellation of a displacement

map using triangulated meshes [Doggett2000] [Hirche2004]. Moule and McCool also

proposed an adaptive tessellation algorithm based on triangulated meshes and which is

suitable for implementation on future graphics hardware [Moule2002]. The advantages

of this method are that the displacement geometry can be stored as a single image or

displacement map and that the geometry can be rendered in a single pass. The

disadvantages are the 3D geometric object must have enough vertices to match the

dimensions of the displacement map.

5.4.5 View-Dependent Displacement Mapping (VDM)

In 2003, Wang introduced View-Dependent Displacement Mapping as an alternative

method of implementing displacement mapping without having the expense of texture

lookup within the vertex shader [Wang2003]. In this method, each normalmap texture is

replaced by a VDM texture, which has the same width and height as the original texture

 95

but stores 32x8 viewing directions and 16 sampled curvature levels between –2.0 and

3.0, with interpolation being performed within those limits. The advantages of this

method are that it supports self-shadowing, self-occlusion and rough-edge silhouette

generation and that rendering of a geometric object can be achieved in a single pass.

The main disadvantages of this method are that at least 64 Megabytes of texture memory

is required to store each individual texture.

5.4.6 Horizon Mapping

In 1988, Max proposed a solution to the lack of self-shadowing with Blinn bump-

mapping, by introducing the concept of a horizon map [Max1988]. For every pixel in

the texture-map the horizon map stores a table of values, each of which represents the

zenith angle to the horizon for a particular azimuth direction, with all directions

distributed evenly around the azimuth circle. In this paper, Max recommended the use

of eight directions separated by 45 degrees each. Sloan and Cohen adapted horizon

mapping for use with programmable graphics accelerator boards that were state-of-the-

art at the time [Sloan2000]. This method used a three pass rendering technique based on

the ‘NV_register_combiners’ extension. The advantages of this method are that it

supports self-shadowing, self-occlusion and rough-edge silhouette generation. However,

there are several disadvantages to using this method. The first is that three rendering

passes are required to render the geometric object. Another disadvantage is that

representing such textures takes up a relatively large amount of memory, requiring eight

samples per pixel. In addition, calculating the horizon map is computationally

expensive, as the zenith angle for each direction of all pixels has to be calculated.

Rushmeier et al, proposed a solution to this problem by describing a method of

generating a horizon map directly from eight captured images [Rushmeier2001].

5.4.7 Parallax Mapping

Kaneko proposed a solution to the problem of the lack of self-occlusion within the Blinn

bump-mapping method, by including a heightmap with the normalmap and adding a

correction term that adjust the texture coordinates according to the eye vector and the

value of the heightmap at the current pixel in a single iteration [Kaneko2001]. Kaneko

implements this algorithm using a fragment shader on a current programmable graphics

accelerator board. This method has the advantages of not requiring any additional

 96

vertex processing or substantial increase in texture memory use (the only additional

memory required is for the alpha channel of the texture to store the heightmap. It also

has the advantage of supporting rough-edge silhouette generation, although for indented

regions only. Welsh noticed that there was a flaw in this algorithm in the situation when

the textured surface was visible at a steep angle, thus causing the texture to swim as the

camera moved [Welsh2004]. Analysis revealed that the corrective term would exceed

the maximum height difference of the two. Welsh’s solution was to introduce an offset

limit based on the height at the current pixel. However, this approach is limited to low-

frequency normalmaps. [Mcguire2005], [Brawley2004] and [Tatarchuk2005] have each

proposed improved versions in which the single iterative step in the fragment shader is

replaced by a small iterative loop which finds the first point of intersection in the

heightmap. This method has the advantage of improving the numerical precision of

heightmap intersection tests, allowing for the implementation of motion parallax, self-

occlusion and self-shadowing while still using the existing albedo and normalmap

texture data. The disadvantage of this method is the problem noticed by Welsh, but

solved through the use of relief texture-mapping.

5.4.8 Relief Texture-mapping

As an alternative method to parallax mapping, Oliveira proposed the method of relief

texture-mapping in his PhD thesis [Olivieria2000]. However, due to the limited

functionality of programmable graphics accelerator boards at this time, it was only

possible to implement this algorithm in software. In the same year, Oliveria Bishop, and

McAllister extended this method to run on first generation acceleration boards

[Oliveria2000a][Oliveria200b]. This method still required a pre-processing stage; the

first stage pre-warped the texture by the heightmap to take account of the direction of

the eye vector. The second stage simply rendered the texture as a standard polygon.

Fujita extended this algorithm to run on programmable graphics accelerator boards

using the OpenGL extensions: GL_NV_register_combiner and GL_NV_texture_shader

[Fujita2002]. Oliveria, Policarpo and Comba later adapted their method of relief-

mapping to operate on arbitrary polygon surfaces [Policarpo2005], quadric surfaces

[Oliveria2005] and multiple level depth maps [Policarpo2006]. One advantage of this

method is that it supports self-shadowing, self-occlusion and rough-edge silhouette

generation. Another advent is that efficient use is made of texture memory in that only

 97

two texture images are required; the albedo image and the combined normalmap and

heightmap, the latter of which is stored alongside the red, green and blue channels of the

texture image. The minor disadvantage to this method is processing each individual

pixel is more computationally expensive that a simple bump-mapped texture.

5.4.9 Sphere Mapping

To eliminate the accuracy problems caused by linear searching, Hart proposed a

solution using distance functions to implement sphere mapping [Hart1996]. Originally

intended for ray-tracing systems this technique has been adapted for use with present

day programmable graphics accelerator boards [Donnelly2005]. The main

disadvantage of relief-mapping is that the linear search stage can occasionally miss

small detail on heightmap data, particularly the peaks of narrow ridges (Figure 41).

Sphere mapping provides a solution to this problem by replacing the linear search with

a distance function that returns the distance to the nearest point on the surface for every

sample point in texture space. For optimum performance, the distance function is stored

as a three-dimensional texture sized according to the width, height and depth of the

texture space, with the depth of texture space based upon the precision required.

Determining the intersection point between an eye vector and the surface starting from a

point at the top of the texture space simply involves reading the distance texture,

moving along the eye vector by the returned distance, and stopping once a distance of

zero is returned. The advantages of sphere mapping are that it is efficient, and accurate,

supporting self-shadowing, self-occlusion and rough-edge silhouette generation. The

main disadvantage of sphere mapping is that the memory requirements range from five

to sixteen times as much as a standard bump-mapped or relief-mapped texture.

 98

Figure 41: Example of linear search miss with relief-mapping

5.4.10 Summary

We provide a summary list of the nine candidate methods in Table 6 and describe the

chosen methods in detail in the next section. As all of these methods modify either the

vertices of the 3D geometry object or the texture coordinates used to render a particular

pixel, all methods are capable of supporting various lighting equation terms such as

gloss maps and transparency maps.

As mentioned earlier, the critieria for the desired visualisation method is that it should

operate in real-time, should have efficient memory usage and should support edge-

silhouettes, self-shadowing and self-occlusion. From this table it can be seen that only

relief mapping and parallax mapping match our criteria. However, as parallax mapping

is essentially a special case of relief-mapping, we conclude that the relief mapping is the

only method that matches our criteria.

Method Edge
Silhouette

Self
Shadowing

Self-
Occlusion
/ Parallax

Memory
Usage

Real-
Time

Texture-
mapping

No No No x1 Yes

Blinn bump
mapping

No No No x2 Yes

Shell mapping Yes Yes Yes Not No

 99

known
Displacement
mapping

Yes No No x2 No

View-
Dependent
Displacement
Mapping

Yes Yes Yes x64 Yes

Horizon
mapping

Yes Yes Yes x8 Yes

Parallax
mapping

Yes Yes Yes x2 Yes

Relief-
mapping

Yes Yes Yes x2 Yes

Sphere
mapping

Yes Yes Yes x5 to x16 Yes

Table 6: Summary of the candidate nine visualisation methods

5.5 The 3D Graphics Pipeline

In the canonical 3D graphics pipeline used to render polygon geometry (Figure 42), the

complete pipeline consists of four stages; (1) Vertex transformation, (2) Lighting, (3),

Clipping and (4) rasterisation. Vertex transformation involves the transformation of all

polygon mesh vertices relative to the combined camera and model scene positions.

These are represented as two 4x4 matrices the first to represent the final transformation

in camera space, and the second to represent the required perspective projection by the

camera. The lighting stage applies the selected illumination model to the vertex data

(flat shading, Gouraud shading, Phong shading with the option of texture-mapping).

The clipping stage discards all vertex geometry that is outside the cube (-½, -½, -½) –

(½, ½, ½). The rasterisation stage is used to scan-line render the geometry. Because of

this layered structure, an implementation is free to use either software to hardware to

define each stage. The sample OpenGL implementation exists entirely in software

running on the host CPU. With early graphics accelerator boards, the transformation,

lighting and clipping (TLC) stages run on the host CPU, while the rasterisation stage is

implemented in hardware as a separate graphics accelerator board. Later graphics

accelerator boards implemented the complete 3D graphics pipeline as fixed functions

in hardware [Deering1988] [Mccormack1998] [Deering2002].

 100

Figure 42: Classic 3D graphics pipeline

5.5.1 Vertex and Fragment shaders

A programmable 3D graphics pipeline differs from the fixed functionality 3D graphics

pipeline in that both the transformation and lighting stages are replaced with a user

defined program or “shader”, both of which are executed directly on the graphics board

[Whitted1982]. A vertex shader replaces the transformation and per-vertex lighting

stages, while a fragment shader replaces the per-pixel lighting calculations (Figure 43).

 101

Figure 43: Programmable 3D Graphics Pipeline

5.5.2 The Tangent space coordinate system

In order to implement per-pixel lighting calculations for every point on a 3D geometric

model, we need to know several pieces of information. These include the directions of

the light source and camera transformed into the local coordinate system of that point.

To achieve this, it is necessary to know the tangent space of that point. The tangent

space consists of three distinct vectors which form a three dimensional local coordinate

system. These are (1) the tangent vector, (2) the bi-normal vector and (3) the surface

normal. The tangent vector is a three-dimensional unit vector that defines the tangent of

the surface in the direction of the first parametric coordinate (u), while the bi-normal

 102

vector is also a three-dimensional unit vector, which defines the tangent of the surface

in the direction of the second parametric coordinate (v). The surface normal is also a

three-dimensional unit vector that is perpendicular to both the tangent vector and bi-

normal vector (Figure 44). As all three vectors are perpendicular to each other, it is

possible to calculate the surface normal from the cross product of the tangent vector and

bi-normal vector. The tangent space vectors differ from the gradient fields p and q , in

that the gradient field values are scalar quantities representing the two gradients at a

particular point in the surface, which have no constraint on value, while the tangent

space vectors, by definition of a unit vector, have elements which are constrained to the

range -1 to +1, and the magnitude must always be equal to 1.0 exactly.

Calculation of these vectors for each vertex can be performed both during the creation

of the geometry and at run-time. We use the OpenGL API to render the scene by

sending the vertex, the tangent vector, bi-normal vector and surface normal vector to

the vertex shader.

Figure 44: The Tangent Space System

When combined together the tangent space vectors and the coordinates of the current

point in object space form a 4x4 transformation matrix (5.5.2.1).

 103

�
�
�
�

�

�

�
�
�
�

�

�

=

1000

tan
zzzz

yyyt

xxxx

gentspace pnbt

pnbt

pnbt

M (5.5.2.1)

 Where gentspaceM tan is the tangent space matrix

�
�
�

�

�

�
�
�

�

�
=

z

y

x

t

t

t

t is the tangent vector,

�
�
�

�

�

�
�
�

�

�
=

z

y

x

b

b

b

b is the bi-normal vector,

�
�
�

�

�

�
�
�

�

�
=

z

y

x

n

n

n

n is the surface normal vector

 and
�
�
�

�

�

�
�
�

�

�
=

z

y

x

p

p

p

p is the world space coordinate of the point.

There are two ways of calculating the tangent space for 3D geometric models. For rigid

polygon mesh models, the tangent space of each vertex can be pre-calculated through

the analysis of the edges forming each vertex. With higher-order surfaces such as

NURBS and Bézier patch models, it is possible to perform the calculation of the tangent

space vectors at the same time as each point of the surface. This is the approach taken

for this thesis. The purpose of the vertex shader is thus to perform the following

operations:

· Transform the vertices according to the current model space, camera space and

camera projection space matrices

· Transform the texture coordinates according to the current texture matrix

· Transform the world space light positions and eye positions into tangent space

· Transform the vertex into light projection shadow space to implement shadow

mapping

 104

· Transform the vertex into light projection texture coordinates for projective

lighting

To achieve the goal of transforming both the positions of the viewpoint and light source

into tangent space, we combine the tangent space matrix, the model space and camera

space matrices together. For light sources, the current direction of the light source is

also calculated. For a point light source, this will vary from vertex to vertex while for

directional light sources this will remain constant. These coordinates interpolated during

the rasterisation stage to generate coordinates for the lighting model implemented by the

fragment shader.

5.5.3 Representation of geometric models using Bézier surfaces

In the previous sections, we have described how different rendering methods can be

used to present the 3D surface representation to the user in real-time. In this section, we

describe the implementation of the geometric models used to implement real-time per-

pixel bump-mapping. To represent solid geometry, there are two possible representation

methods. The first method consists of representing the solid geometry purely as lists of

vertices and polygons. Each vertex is then composed of a geometric point, and a tangent

space composed of a binormal vector, tangent vector and surface normal. Calculation

of the tangent space data requires a detailed analysis of the connection data related to

every vertex, edge and polygon. The advantages of this method are that rendering

simply involves writing the geometry to the programmable graphics accelerator board,

while the disadvantages are that calculating the tangent space information requires

considerable analysis of the topology of the 3D geometric model.

The second method to make use of high-order parametric curves and parametric

surfaces such as NURBS [Farin2001] [Gouraud1971] or Bézier surfaces [Bézier1966]

[Bézier1967] [Bézier1968] [Bézier1974]. The principle of each representation method

follows a similar approach. Instead of specifying every geometric point, a parametric

curve is represented by a small number of control points combined together using

parametric coordinates to evaluate individual geometric points on the curve. This

technique can be extended into two dimensions to form parametric surfaces. A

collection of such parametric surfaces can be used to form a 3D geometric model. As

 105

well as being able to calculate individual geometric points, the use of parametric

coordinates allows the tangent space and texture coordinate data to be calculated

directly. This has the advantaged of eliminating the need for a detailed analysis of the

connectivity of the shape, and reducing the memory requirements of storing the 3D

geometric model.

A two-dimensional matrix known as the basis matrix governs the shape of the curve that

results from a given set of control points. The degree of the curve determines the

number of control points required. For a curve of degreeN , 1+N control points are

required. Consequently, the basis matrix is also a square matrix of

dimension)1()1(+´+ NN . We define the mathematical relationship between the

geometric point, basis matrix, parametric coordinate and control points as follows

(5.5.3.1) (5.5.3.2).

CMU basis..=p (5.5.3.1)

 Where: p is the geometric point

 U is the parametric basis vector

 basisM is the basis matrix,

 and C is the set of control points

i
in

n

i

i c
ini

n
uuuF

)!(!
!

)1()(
0 -

-= -

=
� (5.5.3.2)

 Where:)(uF is the Bézier curve

 u is the parametric coordinate

 n is the degree of the curve

 and ic is the set of control points

Parametric curves can be of any degree, ranging from zero upwards. However, for low

degrees (<3) there is less control over the shape of the curve, while for high degrees

(>3) the large number of control points makes controlling the local shape of the curve

difficult. Thus, spline curves of degree three or cubic curves are the most popular choice

(5.5.3.3). Examples of degree three curves include the Ball spline, Beta spline, Bézier

 106

spline, B-spline, Catmull-Rom spline, Cardinal spline, Cubic spline, Hermite spline,

Kochanek-Bartels spline, Overhauser spline, Tau spline and Timmer spline curves, with

each curve having a unique basis matrix. For curves such as the Beta spline and

Kochanek-Bartels spline, it is possible to modify the basis matrix using additional

variables that control attributes such as bias, tension and continuity. For NURBS curves,

additional data values known as weights provide the user with greater control over the

shape of the surface. For this thesis, we chose the Bézier curve of degree three to

represent all 3D geometric models (5.5.3.4). We present visual examples of cubic Bézier

curves in (Figure 45).

Figure 45 : Sample cubic Bézier curves

[]
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

3

2

1

0

33323130

23222120

13121110

03020100

23 ..1)(

c

c

c

c

bbbb

bbbb

bbbb

bbbb

uuuup (5.5.3.3)

 107

 []
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

3

2

1

0

33222120

13121110

0302010023 .
2222

3333

0000

.1)('

c

c

c

c

bbbb

bbbb

bbbb
uuuup

 Where:)(up is the spline curve,

)(' up is the first derivative of the spline curve,

 u is the parametric coordinate,

 and nmb are the coefficients of the basis matrix

[]
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

-

-

--

=

3

2

1

0

23 .

0001

0033

0363

1331

.1)(

c

c

c

c

uuuup (5.5.3.4)

[]
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

-

-

--
=

3

2

1

0

23 .

0033

06126

3993

0000

.1)('

c

c

c

c

uuuup

Where:)(up is the spline curve,

 p’(u) is the first derivative of the spline curve

 u is the parametric coordinate,

 and nc are the control points.

To evaluate more than one geometric point on a parametric curve, it is more efficient to

precalculate the product of the basis matrix and the set of control points, to (or the

geometry vector), and then multiply the geometry vector with the row vector derived

from the various powers of the parametric coordinate for each required geometric

point. As another optimization, forward differencing techniques help minimize the

number of multiplication operations required to evaluate each point. These optimization

techniques are also applicable when calculating the tangent vector of the curve. The

parametric surface extends this process to two dimensions by representing the 3D

geometric model by a set of control points arranged in a triangulated or rectangular

control net (Figure 46). For a rectangular control net, two parametric coordinates locate

each point on the parametric surface (rectilinear coordinate system) while for a

 108

triangulated control net three parametric coordinates locate each point on the

parametric surface (barycentric coordinate system). Because at least two parametric

coordinates are used, this also allows the calculation of the partial derivatives (or

gradient values) of any geometric point on the surface. Since the cross product of the

two gradient values produces the surface normal, this allows the complete tangent

space of each geometric point on the parametric surface to be calculated. For a cubic

Bézier rectangle, sixteen control points are required, while for a cubic Bézier triangle

ten control points are required. We provide the general equation of the Bézier rectangle

in (5.5.3.5), and provide the general equation of the Bézier triangle in (5.5.3.6).

Figure 46: Control nets for rectangular and triangulated cubic Bézier surfaces

 109

� �
= =

--

--
--=

n

i

m

j
ij

jnnini c
jminji

mn
vvuuvuF

0 0)!()!(!!
!!

)1()1(),((5.5.3.5)

Where:),(vuF is the Bézier rectangle

),(vu are parametric coordinates

 n is the degree of the Bézier rectangle for u

 m is the degree of the Bézier rectangle for v

 and ijc are the control points for the Bézier rectangle

ijk

nkji
kji

kji c
kji

n
wvuwvuF

!!!
!

),,(
0,,

�
=++

>=

= (5.5.3.6)

Where:),,(wvuF is the Bézier triangle function

),,(wvu are parametric coordinates

 n is the degree of the Bézier triangle

 and ijkc are the control points for the Bézier triangle

To evaluate a single geometric point on the surface of a Bézier rectangle, we use the

general equation (5.5.3.7). To evaluate the tangent vector and the binormal vector, we

use the partial derivatives (5.5.3.8) and (5.5.3.9), with the surface normal being derived

from the cross product of the two vectors. Two methods for generating texture

coordinates exist. The first method derives each texture coordinate directly from the

parametric coordinates, while the second method derives each texture coordinate from

the arc lengths the tangent and binormal curves.

 110

33

32

31

30

23

22

21

20

13

12

11

10

03

02

01

00

33

32

32

33

23

22

22

23

23

22

22

23

33

32

32

33

.1.

.3.

.3.

.1.

.3.

.9.

.9.

.3.

.3.

.9.

.9.

.3.

.1.

.3.

.3.

.1.

)1(

)1.(

)1(

)1(

)1()1(

)1()1.(

)1()1(

)1(

)1()1(

)1()1(

)1()1(

)1(

)1)(1(

)1()1(

)1()1(

),(

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

vu

vuu

vuu

vu

vvu

vvuu

vvuu

vvu

vvu

vvuu

vvuu

vvu

vu

vuu

vuu

vu

vuF

+

-+

-+

-+

-+

--+

--+

--+

-+

--+

--+

--+

-+

--+

--+

--

=

 (5.5.3.7)

 Where:),(vuF is the Bézier rectangle

),(vu are parametric coordinates

 and ijc are the control points of the Bézier rectangle

33

32

31

30

23

22

21

20

13

12

11

10

03

02

01

00

32

3

32

32

22

2

22

22

22

2

22

23

32

3

32

32

.1.

.3.

.3.

.1.

.3.

.9.

.9.

.3.

.3.

.9.

.9.

.3.

.1.

.3.

.3.

.1.

3

)32(

)341(

)1(3

)1(3

)1()32(

)1()341(

)1()1(3

)1(3

)1()32(

)1()341(

)1()1(3

)1(3

)1)(32(

)1)(341(

)1()1(3

),(

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

vu

vuu

vuu

vu

vvu

vvuu

vvuu

vvu

vvu

vvuu

vvuu

vvu

vu

vuu

vuu

vu

u
vuF

+

-+

+-+

-+

-+

--+

-+-+

--+

-+

--+

-+-+

--+

-+

--+

-+-+

--

=
¶

¶

 (5.5.3.8)

 111

Where:),(vuF is the Bézier rectangle function

),(vu are parametric coordinates

 and ijc are the control points

33

32

31

30

23

22

21

20

13

12

11

10

03

02

01

00

33

32

32

33

3

2

2

3

23

22

22

23

23

22

22

23

.1.

.3.

.3.

.1.

.3.

.9.

.9.

.3.

.3.

.9.

.9.

.3.

.1.

.3.

.3.

.1.

)1(

)1(

)1(

)32(

)32()1(

)32()1(

)32()1(

)341(

)341)(1(

)341()1(

)341()1(

)1(3

)1)(1(3

)1()1(3

)1()1(3

),(

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

vu

vuu

vuu

vu

vvu

vvuu

vvuu

vvu

vvu

vvuu

vvuu

vvu

vu

vuu

vuu

vu

v
vuF

+

-+

-+

-+

-+

--+

--+

--+

+-+

+--+

+--+

+--+

-+

--+

--+

--

=
¶

¶

 (5.5.3.9)

Where:),(vuF is the Bézier rectangle function

),(vu are parametric coordinates

 and ijc are the control points

To evaluate a single geometric point on the surface of a cubic Bézier triangle, we use an

equation similar to that of the Bézier rectangle (5.5.3.10). The tangent space (tangent

vector, binormal vector and surface normal) system for the geometric point is achieved

by evaluating the partial derivatives for each pair of barycentric coordinates (5.5.3.11),

(5.5.3.12) and (5.5.3.13). Calculating the cross product of any two partial derivatives

will generate the surface normal. As with the Bézier rectangle, two methods for

generating texture coordinates exist. The first method derives each texture coordinate

directly from the parametric coordinates, while the second method derives each texture

coordinate from the arc lengths the tangent and binormal curves.

 112

003

102

201

300

012

111

210

021

120

030

3

2

2

3

2

2

2

2

3

.1.

.3.

.3.

.1.

.3.

.6.

.3.

.3.

.3.

.1.

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

),,(

c

c

c

c

c

c

c

c

c

c

u

wu

uw

w

vu

uvw

vw

uv

wv

v

wvuF

+

+

+

+

+

+

+

+

+

= (5.5.3.10)

Where:),,(wvuF is the Bézier triangle function

),,(wvu are parametric coordinates

 and ijkc are the control points

003

102

201

012

111

210

021

120

030

2

2

2

2

2

2

.3.

.6.

.3.

.3.

.6.

.3.

.3.

.6.

.3.

)(

)(

)(

)2(

)(

)(

)2(

)(

)(

),,(

c

c

c

c

c

c

c

c

c

u

uw

w

uvu

uwvw

w

vuv

vw

v

vu
wvuF

-

-

-

-

+

+

+

++

-+

+

+-+

+

=
¶

¶
 (5.5.3.11)

Where:),,(wvuF is the cubic Bézier triangle function

),,(wvu are parametric coordinates

 and ijkc are the control points

 113

102

201

300

012

111

210

021

120

030

2

2

2

2

)2

)2

.3.

.6.

.3.

.3.

.6.

.3.

.6.

.3.

.3.

)(

)(

)(

)(

)(

)2(

)(

2(

(

),,(

c

c

c

c

c

c

c

c

c

u

uw

w

u

uvuw

vww

uv

vvw

v

wv
wvuF

-

-

-

-

-

+

+

+

+

++

-+

+

++

=
¶

¶
 (5.5.3.12)

Where:),,(wvuF is the cubic Bézier triangle function

),,(wvu are parametric coordinates

 and ijkc are the control points

003

102

201

300

012

111

210

021

120

2

2

2

2

)2

2

.3.

.3.

.3.

.3.

.6.

.6.

.6.

.3.

.3.

)(

)2(

)2(

)(

).(

)..(

).(

(

)(

),,(

c

c

c

c

c

c

c

c

c

u

uuw

uww

w

vu

vuwv

wv

v

v

wu
wvuF

-

-

-

+

-+

-+

+

+

-+

+

+

=
¶

¶
 (5.5.3.13)

Where:),,(wvuF is the cubic Bézier triangle function

),,(wvu are parametric coordinates

 and ijkc are the control points

 114

Visualisation of a parametric surface is achieved in many possible ways; per-pixel

subdivision [Catmull1974], scan-line interpolation [Whitted1978] [Lane1980]

[Schweitzer1982], ray-tracing using interval analysis methods such as Bézier clipping

or Newton’s method [Toth1985], or by conversion into a polygon mesh suitable for

rendering by a standard 3D graphics pipeline (polygon tessellation) or for-ray tracing

using ray-triangle intersection tests. Ray-tracing has the advantages of supporting

advanced lighting models such as caustics as well as both reflection and refraction, but

with the disadvantage that a single frame can take minutes if not hours to render. As the

name suggests, per-pixel subdivision provides accurate represention but also requires

large periods of processing time in order to subdivide the control net down to the

resolution of individual pixels. Scan line conversion attempts to render the parametric

surface pixel row by pixel row. While this method can operate in real-time, the cost of

managing individual power terms makes it more costly than basic polygon mesh

tessellation. Polygon tessellation methods have the advantage of being able to render

frames in real-time, but with the disadvantage that not all advanced lighting models are

available. Because of the requirement to render geometry in real-time, we have chosen

the method of polygon tessellation for this thesis. Using this method, parametric

coordinates spaced at regular intervals on the surface of each parametric surface of the

3D geometric model are used to generate geometric points, which in turn are converted

into triangle strips, all of which are stored as display lists within the 3D graphics

pipeline. Thus, only a single function call is required to render a complete 3D geometric

model.

5.5.4 Conclusions

In the previous section, we selected fourteen potential methods of rendering textures

with micro-texture. We also described how to combine these methods with existing 3D

visualisation techniques to render the macro-structure (Bézier patches or parametric

surfaces. In this section, we compare these rendering methods against the criteria for the

micro-structure specified at the beginning of this chapter, and discarded those that fail

to match our requirements. By comparing the set of criteria against the rendering

methods described in the previous section, we can immediately reject some due to the

large memory requirements (BRDF, BTF, PTM, VDM and Sphere Mapping). We reject

the method of vertex displacement mapping techniques due to the inability to render

 115

detailed geometry in real-time. We also reject basic texture-mapping, as it does not

provide any representation for the micro-structure. In addition, because of their

similarity, we consider relief-mapping and parallax mapping as a single method.

According to these requirements, only the following methods satisfy both of our

criteria:

· Relief-mapping using a combined normalmap and per-pixel displacement

mapping using heightmap

This method is suitable for use with rendering with both polygonal geometry and with

parametric surfaces. This is of particular importance to the real-time 3D visualisation

of textile samples, as the very appearance (reflected light and texture) of such real-world

textiles will change radically depending upon the combined orientation and curvature of

individual points on the fabric, the position of the light source and the position of the

camera. Thus, visualizing the appearance of a textile in real-time can only be done on a

per-pixel basis and requires the computational power of a programmable graphics

accelerator board. For this thesis, we choose to represent the macro-structure using

Bézier surfaces due to their ability to automatically calculate the tangent space and

texture coordinate for each geometric point on the surface of a 3D geometric object and

thus have provided a detailed explanation of the mathematical theory underlying their

use. Knowledge of the tangent space of each vertex is necessary in order to present the

micro-structure to the user through the use of relief-mapping, as the light vector must be

transformed from the world space system to the tangent space system and the eye vector

must be transformed from the camera space system to the tangent space system. To

allow the user to view the model with as much freedom as possible, the user interface

has been designed to allow the user to control the position of the model, light sources

and camera independently. The operations supported include rotating the model,

rotating and zooming both the camera and light-sources. All objects can be allowed to

rotate automatically, to brake automatically, or to only rotate whenever the user moves

the mouse. Light sources are rendered as 3D geometric objects in order to give the user

feedback as to where the light source is located and moving. The novel combination of

using parametric surfaces (Bézier surfaces) to represent the macro-structure combined

with texture images of textile samples acquired using photometric stereo to represent

the micro-structure and illuminated using both relief mapping and shadow mapping

 116

with dynamic light sources to achieve real-time visualisation of 3D geometric objects

forms our core contribution of research in this thesis.

Having described the background theory behind the interactive visualisation stage of

this thesis, it is the purpose of the next chapter to present the sample images from our

3D visualisation system that combines together the rendering of the macro-structure

using Bézier patches combined with shadow-mapping and the micro-structure using

relief-mapping.

 117

Chapter 6 –Visualisation Implementation and Results

6.1 Introduction

In Chapter 5, we stated our criteria for a suitable 3D surface visualisation method,

performed a survey of approaches and then presented a summary of the candidate

methods. We then described how the 3D graphics pipeline has been adapted to support

programmable graphics accelerator boards using both vertex shaders and fragment

shaders, before finally describing how the macro-structure could be defined in terms of

parametric surfaces (Bézier patches) combined with the micro-structure description in

the form of normalmaps combined with heightmaps and illuminated using both relief

mapping and shadow mapping with dynamic light sources to achieve real-time

visualisation of 3D geometric objects.

This chapter describes the implementation of our 3D visualisation system. Of particular

importance is the integration of the rendering of the macro-structure using Bézier

patches rendered using shadow-mapping and the micro-structure rendered using relief-

mapping. We begin this chapter by describing the process of generating texture data for

both the bump-mapping and relief-mapping methods, and the lighting model used to

relight this texture data, then how each method is implemented using a programmable

graphics accelerator board.

We now proceed to describe how bump-mapping is implemented using OpenGL, how

this is extended to implement relief-mapping using OpenGL, and finally describing how

the lighting model is implemented.

 118

6.1.1 Bump-mapping

Rendering a bump-mapped surface using a programmable graphics accelerator card

requires two texture images; the albedo and the normalmap. Each image consists of

either RGB or RGBA texture data with the alpha channel free for other purposes such

as a gloss map or a transparency map. In order to render a texture mapped surface with

a programmable graphic accelerator card, the vertex shader is used to transform both

the eye vector and light vector into tangent space, and the fragment shader simply

fetches the appropriate texture elements from each of the albedo and normalmap

textures, before applying the Phong lighting model using the surface normal from the

normalmap texture.

6.1.2 Relief-mapping

In his 2005 paper, Policarpo solves the problems of self-occlusion, self-shadowing and

rough-edge silhouette generation by the use of a heightmap that represents the surface

depth at each pixel sample of the normalmap. The point of intersection between the

viewer and the textured surface is determined through a linear search followed by a

binary search. In his paper, Policarpo implements the algorithm as a fragment shader

on current generation programmable graphics accelerator boards.

For this thesis, we use the exact method of relief-mapping as described in this paper.

This method requires the same albedo and normalmap texture as used with standard

bump-mapping, but also requires the use of a heightmap. In normal use with our

application, the heightmap is stored in the alpha channel of the normalmap texture.

With relief-mapping, the fragment shader uses a three-stage process to determine the

correct albedo colour and surface normal values rather than the single stage lookup

process used by bump-mapping. The first stage solves the problem of self-occlusion by

using interval analysis to query the heightmap and determine the first point of the

surface that intersects the eye vector. The actual process of interval analysis with an

unknown function involves two internal stages. The first step involves using a linear

search to find the first interval in which the eye vector crosses the surface boundary.

This is necessary, because an irregular surface with peaks and troughs may intersect

 119

with the eye vector in more than one place. The second step involves using a binary

search (such as the bisection method) to find the precise point of intersection within this

interval. While the normalmap and heightmap data are stored in a discrete data format

(ie. sample points at fixed intervals in texture space), the actual data returned from the

texture sampling function ‘texture2D’ will be composed from the average of two or

more texture elements, depending upon the texture minification and magnification MIP-

mapping modes. Minification occurs when the rendered texture occupies a smaller

number of pixels in the framebuffer than the original texture. Magnification occurs

when the rendered texture occupies a larger number of pixels in the framebuffer than the

original texture. These modes are described in Table 9-3 of the OpenGL Programming

Guide [Shreiner2004]. By default, any ray which crosses any of the texture boundaries

)0(=u ,)0(=v ,)1(=u or)1(=v of the texture will wrap-around to the opposite side if

the texture repeat mode is set. This allows a single relief-mapped texture to repeat

across the surface of a 3D geometric model. For open 3D geometric models (such as a

simple plane), the fragment shader can implement edge silhouetting by discarding the

current pixel fragment using the shader language ‘discard()’ call, if the intersection of

the ray is outside any of these boundaries. The second stage implements the chosen

lighting equation and scene-shadowing tests as before. The third stage implements a

self-shadowing test by looking for the first point visible along the line-of-sight vector

towards the light-source. If the point matches the location of the light source, then no

self-shadowing is occurring for the current pixel fragment, and the final fragment colour

remains unchanged. Otherwise, the point is in shadow, and shaded accordingly. We

present an example of this process in (Figure 47). In this example, the eye-ray intersects

three points within the relief map. Without the heightmap test, a basic texture lookup

would select the colour and surface normal at point (A). However, with relief-mapping,

the algorithm will select the first point (1). When the fragment shader performs the

shadow test for this point, point (4) is in the line-of-sight, and so point (1) is determined

to be in shadow.

Having described the visualisation method, we now proceed to describe how the

applications implements the rendering of geometry, and how the fragment shader

implements the lighting equation for bump-mapping and relief-mapping, before

describing how quantitative assessment is performed.

 120

Figure 47: Example height-map query for relief-mapping.

 121

6.1.3 Relighting the 3D surface representation

In the previous section, we described how a programmable graphics accelerator board

may be used to render the scene in real-time. We also described how we acquired

gradient field data using photometric stereo, and how we generated texture maps

suitable for with a graphics accelerator board from this gradient field data. The goal of

this section is to describe how the 3D visualisation application combines the basic

components (light sources, cameras, geometry and textures) together in order to render a

photorealistic image. Fundamental to the solution of this problem is the lighting

equation. The lighting equation defines the mathematical model that describes how

surface materials receive and transmit light emitted by light sources and other surface

materials. Gouraud was the first to propose a lighting model using the Lambert shading

model [Lambert1760] [Gouraud1971]. Phong modified this equation to handle non-

diffuse surfaces [Phong1975]. Blinn and Phong adapted this equation for use on

graphics hardware [Blinn1977]. Cook and Torrrance proposed a more accurate model

based on Gaussian modeling of micro-facets [Cook1982]. Since then, the lighting

equation has evolved to model anisotropic reflection [Banks1994] and multi-spectral

radiosity calculations [Neumann2003].

For this thesis, we selected the Phong lighting model [Phong1975] as the basis upon

which in order to implement the lighting model. This lighting model allows for the

implementation of ambient and diffuse terms to implement Lambert shading for matte

surfaces, and a specular term for glossy surfaces (6.1.4.1).

spk)()(refklnfkkl attsattdai ×+×+= (6.1.4.1)

Where: il is the resulting output intensity for the pixel fragment,

 ak is the fraction of light emitted from the surface by ambient reflection,

 dk is the fraction of light emitted from the surface by diffuse reflection,

 sk is the fraction of light emitted from the surface by specular reflection,

 spk is the specular power factor,

 attf is the fraction of light that reaches the surface due to the attenuation

 of light,

 122

 n is the surface normal (normalized direction vector perpendicular

 to the surface),

 l is the light vector (normalized direction vector pointing towards

 the light source),

 e is the eye vector (normalized direction vector pointing

 towards the viewpoint), and

 r is the light vector reflected through the surface normal.

The terms ak , dk and sk and spk define the RGB ambient, diffuse, specular values and

specular power terms of the current surface material respectively. However, Phong

originally intended the lighting model to model untextured surfaces. To adapt the Phong

model for use with bump-mapped textured surfaces, we have to make several

modifications. We replace the ambient and diffuse terms of the surface material ak and

dk with texture map references to the albedo (or base) texture �k , and replace the

surface normal n of the surface with a texture lookup reference to the bump-map

texture normalmapk . We also replace the specular term sk with a texture map reference

to �
k , combined with a reference to the gloss map texture glossk . This texture can be

estimated manually, set to zero, or acquired through the combined use of photometric

stereo with a polarizing filter and the Fresnel reflection model [Wolff1990]. We also

replace the single power term spk with separate powers for each colour. We also

augment the term sk with local parameters glossk . For a surface with texture

coordinates),(vu , we define the relationships between the albedo and normalmap

textures and the ambient, diffuse and specular terms by the expressions in (6.1.4.2).

),(vu
�da kkk ==

 specfactorglosss kkk).,(vu= (6.1.4.2)

),(vunormalmapkn =

Where: ak is the ambient term of the Phong lighting model,

dk is the diffuse term of the Phong lighting model,

sk is the specular term of the Phong lighting model,

 123

glossk is the surface specularity map,

albedok is the albedo texture,

and normalmapk is the normalmap texture

We augment these terms by additional terms used to implement shadowing in order to

support a completely generic texture description as described by Stürzlinger

[Stürzlinger1996]. We also implement several control variables to allow the various

options to be switched on and off through user control. We present listings of each

vertex shader and fragment shader used by this application in “Appendix C – OpenGL

vertex and fragment shaders”.

To implement shadow mapping, we utilize the method described by Williams

[Williams1978]. In this method, a depth texture map representing the distance of the

light source to the nearest point on each visible surface of the scene is created by

rendering the scene as seen from the viewpoint of the light source. To render the scene

with shadows, the fragment shader transforms and compares the final depth value of

each pixel fragment against the corresponding value in the shadowmap. The result of

the comparison test determines whether the pixel fragment is in shadow. We present the

assignment of textures to texture units within the programmable graphics accelerator in

Table 7.

Texture Texture Unit

rk Unit 0 – RGB

glossk Unit 0 – Alpha

bumpmapk Unit 1 – RGB

heightmapk Unit 1 – RGB

shadowk Unit 2 – Depth

projectork Unit 3 – RGBA

Table 7: List of textures and their assigned texture units

The resulting lighting model for texture-mapped bump-mapping/relief mapping is thus

as follows:

 124

)(L
1

�
=

=
n

i
nil cetangentspae (6.1.4.3)

Where: il is the resulting output intensity for the pixel fragment,

and nL is the fraction of light emitted from the surface from ambient, diffuse

and specular reflection

We define the lighting function L for a single light source to be:

 shadowcetangentspa lel).,rm_shadow().L(L speculardiffuse++= ambientlL (6.1.4.4)

Where: ambientl is the ambient contribution of the light source,

 diffuseL is the diffuse lighting contribution,

 specularL is the specular lighting contribution,

 shadowl is the sample point of the light source shadow texture,

and rm_shadow is the relief-mapping shadow function

We define the diffuse component of the lighting function to be:

).(.L diffuse lnlc diffusealbedo ×= (6.1.4.5)

Where albedoc is the albedo colour of the current point of the surface,

 diffusel is the contribution of the light source to diffuse lighting,

 n is the outward normal of the current point of the surface

and l is the light vector in the local tangent space of the object

 125

We define the specular component of the lighting function to be:

ctorspecularfacetangentspaspecularalbedo krelc .).(. werspecularpok
specularL ×= (6.1.4.6)

Where albedoc is the albedo colour of the current point of the surface,

 specularl is the contribution of the light source to specular lighting,

 n is the outward normal of the current point of the surface,

 l is the light vector in tangent space,

 cetangentspae is the eye vector in tangent space,

werspecularpok is the set of power coefficients for specular lighting,

 ctorspecularfak is the material colour for specular lighting

and r is the light vector reflected through the surface normal.
 �

However, for this thesis, we discovered that for many textile samples, we could set the

contribution of the specular term to zero or close to zero, as the textile samples did not

have a glossy appearance.

6.1.4 Implementing the lighting equation using vertex and fragment

shaders

To implement the complete lighting equation, we split the task of visualizing the target

geometry up into a separate rendering pass for each light source. We use custom

designed vertex shaders and fragment shaders to implement each of the rendering

passes. We implement multiple light sources by making use of the OpenGL blend

operations. For the first layer of the first light source, the blend mode is set to replace,

while for every other layer the blend mode is set to add [Shreiner2004]. We utilize the

method of shadow mapping as described by Crow [Crow1977], Williams

[Williams1978] and [Woo1990] to implement scene level shadowing. This method

requires two rendering passes. In the first pass, the shadowmap is created by enabling

the Z-buffer, disabling texture-mapping and rendering the light source’s view of the

scene. The second pass involves rendering the camera’s view of the scene with both

 126

texture-mapping and the Z-buffer enabled as usual. As rendering of each pixel on the

surface occurs, the fragment shader transforms the camera projection space coordinates

into light projection space. Next, the fragment shader tests the resulting coordinate

against the shadowmap. If the depth value of the pixel fragment is less than the value in

the shadowmap, then the corresponding point on the surface is visible to the light source

and the lighting equation evaluated. Otherwise, if the pixel fragment is not visible to the

light source, then the light source makes no diffuse or specular contribution to the final

pixel colour. While our original lighting model was designed to support advanced

lighting effects such as environment mapping, reflection, refraction, chromatic

aberration and projective lighting, we found that these were not necessary for the

visualisation system.

6.1.5 Rendering the contribution of each light source in the scene

To calculate the contribution to the scene made by each type of light source, we use a

custom vertex shader and fragment shader, which implement our lighting model. We

provided a detailed explanation of these in Appendix C.

6.1.6 Rendering the 3D geometric models

With all the shader programs implemented, it is thus possible to render both flat and

curved 3D geometric models using many different combinations of the techniques

described earlier in this chapter. These combinations include flat (planar) geometry vs

curved geometry, static vs. animated geometry (slow rotation, rippling wave effects,

free-form deformation), bump-mapping vs. relief-mapping, hardware shadow-mapping

vs. no shadow-mapping, directional light sources vs. point light sources, single light

sources vs. multiple light sources, and any one of six combinations of ambient, diffuse,

and specular lighting for any 3D geometric model. However, for many of these

techniques, it is obvious or has been demonstrated by previous research, that one choice

will always provide a more photo-realistic appearance than the other (eg. shadow-

mapping vs. no shadow-mapping). Thus for the purposes of this thesis, we make the

following decisions in the setup of the visualisation application experiments. Due to the

complexity of three of the chosen 3D geometric models, we choose to keep the

geometry rigid, and instead animate all the 3D geometric models using a slow rotation

method. We choose relief-mapping over bump-mapping due to the extra fine-scale

 127

detail provided. We choose a single light source over multiple light sources for

performance reasons (as individual light sources require multiple passes). We also

choose hardware shadow-mapping over no shadow-mapping as there are available

texture units to handle this task. We choose a point light-source over a directional light

source due to the additional realism that this provides through the use of localized light

intensity highlights. We also use a full lighting model with both an ambient and diffuse

terms to relight the textile samples as realistically as possible. While we did also

implement a specular lighting term in our lighting model, we found that no contribution

was required in order to match the original photometric images, and so omitted this term

during the implementation of our system. In the next chapter we present a

demonstration of the visual output of our system.

6.2 Demonstration of visualisation methods

In section 6.1, we described our implementation of the visualisation system based upon

our literature survey. In this chapter, we present rendered images from our visualisation

system and discuss how each visual effect improves the photorealistic appearance of the

textile sample. For this thesis, we chose to implement both the visual user interface and

rendering libraries using the C++ programming language and OpenGL, with the goal of

keeping the application multi-platform. For the Windows XP/Vista operating system we

used Microsoft Visual Studio as the development environment, with Nvidia Geforce

FX6800 and FX8800 programmable graphics accelerator boards as the target hardware.

 128

6.2.1 Comparison of the visual effects

In this section, we present a selection of the samples of our texture database rendered

using five different methods:

· texture mapping with no lighting

· texture mapping with diffuse lighting

· bump-mapping with diffuse lighting

· relief-mapping with diffuse lighting

· relief-mapping with diffuse lighting and shadow-mapping

We present sets of concave geometry rendered using each of these five methods below.

In (Figure 48), we render the geometry using texture mapping with no lighting. In

(Figure 49), we render the geometry using texture mapping combined with diffuse

lighting. In (Figure 50), we render the geometry using bump-mapping combined with

diffuse lighting. In (Figure 51), we render the geometry using relief-mapping combined

with diffuse lighting. Finally, in (Figure 52), we render the geometry using relief-

mapping and diffuse-lighting combined with shadow-mapping.

From a visual comparison of the rendered images in (Figure 48) and (Figure 49), we can

be seen that the use of diffuse lighting provides the greatest improvement on the

appearance of the texture. From a visual comparison of the rendered images in (Figure

49) and (Figure 50) we can see that the introduction of bump-mapping provides another

improvement in visual appearance as there is a higher level of contrast between the

lighter and darker areas of the textile sample – these are caused by the natural curvature

between the peaks and valleys of the micro-geometry of the textile sample. From a

comparison of the rendered images in (Figure 50) and (Figure 51), we can see that the

use of relief-mapping further increases the detail of the rendered micro-geometry of the

textile sample. Finally in (Figure 52), we can the added use of shadow mapping to the

rendering of geometry with relief-mapping and diffuse lighting provides the highest

quality of visual realism. We present an additional set of rendered images in (Figure

53), (Figure 54), (Figure 55) and (Figure 56) with textile samples applied onto complex

geometry such as the Utah Teapot and a torus knot.or trefoil and rendered using relief-

mapping, diffuse-mapping and shadow-mapping all combined together.

 129

Figure 48: Geometry rendered with standard texure mapping and no lighting

Figure 49: Geometry rendered with standard texture mapping and diffuse lighting

 130

Figure 50: Geometry rendered using bump-mapping and diffuse lighting

Figure 51: Geometry rendered using relief-mapping and diffuse lighting

 131

Figure 52: Geometry rendered with relief-mapping, shadows and diffuse lighting

Figure 53: Torus knot rendered with relief mapping, diffuse lighting and shadows

 132

Figure 54: Utah Teapot rendered with relief mapping, shadows and diffuse lighting

Figure 55: Torus knot rendered with relief mapping, shadows and diffuse lighting

 133

Figure 56: Utah Teapot rendered with relief mapping, shadows and diffuse lighting

6.2.2 Conclusion

This chapter has presented images of 3D geometric objects rendered with textile

samples acquired through the use of photometric stereo techniques. We have

demonstrated that bump-mapping is an improvement over texture-mapping for the

visual quality of textile samples, and that relief-mapping is a further improvement over

bump-mapping in terms of visual quality. We also demonstrate that the combined use of

macro-structure and micro-structure rendering methods through the use of shadow-

mapping with both relief-mapping and diffuse lighting provides a further refinement to

the visual quality of rendered textile samples. Since the main objective is to develop an

economical method for the retrieval and visualisation of 3D surface micro-texture we

selected the relief-map rendering method, which requires one photometric albedo image

and a relief map (one normalmap combined with a heightmap). The relief-mapping

method assumes that the surface is rough, and takes into account self-shadowing using

the light-vector intersection tests and self-occlusion. This rendering method is

compatible with current programmable graphics accelerator boards, with the surface

 134

micro-texture being converted into texture data suitable for real-time rendering using a

combination of vertex shaders and fragment shaders.

 135

Chapter 7 – Texture Retrieval Methods

7.1 Introduction

In Chapter 1, we identified our three main research objectives the third objective of

which is to implement rotation invariant texture retrieval. In Chapter 2, we identified

from our survey of the literature that rotation invariant filter banks and colour

histograms were promising sets of feature vectors. In this chapter therefore, we identify

five criteria for rotation invariant texture retrieval and ten candidate texture feature

similarity operators, with particular attention given to filter banks sensitive to the

periodicities that occur within textile samples. We then compare the performance of

each of the feature vectors using Receiver-Operator-Characteristic and Precision-Recall

graphs, before presenting our conclusions for this chapter. This forms the third stage of

our data representation, a pilot study into the implementation of an information retrieval

system. As discussed in Chapter 2, the goal is not to develop a complete information

retrieval system, but to focus our attention on the implementation of the feature

extraction and similarity search operators rather than the user interface or user relevance

feedback system.

 136

Figure 57: Stage two of the project data representation

The texture retrieval system requires that each texture image entry stored within the

database should have a feature vector, a data structure capturing the fundamental

properties of the image associated with it. Assigning a feature vector to each textile

entry, allows the rapid comparison of texture images for similarity. For our experiments,

we choose to implement ten different rotation invariant filter systems that operate in

both the spatial domain and in the frequency domain. For the spatial domain, we choose

to implement the colour histogram due to the simplicity of calculation. For the

frequency domain, we choose to implement the ring filter bank, the wedge filter bank,

the Gabor filter bank and the Polarogram due to their simplicity and sensitivity to

periodicity in textile data. To investigate the ability of frequency domain filter banks to

successfully perform texture retrieval, we choose to implement the Schmid filter bank,

the Leung-Malik filter bank, the MR4 filter bank and the MR8 filter bank due to their

rotation invariant natures.

Integrating the use of these filter banks with our 3D surface representation is achieved

using the following four stages:

(1) Converting each texture in the textile database into a 3D surface

representation and then into a feature vector

(2) Converting the target texture into a 3D surface representation and then into a

feature vector.

 137

(3) Comparing the feature vector of the target image against all the pre-existing

feature vectors of the textile database, and

(4) Sorting the results so that the best matches are at the top of the list.

In stages (1) and (2), the 3D surface representation consists of the albedo, gradient field

data in two axii (partial surface derivatives), and the normalmap. As noted in Chapter

2, surface derivatives are directional and therefore introduce artifacts that must be

compensated for, before use in a rotation invariant texture retrieval system.

7.2 Organisation

The organisation of this chapter is as follows. We describe the criteria used for selecting

the texture retrieval methods in section 7.3. Then we perform a detailed review of

candidate methods in section 7.4. According to the criteria, we describe the ten methods

for generating a feature vector in section 7.5, and present a quantitative assessment of

texture retrieval methods in section 7.6, with the conclusions provided in section 7.7

7.3 Criteria

In our literature survey, we defined the following set of criteria that each candidate

texture retrieval method must satisfy:

· Must select visually similar textures using the surface representation

We would like the user to be able to select a target texture and have the

retrieval system find those textures in the database that are as similar as

possible to the target texture, particularly with regard to colour distribution

and micro-geometry characteristics. As we are working with real-world

textile images, It is of particular importance that the retrieval methods must

be able to work with true-colour images (with at least eight bits for each of

the red, green and blue colour channels).

 138

· Must be rotation invariant

Rotation invariance is the ability of a texture retrieval system to match two

similar images regardless of their rotational orientation. Whenever more than

one photometric image of a textile sample is made, each image will always

have a unique rotation, due to slight differences in the position of each

texture sample relative to the recording device. Consequently, this will

distort any feature vector derived from this image. We describe texture

retrieval methods that are able to overcome this problem as being rotation

invariant. Of particular concern are the directional artifacts present in the

surface normal fields.

· Must have efficient memory usage

An uncompressed 512 x 512 pixel true-colour image with 16-bits of data per

pixel for each of the red, green and blue colour channels will occupy 1.5

Mbytes of memory, while a image with 8-bits per colour channel will

occupy 768 Kbytes of memory and a JPEG compressed image will still

occupy more than 400 Kbytes of memory. Even with such high levels of data

compression, these amounts of memory used are still far too high for texture

retrieval to operate interactively. Consequently, any feature vector derived

from a texture image must be considerably smaller than this. Given that the

texture database may be located on a separate server, and accessible only via

a dial-up connection, an upper limit of 8 Kbytes per feature vector is

considered to be efficient memory usage.

As well as satisfying the three criteria specified above, the texture retrieval system must

also be able to operate in real-time, implement distance functions that perform

similarity matching between different database entries, and use the texture retrieval

method that has the highest accuracy rate.

 139

7.4 Using surface normal data

In Chapter 3 we identified how the micro-geometry of textile samples could be

represented using the surface normal)(n , height data (h)and colour albedo (r,g,b). In

Chapter 4 we described how photometric stereo could be used to acquire this data from

real world textile samples. We also described how a collection of such images formed

the Virtex photometric database.

Within this database, we use three images to represent each textile sample. These

include the albedo image, the gradient field image and the normalmap image. The

albedo image is simply a photometric image of the textile sample illuminated under

optimal ambient lighting conditions such that there are no shadows. However, as

mentioned previously, the normalmap contains directional artifacts and we therefore

define the gradient field image by the following equation:

22)),(()),((),(yxqyxpyxg += (7.4.1)

We perform this mathematical operation in order to eliminate the directional bias due to

the use of a two dimensional coordinate system, and thus guarantee rotation invariant

results.

However, one problem with images acquired using photometric methods is that the

image acquision environment may vary between textile samples. Such conditions

include the distance between the textile sample and the camera, the frame resolution, the

focal length and shutter speed, and ambient colour temperature. Each of these will have

a detrimental effect on the scale resolution, contrast and black-level settings of each

photometric image. As described in section 3.3, we ensure that the digital camera is

mounted at the same distance from each textile sample along with identical focal length.

This avoids the problem of performing texture classification using materials that may

have been acquired at different scales. We also operate the digital camera within a dark-

room with the ceiling lighting switched off during the photometric acquisition process

in order to avoid problems with contrast and black level illumination. The resulting

 140

photometric images are also normalised to the precision of the framebuffer of the digital

camera.

We describe this mathematical process in detail in the paper “Real-time per-pixel

rendering of bump-mapped textures captured using photometric stereo“ [Robb2004],

and provide a detailed description in section 5.5.4. We present the complete set of

textures in “Appendix B – The Texture Dataset”

7.5 The selected texture retrieval methods

In Chapter 2, we performed a review of the available texture retrieval methods. There

are two hypotheses which we wish to investigate, the first being whether larger feature

vectors offer any advantage over small feature vectors to texture retrieval, and the

second being whether feature vectors composed of different types of filter bank offers

any advantage over feature vectors composed from a single type of filter bank.

We can categorize textile samples into four basic groups:

· Textures with no pattern due to fine weaving, generating no dominant

signals after transformation in the frequency domain.

· Textures with a striped pattern, generating a single dominant signal in the

frequency domain

· Textures with a regular square or hexagonal patterns, generating two or three

dominant signals at similar frequencies but different directions in the

frequency domain

· Textures with a rectangular or trapezoid block pattern, generating two or

more different dominant signals at different frequencies and different

directions in the frequency domain

For the first class of textures, textures with no dominant signal, we choose to investigate

the use of colour histograms as described by Swain and Funt as these are naturally

 141

rotation invariant and do not depend upon transformation into the frequency domain

[Swain1991] [Funt1991]. We also choose to investigate the Schmid filter bank due to

the natural rotation invariant ability of each filter. This filter bank is of particular use

when the texture detail is so fine as to only appear as dots or spots.

For the second class of textures, textures with a single dominant signal in the frequency

domain, we choose to investigate the ring filter bank [Randen1999] and the Polarogram

[Davis1981] [Wu2003]. Each of these filter banks generates a feature vector that is

insensitive to direction. These filter banks are particularly useful when the texture detail

appears as lines or stripes.

 For the third class of textures, textures with two or more dominant signals at similar

frequencies but different directions in the frequency domain, we choose to investigate

the use of the wedge filter bank. The wedge filter bank is insensitive to frequency, but is

sensitive to direction. This filters bank is particularly useful when there texture detail

appears as regular spot or dots patterns.

For the fourth class of texture, textures with two or three dominant signals with different

frequencies and different directions in the frequency domain, we choose to investigate

the Gabor filter bank [Bovik1990] [Jain1990] [Randen1999], the Leung-Malik filter

bank [Leung2001], the MR4 filter bank and the MR8 filter bank. The Gabor filter bank

has the advantage of having filters which are sensitive to both direction and frequency.

The Leung-Malik filter bank has a combination of filters which are both rotation

invariant and sensitive to direction. We select the MR4 filter bank, and the MR8 filter

bank [Varma2005] due to their use of “collapsing” inputs to reduce the size of the

feature vector generated from identical inputs. These filter bank will be most successful

at selecting between textures when there is only one dominant direction.

 142

7.5.1 Summary

Our ten selected methods are thus as follows:

Colour

Histograms:

This method generates a feature vector based on the frequency of

different pixel intensities. Colour histograms are rotation invariant

as they are first order statistics. The feature vector consists of seven

hundred and sixty eight floating-point values.

Ring filters:

This method operates on second order statistics and generates a

feature vector based on frequency only. The ring filter bank is

rotation invariant. The feature vector consists of sixty floating-

point values.

Wedge filters: This method also operates on the power spectrum, but generates a

feature vector based on direction only. The wedge filter bank is

directionally sensitive, and is not rotation invariant without

additional post-processing. The feature vector consists of sixty

floating-point values.

Gabor filters: This method also operates on the power spectrum, and generates a

feature vector based on a selected combination of frequencies and

directions. By default, this method is directionally sensitive, but is

rotation invariant with the use of post-processing. The feature

vector consists of ninety floating-point values.

Schmid filter

bank:

This method operates on the power spectrum, and is rotation

invariant. Each Schmid filter is sensitive to a complex sinusoidal

wave pattern without any directional sensitivity. The feature vector

consists of thirty-nine floating-point values.

 143

Leung-Malik

filter bank:

This method operates on the power spectrum and is directionally

sensitive. It consists of a large collection of different types of filter,

including three sets of edge filter; three sets of bar filter, Gaussian

filters and Laplacian-of-Gaussian filters. By default, this method is

directionally sensitive, but is rotation invariant with the use of post-

processing. The feature vector consists of one hundred and forty-

four floating-point values.

Maximum

Response 8

filter bank:

Similar to the Leung-Malik filter bank, but with only the maximum

response of each edge filter and bar filter being stored for each of

the three frequencies. As with the Leung-Malik filter bank, this MR-

8 filter bank operates in the power spectrum and is rotation

invariant due to the selection of the maximum response. The

feature vector consists of twenty-four floating-point values.

Maximum

Response 4

filter bank:

Similar to the Leung-Malik filter bank, but only the maximum

response of each of the edge and bar filters is stored for only one

frequency. As with the Leung-Malik filter bank and the MR-8 filter

bank, the MR-4 filter bank operates in the power spectrum, and is

rotation invariant due to the selection of the maximum response.

The feature vector consists of twelve floating-point values.

Polarogram This method generates a feature vector based on the sum of energy

levels for each direction in the frequency domain. The feature

vector consists of three hundred and sixty floating-point values.

Combined

filter banks:

All of the above methods combined. This operates in both the

power-spectrum and with first order statistics. Without post-

processing this stage would be directionally sensitive. The feature

vector consists of one thousand and fifty three floating-point values.

 144

We provide additional details on the final list of ten candidate methods in Table 8 and

provide further details of each method in the next section. In the following table,

“Albedo/Surface Texture” refers to the ability of the texture retrieval method to work

with both the albedo image and gradient field data. “Rotation invariant” indicates

whether the texture retrieval method consists of filters which are all rotation invariant.

“Dimensionality” indicates the relative size of the feature vector generated from the

filter bank. A texture retrieval method with a small number of filters is said to have low

dimensionality, while a texture retrieval method with a large number of filters is said to

have high dimensionality. The final column, “Fourier spectrum”, indicates whether the

texture retrieval method requires transformation into the frequency domain or not.

Method Albedo/
Surface
Texture

Rotation
invariant

Dimensionality
(Low <15)
(High >=15)

Fourier
Spectrum

Colour Histograms Both Yes High No
Ring filter bank Both Yes High Yes
Wedge filter bank Both No High Yes
Gabor filter bank Both No High Yes
Schmid filter bank Both Yes Low Yes
Leung-Malik filter bank Both No High Yes
MR-4 filter bank Both Yes Low Yes
MR-8 filter bank Both Yes Low Yes
Polarogram Both Yes High Yes
Combined filter banks Both Yes High Yes

Table 8: Summary of the selected texture retrieval methods

We also choose to use the Euclidean distance calculation to determine similarity

matching between texture samples for each texture retrieval method as this is simple to

calculate and common in the literature.

One of the concerns that we have with the use of large filter banks with high

dimensionality, is the hazard of having duplication or redundancy of information within

each feature vector. One possible solution to this problem is the use of Principal

Component Analysis (PCA). In this method, the images generated from the 3D surface

representation are stacked together and the covariance matrix calculated for each pair of

axii, then calculating the eigenvectors and eigenvalues from the covariance matrix. The

resulting set of eigenvectors and eigenvalues are then used to form a feature vector

 145

which can be used to perform texture retrieval. The advantage of this method is that the

use of PCA greatly improves the accuracy rate of texture retrieval. The disadvantage of

this method is that the size of each feature vector generated using PCA is dependent

entirely upon the dimensions of the sample images. However, the data is positionally

sensitive and as texture are often characterized by their higher frequency information,

but if necessary, those principal components that do not contribute much variability to

the data can be discarded. We choose not to investigate the potential of PCA for texture

retrieval.

 146

7.6 Implementation of the selected texture retrieval methods

In section 7.4, we selected ten methods, each of which use a set of texture images as

input in order to generate feature vectors which can then be used for texture retrieval. In

this section, we propose a data representation that is used to implement and compare

these texture retrieval methods. This section provides a summary of the common

properties of the ten texture retrieval methods. We begin this chapter by providing an

overview of the use of the FFT and IFFT in order to implement filter banks.

7.6.1 Filter banks and the Fast Fourier Transform (FFT)

One of the earliest known publications in the field of signal processing is the paper

written by Fourier in 1807 [Fourier1822]. In his paper, Fourier describes that a function

“having a spatial period , can be synthesized by a sum of harmonic functions whose

wavelengths are integral submultiples of ”. Fourier analysis is a method of breaking

down a complex wave into a set of fundamental sinusoidal waves, each with a unique

frequency and amplitude. The resulting series of terms is mathematically using the 2D

FFT (7.6.1.1) and IFFT formulas (7.6.1.2). Research into the applications of Fourier

series continued for well over 130 years [Littlewood1937].

� �
= =

+-
=

r

x

s

y

s

y
v

r

x
uj

eyxf
rs

vuF
0 0

)(2
),(

1
),(

p
 (7.6.1.1)

Where:),(vuF is the signal in the frequency domain,

),(yxf is the signal in the spatial domain,

),(vu are coordinates in the frequency domain in

 cycles per image width and cycles per

 image height respectively.

),(yx are coordinates in the spatial domain,

 and),(sr are the dimensions of the domain

 147

� �
= =

+
=

r

u

s

v

s
y

v
r
x

uj
evuFyxf

0 0

)(2
),(),(

p
 (7.6.1.2)

Where:),(vuF is the signal in the frequency domain,

),(yxf is the signal in the spatial domain,

),(vu are coordinates in the frequency domain in

 cycles per image width and cycles per

 image height respectively.

),(yx are coordinates in the spatial domain,

 and),(sr are the dimensions of the domain

When applied to texture classification, the FFT is of particular use. By using the FFT to

calculate the output responses of each filter in a texton filter bank, it becomes possible

to measure the similarity between two images while at the same time, including a

tolerance for varying position and scale.

For the purposes of this thesis, we chose to implement the software used to evaluate the

rotation invariant texture retrieval stage of our thesis using command line software

written using C++ and running on a Linux system. There were several reasons for doing

this. The first reason was that the use of shell scripts allowed the automated batch

processing of large number of textile sample images using a multi-processor system.

This allowed the generation of feature vectors to be performed without supervision,

which proved to be a time-consuming task due to the use of the FFT with large images.

At the time that this research was conducted, no GPGPU (General Purpose GPU)

software such as CUDA or OpenCL was available). The use of command line programs

allowed for small shell scripts to be rapidly constructed in order to select particular

filter bank sets to use.

Before we provide a more detailed specification of each of these filter banks, we

describe the process in which the feature vectors for the wedge filter bank, ring filter

bank, Gabor filter bank, Schmid filter bank, Leung-Malik filter bank, MR-4 filter bank

and MR-8 filter banks are calculated for each texture image. We use the FFT to

transform the target texture image into the frequency domain, and then combine this

image with the frequency domain image of each filter in the selected filter bank. We

 148

then apply the IFFT to convert the resulting image back into the spatial domain, and

calculate the response of that filter by calculating the sum of squares of all the pixel

values in the resulting image. The resulting set of responses form the feature vector for

that particular filter bank. We also perform an additional processing stage for those

feature vectors derived from those filter banks that are not fundamentally rotation

invariant. These include the Wedge filter bank, the Gabor filter bank, the Leung-Malik

filter bank, the MR-4 filter bank and the MR-8 filter bank. This stage involves

implementing the circular shift method described by Zhang [Zhang2002]. Using this

method, we compare pairs of feature vectors together by shifting through every possible

pair of orientations, evaluating the level of similarity and returning the highest value

found. Having described the basic operation of the filter bank and the FFT, we now

describe each individual filter bank in detail. These are as follows:

· The ring filter bank

· The wedge filter bank

· The Gabor filter bank

· The Schmid filter bank

· The Leung-Malik filter bank

· The MR4 filter bank

· The MR8 filter bank

· The Polarogram

We also consider colour histograms and the combined use of all filter banks. In total,

we consider ten different texture retrieval methods. We begin by describing the spatial

domain methods in detail (the Colour Histogram) followed by the frequency domain

methods.

7.6.2 The Histogram and Colour Histogram

Histograms and Colour histograms are one of the simplest ways to generate a feature

vector of an image. The histogram for a single image is defined by three parameters; the

minimum and maximum values of the range, and the number of separate bins within

 149

that range. For every pixel within the image found to belong within the range of a

particular bin, the value of that bin is incremented. The minimum number of bins that

any histogram can contain is one, with no limit on the maximum number of bins unless

the data being analysed consists of discrete logical representations such as integers. In

this case, the precision of the data type defines the upper limit. For monochrome or

single channel images, the histogram is constructed from the gray scale values. For

colour or red/green/blue images, the histogram can be constructed in two ways. The

first way is to construct separate histograms for each colour channel. Alternatively, a

three-dimensional histogram or colour histogram can be constructed by splitting the

three-dimensional colour space (the colour cube) into separate sub-cubes and assigning

a histogram bin to each sub-cube. Due to its ease of calculation, the colour histogram is

a popular choice as a feature vector for texture retrieval. Determining the level of

similarity between two images, simply involves calculating the sum of differences

squared between the matching bins of each colour histogram, saving the results into a

temporary array, sorting the array in descending order, and returning the required

number of entries from the top of the list. For this thesis, we use a colour histogram of

512 bins as specified by Swain and Ballard [Swain1991]. This number was derived

from experimentation with a texture database consisting of sixty-six pictures of

consumer products.

7.6.3 The ring filter bank

Ring filters are one of the basic types of filter bank used in combination with the FFT

and IFFT [Randen1999], with each ring filter bank comprised of a number of ring

filters, with each filter having a unique response frequency. Because each ring filter has

no directional sensitivity, the filter bank as a whole, also has no directional sensitivity

and is therefore rotation invariant. Each ring filter has the effect of summing together

all the signal energy for all directions in a selected frequency range. We combine the

target frequency of the ring filter with a Gaussian equation to give smoothly blended

edges in order to prevent any spatial domain “ringing” that sharp edges on a filter might

generate. We present the equation of the ring filter in (7.5.3.1), along with individual

images of ring filters in Figure 58, and the entire set in (Figure 59).

 150

)
2

)(
(

2

2

),,(r

centrerr

centrerr errF ss
-

-

= (7.6.3.1)

Where:),,(centrerr rrF s is the Ring filter function,

 r is the radius of the ring in cycles/image width, given by

 22 vur +=

 rs is the standard deviation of the ring in cycles/image width

 and centrer is the centre point of the ring in cycles/image width

 (0) (1) (2)

 (3) (4) (5)

 (6) (7) (8)

 151

 (9) (10) (11)

 (12) (13) (14)

 (15) (16) (17)

 (18) (19)

Figure 58: Ring filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency).

 152

Figure 59: All Ring Filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency).

For all of the experiments conducted by this thesis, we choose a ring filter system with

twenty filters, with an output for each colour channel. This was determined from

analysis of the transformation of the texture images into the frequency domain, where it

was observed that the peak signal responses could be closely modeled by a Gaussian

curve with a standard deviation of 0.0125. Thus, the peak response Nyquist frequency

of each ring filter ranges from 0.0 to 1.0 in increments of 0.05, with a standard deviation

of 0.0125. This results in a feature vector size of sixty floating-point values.

We calculate the result of each individual floating-point output for every filter system

using the method now described. Given the image of the texture in the spatial domain

),(yxI t , and the image of the filter in the spatial domain),(yxI f , then we calculate

each filter output value nO as follows:

Transform the filter image),(yxI f and texture image),(yxI t from the spatial domain

into the frequency domain to obtain the frequency domain images fI ¢ and tI ¢:

)),((),(

)),((),(

yxIFvuI

yxIFvuI

ff

tt

=¢

=¢
 (7.6.3.2)

Combining the two together in the frequency domain to give :),(yxr

),(),(),(vuIvuIvur ft ¢×¢= (7.6.3.3)

 153

Convert the image back into the spatial domain using the inverse FFT to give),(yxe :

)),((),(yxrfyxe = (7.6.3.4)

Calculating the filter output value:

 � �
<=

=

<=

=

=
rx

x

sy

y
n yxeO

0 0

2),((7.6.3.5)

We perform this calculation for every filter in every filter bank, with the exception of

the histogram method.

7.6.4 The wedge filter bank

Wedge filters are another basic type of filter bank used in combination with the discrete

FFT and IFFT [Coggins1982] [Randen1999], with a wedge filter bank being composed

of a number of wedge filters with different directional sensitivity. Since each wedge

filter is directionally sensitive, the filter bank is also directionally sensitive, and thus is

not rotation invariant. Each wedge filter has the effect of summing together all the

signal energy for all frequencies in a selected direction. We combine the target

frequency of the wedge filter with a Gaussian equation to give smoothly blended edges

in order to prevent any distortion of the signal that sharp edges on a filter might

generate. We present the equation of the wedge filter in (7.5.4.1), with individual image

of each wedge filter in the frequency domain in (Figure 60), and combined in (Figure

61).

)
2

)(
(

2

2

),,(qs

qq

q qsq
centre

eF centrew

-
-

= (7.6.4.1)

Where:),,(centrewF qsq q is the wedge filter function,

 154

 q is the angle, given by),(tan 1 vu-=q ,

 qs is the standard deviation in cycles/image width,

 and centreq is the main direction of the wedge filter.

 (0) (1) (2)

 (3) (4) (5)

 (6) (7) (8)

 (9) (10) (11)

 155

 (12) (13) (14)

 (15) (16) (17)

 (18) (19)

Figure 60: Wedge filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency).

Figure 61: All wedge filters in the frequency domain

 156

(On each axis, units are shown as fraction of the Nyquist frequency.

Also, as only the real component of the FFT is used, we assume the power spectrum to

be symmetrical, and so only sample half of the frequency space)

For all of the experiments conducted by this thesis, we chose a wedge filter system with

twenty filters, with an output for each colour channel. This was determined from

analysis of the transformation of the texture images into the frequency domain, where it

was observed that the peak signal responses could be closely modeled by a Gaussian

curve with a standard deviation of 0.05. Thus, the peak response angle for each wedge

filter ranges from 0.0 to 160 degrees in increments of 9 degrees with a standard

deviation of 0.05. This results in a feature vector size of sixty floating-point values.

7.6.5 The Gabor filter bank

Gabor filter banks are an extension of both ring filter banks and wedge filter banks, in

the sense that each Gabor filter has sensitivity to both a particular frequency and a

directional angle. In the spatial domain the Gabor filter is a cosine wavelet modulated

by a Gaussian envelope. Because Gabor filters inherit directional sensitivity from the

wedge filter component, they are not rotation-invariant. Consequently, the Gabor filter

bank is also not rotation invariant. To generate the Gabor filter in the frequency

domain, we transform the spatial domain image into the frequency domain using a

discrete FFT. We present the equation of the Gabor filter in (5.5.4.1), with individual

images of Gabor filters in the frequency domain presented in (Figure 62), and combined

together in (Figure 63).

)
2

)(
exp().

2

)(
exp(),,,,,(

2

2

2

2

q
q

s

qq

s
qsqs centre

r

centre
centrecentrerg

rr
rrF

= (7.6.5.1)

Where:),,,,,(centrecentrerg rrF qsqs q is the Gabor filter function,

 centrer is the median radius for the ring component in cycles/image width,

 centreq is the median angle for the wedge component,

 rs is the standard deviation for the radius in cycles/image width,

and qs is the standard deviation for the angle.

 157

 (0,0) (0,1) (0,2)

 (0,3) (0,4) (1,0)

 (1,1) (1,2) (1,3)

 (1,4)

 158

 (2,0) (2,1) (2,2)

 (2,3) (2,4) (3,0)

 (3,1) (3,2) (3,3)

 (3,4)

 159

 (4,0) (4,1) (4,2)

 (4,3) (4,4) (5,0)

 (5,1) (5,2) (5,3)

 (5,4)

Figure 62: Gabor filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency)

 160

Figure 63: All Gabor filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency.

Also, as only the real component of the FFT is used, we assume the power spectrum to

be symmetrical, and so only sample half of the frequency space)

For this thesis, we choose the Gabor filter bank specified by Jain [Jain1991]. This filter

bank consists of five frequency banks combined with six filter directions. This provides

a filter bank consisting of thirty different filters, with an output for each colour channel.

This results in a feature vector size of ninety floating-point values. We define the

parameters of these filter bands in Table 9 and Table 10, with the constant rC being

defined as)2ln(22 or 2.35482005

 161

Frequency
band

Frequency
(fraction of the
Nyquist frequency)

Standard Deviation
(fraction of the
Nyquist frequency)

1
4
3

4

rC

2
8
3

8

rC

3
16
3

16

rC

4
32
3

32

rC

5
64
3

64

rC

Table 9: Table of Gabor filter frequency bands

Angular
band

Angle (degrees) Standard Deviation
(degrees)

1 0
rC2

30

2 30
rC2

30

3 60
rC2

30

4 90
rC2

30

5 120
rC2

30

6 150
rC2

30

Table 10: Table of Gabor filter bank angular bands

7.6.6 The Schmid filter bank

Schmid filters [Schmid2001] are a modified version of the ring filter. While a ring filter

is sensitive only to a particular frequency in all directions, a Schmid filter is defined by

the convolution of a sinusoidal wave function modulated by a Gaussian envelope. We

present the general equation of the Schmid filter in (7.6.6.1). The Schmid filter bank

 162

consists of thirteen rotation invariant filters with the),(ts pair is assigned the values

(2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), (10,2), (10,3) and (10,4),

and where),(0 tsF is added to obtain a zero DC component. As each individual filter is

rotation invariant, the complete filter bank is also rotation invariant. We present the

complete Schmid filter bank in (Figure 64).

2

2

2
0)

..
cos(),(),,(s

s
tp

tsts
r

s e
r

FrF
-

+= (7.6.6.1)

 Where:),(0 tsF is added to obtain a zero DC component,

 s is the standard deviation in cycles/image width,

 and t is the number of cycles of the harmonic function,

 within the Gaussian envelope of the filter.

 (0) (1) (2)

(3) (4) (5)

 (6) (7) (8)

 163

 (9) (10) (11)

 (12)

Figure 64: The Schmid filter bank in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency)

For this thesis, we choose to use the standard set of thirteen filters as determined by

Schmid [Schmid2001]. Schmid derived the set of filters from texton analysis using k-

means clustering. In this filter bank, Schmid chose to use thirteen filters with s ranging

between 2.0 and 10.0, and t ranging between 1.0 and 4.0, while avoiding large values

of t at small scales. This results in a feature vector size of thirty-nine floating-point

values.

7.6.7 The Leung-Malik filter bank

The Leung-Malik filter bank is a set of forty-eight filters comprised from four different

types of basic filter. The filter bank includes eighteen edge filters (first derivative of the

Gaussian filter) at six different orientations and three different frequencies; eighteen bar

filters (second derivative of the Gaussian filter) at six different orientations and three

frequencies, four rotation invariant Gaussian filters, and eight rotation invariant

 164

Laplacian-of-Gaussian filters [Marr1980]. We present the equations of these filters in

(6.5.6.1), (6.5.6.2), (6.5.6.3), (6.5.6.4), and the frequency space images in (Figure 65),

(Figure 67), (Figure 68) and (Figure 66).

2

2

2
22

1
),(r

r

r
gm erF s

ps
s

-

= (7.6.7.1)

Where:),(yxFgm is the Gaussian filter function

 and rs is the standard deviation of the radius in cycles/image width

 (0) (1)

 (2) (3)

Figure 65: Gaussian filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency)

 165

�
�

�
�
�

�
--=

-

2

2
2

4 2
1

1
),(

2

2

sps
s s r

erF
r

LoG (7.6.7.2)

 Where:),(rFLoG s is the Laplacian-of-Gaussian filter function

 and s is the standard deviation of the radius in cycles/image width

 (4) (5) (6)

 (7) (8) (9)

 (10) (11)

Figure 66: Laplacian-of-Gaussian filters

(On each axis, units are shown as fraction of the Nyquist frequency)

 166

2

2

2
42

)sin(.)cos(.
),,(' r

r

r

e
vu

vuG s

ps

qq
q

-+
= (7.6.7.3)

Where:),,(' qvuG is the Gaussian first derivative filter,

q is the angle, given by),(tan 1 vu-=q

 and rs is the standard deviation of the radius.

 (12) (13) (14)

 (15) (16) (17)

 (18) (19) (20)

 167

 (21) (22) (23)

 (24) (25) (26)

 (27) (28) (29)

Figure 67: Edge filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency)

22

2

6

22

2

))sin(.)cos(.(
),,('' s

ps

sqq
q

r

r

r e
vu

vuG
--+

= (7.6.7.4)

Where:),,('' qvuG is the Gaussian second derivative filter function,

 rs is the standard deviation of the radius

 and q is the angle, given by),(tan 1 yx-=q ,

 168

 (30) (31) (32)

 (33) (34) (35)

 (36) (37) (38)

 (39) (40) (41)

 169

 (42) (43) (44)

(45) (46) (47)

Figure 68: Bar filters in the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency)

For all of the experiments conducted by this thesis, we choose to use the standard

Leung-Malik filter bank described by Leung-Malik [Leung2001]. Leung and Malik

derived this filter bank from performing k-means clustering to identify the minimum

number of filters required. This results in a filter bank comprising of forty-eight filters.

For a RGB colour filter bank, this results in a feature vector size of one hundred and

forty-four floating-point values.

7.6.8 The Maximum Response 4 filter bank

The MR-4 filter bank consists of eight filters, but unlike the previous filter banks, it

reduces the output to four filter responses [Varma2005]. The filter bank consists of one

Gaussian filter, one Laplacian-of-Gaussian filter, an edge filter bank (Gaussian first

derivative) and a bar filter bank (Gaussian second derivative). Varma observed that the

eight filter inputs could be collapsed down to four inputs while still preserving the

dominant frequency response. Thus, the eight filter inputs are reduced down to four

filter outputs, by keeping both the Gaussian filter output response and the Laplacian-of-

 170

Gaussian filter output response, but only keeping the maximum response (thus the

name) from the edge filter bank and the bar filter bank.

For all of the experiments conducted by this thesis, we choose to use the standard MR-4

filter bank described by Varma [Varma2005]. This results in a filter bank with four

outputs for a grey scale image. For a RGB colour image, this results in a feature vector

size of twelve floating-point values.

7.6.9 The Maximum Response 8 filter bank

The MR-8 filter bank consists of thirty-eight filters, but unlike the previous filter banks,

it reduces the output to eight filter responses [Varma2005]. This filter bank consists of

one Gaussian filter, one Laplacian-of-Gaussian filter, three banks of edge filters

(Gaussian first derivative), with each bank having filters sensitive to each of six

directions, and three banks of bar filters (Gaussian second derivative), also with six

directions each. Varma observed that the eight filter inputs could be collapsed down to

four inputs while still preserving the dominant frequency response. Thus the thirty eight

filter inputs are reduced down to eight filter outputs, by keeping both the Gaussian filter

response and the Laplacian-of-Gaussian filter response, but only keeping the maximum

response (thus the name) from the edge filter bank and bar filter bank.

For all of the experiments conducted by this thesis, we choose to use the standard MR-8

filter system with eight outputs for each colour channel. This results in a feature vector

size of twenty-four floating-point values.

7.6.10 The Polarogram

Introduced by Davis [Davis1998], the Polarogram is a method of analyzing the

frequency domain of an image. In his PhD thesis, Wu used partial derivative data and

we have investigated the use of this data here [Wu2003].

Because we are using a discrete FFT, the frequency domain image consists of a square

image with an integer number of pixels in width and height. Since the Polarogram is a

polar histogram, the sample area of each Polarogram bin consists of a wedge shaped

region of the frequency domain image (Figure 69). Deriving the Polarogram from the

 171

image of the texture in the frequency domain is achieved using a two dimensional

lookup table the same size as the frequency domain image. For every pixel in the

frequency domain image, the lookup table stores the index number of the associated

Polarogram bin.

Figure 69: Example polarogram lookup table - sixteen bin polarogram

The energy level of each slice of the Polarogram is thus calculated from the sum of

associated sample points. Essentially, the Polarogram sums together all of the energy

levels for every frequency for each direction in the frequency domain (Figure 70).

Figure 70: Calculation of the Polarogram from frequency domain data

In our implementation of the Polarogram filter, we construct the two dimensional look-

up table as in (Figure 71). Then we transform the target image into the frequency

domain, and accumulate each pixel in the frequency domain image into the Polarogram

using this image. For this thesis, we choose to use a Polarogram consisting of 512 bins,

as this guarantees that every 1 degree increment in the frequency domain is assigned an

 172

individual bin. We then use the resulting Polarogram as a feature vector for texture

retrieval purposes.

Figure 71: Polarogram mask filter for the frequency domain

(On each axis, units are shown as fraction of the Nyquist frequency)

7.6.11 The Combined filter bank

The combined filter bank simply combines the feature vectors of all of the above filter

banks into one single large feature vector, with the objective being, that the increased

number of filter responses should improve the accuracy rate. The combined filter bank

has a data size that is the sum of all the individual filter banks. This results in a feature

vector consisting of one thousand and fifty three floating-point values.

7.6.12 Summary

In section 7.6.1 to 7.6.11, we introduced a 3D surface representation and ten methods to

implement efficient texture retrieval. The 3D surface representation generates a feature

vector from each texture image as that is compact is size and that can be used to

compare against other feature vectors. We have chosen to investigate the Colour

histogram in the spatial domain. For the frequency domain, we have chosen to

investigate the ring filter bank, the wedge filter bank, the Gabor filter bank, the Schmid

filter bank along with the Leung-Malik filter bank, the MR4 filter bank, the MR8 filter

bank. We have also chosen to investigate the Polarogram, and the combined filter bank.

 173

7.7 Offsetting directionally sensitive features

While many of the texture retrieval methods such as the Ring filter bank and Schmid

filter bank are naturally rotation invariant, and can thus be used to generate rotation

invariant feature vectors directly without any further processing, there are some texture

retrieval methods which require post-processing in order to be made rotation invariant.

This is achieved by modifying the feature vector similarity operator so that instead of

making a single comparison between corresponding elements of the two feature vectors,

multiple comparisons are performed with one set of elements indexed using an offset of

N. For a pair of feature vectors with N elements, N such comparisons will have to be

performed. The lowest resulting comparison value is then returned as the result of the

comparison.

7.8 Quantitative assessment of texture retrieval methods

In section 7.4, we introduced ten practical methods than can be used for texture

retrieval. This section evaluates these methods by evaluating and comparing the

precision and recall of each of these methods. The precision of each texture retrieval

methods indicates the ability of that texture retrieval method to return only relevant

database entries. The recall of each texture retrieval method indicates the ability of that

texture retrieval method to return every relevant item to the search query.

7.8.1 Assessment results

We present the assessment results of the ten texture retrieval methods combined with

albedo data (Figure 72), (Figure 73), surface normal (n) data (Figure 74), (Figure 75),

and the gradient),(yxg data (Figure 76) and (Figure 77).

 174

7.8.1.1 Assessment results for albedo data

Figure 72: Recall-Precision graph of all albedo texture retrieval methods

 175

Figure 73: RoC graph of all albedo texture retrieval methods

 176

7.8.1.2 Assessment results for surface normal data

Figure 74: Recall-Precision graph of all surface normal texture retrieval methods

 177

Figure 75: RoC graph of all surface normal texture retrieval methods

 178

7.8.1.3 Assessment results for gradient data

Figure 76: Recall-Precision of all gradient texture retrieval methods

 179

Figure 77: RoC graph of all gradient texture retrieval methods

 180

7.8.2 Discussion of the assessment results.

This section presents, analyzes and discusses the assessment results from the different

texture retrieval methods (the full set of results can be found in Appendix A: Texture

retrieval experiment results).

7.8.2.1 Colour Data

From (Figure 72) and (Figure 73), which present the experiment results of texture

retrieval methods combined with albedo data as Recall-Precision and Receiver-

Operator-Characteristic (RoC) graphs, we can see that the different texture retrieval

methods each form three distinct groups of retrieval performance. The first of these

groups, the histogram, is clearly significantly better than all of the second order filters,

suggesting that the first order statistics contain the most discriminative colour data.

The second group consists of the wedge filter bank, the ring filter bank, the combined

filter bank, the Schmid filter bank and the Gabor filter bank. Both the Schmid filter bank

and the ring filter bank are naturally rotation invariant. The wedge filter bank and the

Gabor filter bank are both directionally sensitive but only at preselected directions. The

combined filter bank is simply an average of all the texture retrieval methods used

together. These all have a similar performance and all of them use a wide range of

second order statistical data.

The third group consists of the Leung-Malik filter bank, the MR4 filter bank, the MR8

filter bank and the Polarogram. Because the MR4 filter bank and the MR8 filter bank

are derived from the Leung-Malik filter bank, it is expected that these three texture

retrieval methods have similar performance results. From the graphs we can see that

they do indeed have very similar performances that are all worse than the second group.

This is most likely due to the fact that they do not sample the higher frequencies that

characterize the rapid colour changes present in textiles (Figure 72) and (Figure 73).

Both the MR4 filter bank and the MR8 filter bank have better performance than the

Leung-Malik filter bank, despite having a smaller feature vector. The Polarogram had

the worst performance of all the selected methods. This can be explained due to the

 181

sampling of the entire frequency range and the use of a large number of dimensions in

each feature vector. While other methods only have a small number of feature vectors

(20/30 filters), the Polarogram has over 512 outputs. Consequently, any peaks in the

frequency domain are spread out between many of the outputs. Examination of the

resulting data reveals that for each textile sample there are less than ten peaks in the

Polarogram, which correlate to the alignment of the weave pattern of the textile sample

in the acquired images. This demonstrates that increasing directional sensitivity and

increasing the size of the feature vector does not always improve accuracy and

precision.

7.8.2.2 Micro-geometry data

(Figure 74) to (Figure 77) show the Receiver-Operator-Characteristic and Recall-

Precision results for retrieval using two different types of micro-geometry data. The first

type uses the surface normal information (n) directly, while the second type processes

these data to provide gradient field data (g) which are theoretically free of directional

artifacts. Comparing (Figure 74) and (Figure 75) with (Figure 76) and (Figure 77), we

can see that the gradient field results are much better than those based on the surface

normal data directly. Indeed, all of the gradient data recall-precision graphs are better

than the corresponding surface normal data plots, suggesting that the removal of

directional artifacts from the micro-geometry is very effective.

Examining the gradient results on their own (Figure 76) and (Figure 77), shows that

there is no clear distinct grouping of texture retrieval methods, but that the curves of the

texture retrieval methods are distributed across the graph. However, we can see that the

three best performing texture retrieval methods are the Histogram, the ring filter bank

and the Gabor filter bank and the worst three performing texture retrieval methods are

the Leung-Malik filter bank, the MR8 filter bank and the MR4 filter bank. As with the

colour albedo data, the poor performance of the last three feature sets can be attributed

to the use of filters which do not use high frequency information. Between these two

limits lie the Polarogram, the Wedge filter bank and the combined filter bank, with the

Wedge filter bank having better performance than the Polarogram. The ranking of

texture retrieval methods in this graph demonstrates that first order statistics are

important for micro-geometry discrimination, but that they are not the clear cut winners

 182

that they were with the colour albedo data. In particular the directionally insensitive

ring filter bank does almost as well as the histogram measure here.

7.9 Conclusion

In this chapter, we selected ten methods for implementing texture retrieval with a textile

database, which we then tested and evaluated. This forms the first component of our 3D

surface representation for the 3D visualisation of virtual textile catalogues.

We presented a review of possible texture retrieval methods at the start of this chapter.

Since the main objective of this chapter is to determine efficient methods of retrieval for

textile catalogues, ten rotation invariant texture retrieval methods thave been selected.

These include the colour histogram for albedo and surface normal data, the standard

histogram for gradient data, and the ring filter bank, the wedge filter bank, the Gabor

filter bank, the Schmid filter bank, the Leung-Malik filter bank, the Maximum-Response-

8 filter bank (MR-8) and the Maximum-Response-4 filter bank (MR-4), the Polarogram

and the combined filter banks method. We have also presented a summary of the

properties of each of these texture retrieval methods.

We present a table listing the ranked performance of each texture retrieval method and

texture data type in (Table 11) and a table listing the overall performance of each

texture retrieval method in (Table 12). Following these two tables, we present our

conclusions based upon the results of our experiments.

 183

Rank Albedo Bumpmap Gradient data

1st Histogram Gabor filter bank Histogram
2nd Ring filter bank Ring filter bank Ring filter bank
3rd Combined filter bank Combined filter bank Gabor filter bank
4th Gabor filter bank Wedge filter bank Combined filter bank
5th Schmid filter bank Polarogram filter bank Wedge filter bank
6th Wedge filter bank Histogram Polarogram
7th MR4 filter bank Schmid filter bank Schmid filter bank
8th Leung-Malik

filter bank
MR8 filter bank MR8 filter bank

9th MR8 filter bank MR4 filter bank MR4 filter bank
10th Polarogram Leung-Malik

filter bank
Leung-Malik
filter bank

Table 11: Table of texture retrieval method rankings

Ranking
Method

Albedo Bumpmap Gradient
field

Total

Gabor filter bank 4 1 3 8
Ring filter bank 2 2 2 8
Histogram 1 6 1 8
Combined filter bank 3 3 4 10
Wedge filter bank 6 4 5 15
Schmid filter bank 5 7 7 19
Polarogram 10 5 6 21
MR4 filter bank 7 9 9 25
MR8 filter bank 9 8 8 25
Leung-Malik filter bank 8 10 10 28

Table 12: Table of texture retrieval methods sorted by overall performance

We have shown for our dataset, the following:

· First order statistics in the form of histogram data provide by far the best

discriminative features for colour albedo information.

· Processing the surface normal micro-geometry data to remove directional

artifacts and produce the gradient data considerably improves performance.

 184

· For the micro-geometry data, the results are less clear cut but the simple

histogramming is still in the lead as a feature for use with the directionally

insensitive second order information and ring filters not far behind.

We believe that our original contribution from this chapter is that this is the first time

that a comparison of rotation invariant texture classification methods has been made

with the combined use of colour (albedo) and 3D surface representations (micro-

geometry represented as normalmap and gradient field data).

 185

Chapter 8 – Conclusions and Further Work

8.1 Summary

The objectives of the research reported in this thesis were:

· Identify the most suitable method of representing the 3D surface representation

or the micro-geometry of textile samples acquired using economic methods.

· Identify the most suitable rendering method to present the acquired 3D surface

representations to the user as realistically as possible in real-time, using current

generation programmable graphics accelerator boards.

· Identify the most suitable method for implementing rotation invariant texture

retrieval based upon similarity matching of the 3D surface representation.

We believe that the novel contributions provided by this thesis include the following:

· Creating a method of rendering parametric surfaces (Bézier patches) textured

with the micro-geometry of textile samples acquired using photometric stereo

and illuminated using both relief mapping and shadow mapping with dynamic

light sources to achieve real-time visualisation of textile covered 3D geometric

objects.

· The investigation into the use of rotation invariant texture retrieval algorithms

that use normalmap and gradient field micro-geometry and colour information

of textile samples acquired using photometric stereo.

 186

First objective

Our first objective involved identifying the most suitable method of representing the 3D

surface representation or micro-geometry of textile samples. To achieve this goal, we

identified nine candidate methods; General and Scattering functions, the BSSRDF, the

BTF, Surface Light fields and Surface Reflectance Fields, the BRDF/DSRF, Polynomial

Texture Maps, texture-mapping, Blinn bump-mapping, relief-mapping, and Point Set

Surfaces. We identified relief-mapping as the method most suitable to our needs as it

matches all of our criteria for a suitable 3D surface representation. This method consists

of a pair of texture images, one of which defined the albedo image and the other defined

the combined normalmap and heightmap. This imposes the requirement that a method

of acquiring this 3D surface representation is required, which is satisfied by the

technique of photometric stereo. However, as a trade-off between economic memory

usage and accuracy of lighting model, this method does not model the variance in

reflected light due to different combinations of light source direction and camera angle.

Such lighting models are necessary if materials such as velvet and silk are to be

visualised.

Second objective

Our second objective involved identifying the most suitable rendering method to

present the acquired 3D surface representations to the user as realistically as possible in

real-time using current generation programmable graphics accelerator boards. To

achieve this objective, we conducted a survey of eight candidate rendering methods;

shadow volumes, radiosity/discontinuity meshing, ray-tracing, scan-line algorithms,

subdivision methods, shadow mapping and shadow fields. We identified the shadow-

mapping method as the one most suitable to our needs as it was the only method that

matched our criteria of allowing dynamic light sources to be used in real-time in

conjunction with hardware acceleration. Thus our visualisation system consisted of the

rendering of parametric surfaces (Bézier patches) using relief-mapping combined with

shadow-mapping. This imposes the requirement that a programmable graphics

accelerator board is used to visualize all textile samples. As it is currently

implemented, our system supports dynamic light sources free to move under user

 187

control using relief-mapping and shadow-mapping combined together. However, with

more development time, it would be possible to extend this system to support physical

simulation of textiles using character animation as well as using more advanced lighting

models such as the BTF.

Third objective

Our third objective involved identifying the most suitable method for implementing

rotation invariant texture retrieval based upon similarity matching of the 3D surface

representation. To achieve this goal, we identified ten candidate methods suitable for

the rotation invariant texture classification. These methods included a ring filter bank, a

wedge filter bank, the Gabor filter bank, the Schmid filter bank, the Leung-Malik filter

bank, the MR4 filter bank, the MR8 filter bank, Polarograms, Histograms and all of

these methods combined together. We applied each of these methods onto the albedo,

normalmap and gradient field data generated from each textile sample and used

precision-recall and receiver-operator-characteristic graphs to analyze the results. After

analyzing the results, we identified the colour histogram, the Gabor filter bank and the

ring filter bank as the most suitable methods for the implementation of a virtual textile

database. The use of the Gabor filter bank and the ring filter bank has the consequence

of requiring that the discrete FFT is used to generate feature vectors suitable for use

with texture retrieval. While we were able to implement the core functionality of a

texture retrieval database, the implementation of an interactive user interface goes well

beyond the scope of of this PhD thesis, and was not addressed. Research into this area is

ongoing.

 188

Contribution

In terms of achieving the original objectives of this thesis, we believe we have achieved

the following.

We have achieved the objective of identifying a suitable 3D surface representation that

can be used to represent the colour and micro-geometry information of textile samples

suitable for use with 3D visualisation and texture retrieval, given the constraints of

economic memory usage versus complexity of lighting model. We have also achieved

the objective of combining together the real-time rendering of the macro-structure in

the form of Bézier surfaces and the micro-structure in the form of surface normal and

displacement maps 3D geometric models using current programmable graphics

accelerator boards in order to implement 3D visualisation of textile samples using a

variety of 3D forms. This system utilizes shadow-mapping for the macro-structure and

relief-mapping for the micro-structure.

We have also achieved the objective of identifying the most suitable texture retrieval

methods to generate rotation invariant feature vectors using the data represented by the

3D surface representation, which consists of the albedo, normalmap and gradient field.

Our feature vectors are novel in that they are generated from the combined use of both

albedo and gradient field data, to the best of our knowledge has not been combined

together before for the purpose of texture retrieval.

We concluded that for our test set, first order statistics in the form of histogram data

clearly provide the best performance when using colour albedo data. When using micro-

geometry data, computational processing to remove the directional artifacts present in

the partial derivatives significantly improves performance, and while the first order

statistics are again important and provide good retrieval performance, two of the second

order features (the ring filter bank and the Gabor filter bank) also gave good

performances.

 189

8.2 Further Work

In the previous section, we described the original objectives of this thesis, how far each

objective was achieved and what issues remained unresolved. In this section we

describe in greater detail these outstanding issues and how they can be resolved. We can

classify these outstanding issues into three categories:

· Visualisation

· Front-end user interface

· Back-end texture retrieval system

For the visualisation component of our system, there are several outstanding issues and

improvements that could be made. These include a more advanced 3D surface

representation to take into the change of appearance of the textile sample due to

changing lighting and camera angles, such as the BTF (Bidirectional Texture Function).

This would require a modification of the photometric stereo acquisition process to

capture multiple images of the textile samples from varying camera angles and light

source directions. This would also require using one of the many methods of

compressing the hundreds of megabytes of raw data into one or more texture images

using statistical analysis methods such as spherical harmonics, single value

decomposition or principal component analysis [Filip2008b]. The resulting texture

images would then be used to implement the BTF.

Another improvement to the visualisation system would be the use of real-world 3D

geometric data generated from professional CAD systems such as CATIA for the

manufacturing industry. This would allow users to visualize textiles as they would be

seen on real-world furniture and accessories. The use of more realistic 3D geometric

models could also be expanded to include animated human characters for the

visualisation of clothing. Using a physics system running under an environment such as

CUDA, PhysX, or APEX would allow for the simulation of the draping, folding and

wrinkling of textures in real-time.

For the texture retrieval system, there are also several improvements that could be made

to both the user interface and retrieval system. To make the user interface of the virtual

 190

textile database catalogue more intuitive, simple visual effects such as turning pages and

ring binder effects could be used. For dedicated systems in a public space the use of

touch screen technology using tablet PC’s or kiosk type displays could also be utilized.

Such a system would allow the user to issue combinations of “find similar textures” and

“find similar colours” requests.

Another improvement to the operation of the user interface would be to support

relevance feedback. Instead of simply sending each query to the database engine and

returning the set of results directly back to the user, relevance feedback performs each

query in two stages. In the first stage, the query is sent to the database engine as before.

However when the results are analyzed, they are compared to identify common terms to

be added to the original search query. The new modified search query is then

resubmitted to the database engine and the results returned to the user. To implement

this for use with textile database systems, this would require an analysis of the feature

vectors associated with each returned result. This could be achieved by calculating the

mean and standard deviation of each feature vector field and then modifying the search

engine comparison algorithm accordingly.

With the actual texture retrieval search engine there are also several improvements that

could be made. The first would be to integrate the research conducted by this thesis into

an existing framework for content rich data such as Ferret in order to provide a

complete information retrieval system with a web based user-interface. Another

improvement that we believe we could make, would be to make use of multi-processor

and multi-core technology to speed up database search queries. This could be achieved

through suitable API’s such as MPI or OpenMP, with communication between the front

end user interface and back end database engine handled using an internet web page

browser.

